4 research outputs found

    Micro-architectural analysis of in-memory OLTP: Revisited

    Get PDF
    Micro-architectural behavior of traditional disk-based online transaction processing (OLTP) systems has been investigated extensively over the past couple of decades. Results show that traditional OLTP systems mostly under-utilize the available micro-architectural resources. In-memory OLTP systems, on the other hand, process all the data in main-memory and, therefore, can omit the buffer pool. Furthermore, they usually adopt more lightweight concurrency control mechanisms, cache-conscious data structures, and cleaner codebases since they are usually designed from scratch. Hence, we expect significant differences in micro-architectural behavior when running OLTP on platforms optimized for in-memory processing as opposed to disk-based database systems. In particular, we expect that in-memory systems exploit micro-architectural features such as instruction and data caches significantly better than disk-based systems. This paper sheds light on the micro-architectural behavior of in-memory database systems by analyzing and contrasting it to the behavior of disk-based systems when running OLTP workloads. The results show that, despite all the design changes, in-memory OLTP exhibits very similar micro-architectural behavior to disk-based OLTP: more than half of the execution time goes to memory stalls where instruction cache misses or the long-latency data misses from the last-level cache (LLC) are the dominant factors in the overall execution time. Even though ground-up designed in-memory systems can eliminate the instruction cache misses, the reduction in instruction stalls amplifies the impact of LLC data misses. As a result, only 30% of the CPU cycles are used to retire instructions, and 70% of the CPU cycles are wasted to stalls for both traditional disk-based and new generation in-memory OLTP

    Decompose and Conquer: Addressing Evasive Errors in Systems on Chip

    Full text link
    Modern computer chips comprise many components, including microprocessor cores, memory modules, on-chip networks, and accelerators. Such system-on-chip (SoC) designs are deployed in a variety of computing devices: from internet-of-things, to smartphones, to personal computers, to data centers. In this dissertation, we discuss evasive errors in SoC designs and how these errors can be addressed efficiently. In particular, we focus on two types of errors: design bugs and permanent faults. Design bugs originate from the limited amount of time allowed for design verification and validation. Thus, they are often found in functional features that are rarely activated. Complete functional verification, which can eliminate design bugs, is extremely time-consuming, thus impractical in modern complex SoC designs. Permanent faults are caused by failures of fragile transistors in nano-scale semiconductor manufacturing processes. Indeed, weak transistors may wear out unexpectedly within the lifespan of the design. Hardware structures that reduce the occurrence of permanent faults incur significant silicon area or performance overheads, thus they are infeasible for most cost-sensitive SoC designs. To tackle and overcome these evasive errors efficiently, we propose to leverage the principle of decomposition to lower the complexity of the software analysis or the hardware structures involved. To this end, we present several decomposition techniques, specific to major SoC components. We first focus on microprocessor cores, by presenting a lightweight bug-masking analysis that decomposes a program into individual instructions to identify if a design bug would be masked by the program's execution. We then move to memory subsystems: there, we offer an efficient memory consistency testing framework to detect buggy memory-ordering behaviors, which decomposes the memory-ordering graph into small components based on incremental differences. We also propose a microarchitectural patching solution for memory subsystem bugs, which augments each core node with a small distributed programmable logic, instead of including a global patching module. In the context of on-chip networks, we propose two routing reconfiguration algorithms that bypass faulty network resources. The first computes short-term routes in a distributed fashion, localized to the fault region. The second decomposes application-aware routing computation into simple routing rules so to quickly find deadlock-free, application-optimized routes in a fault-ridden network. Finally, we consider general accelerator modules in SoC designs. When a system includes many accelerators, there are a variety of interactions among them that must be verified to catch buggy interactions. To this end, we decompose such inter-module communication into basic interaction elements, which can be reassembled into new, interesting tests. Overall, we show that the decomposition of complex software algorithms and hardware structures can significantly reduce overheads: up to three orders of magnitude in the bug-masking analysis and the application-aware routing, approximately 50 times in the routing reconfiguration latency, and 5 times on average in the memory-ordering graph checking. These overhead reductions come with losses in error coverage: 23% undetected bug-masking incidents, 39% non-patchable memory bugs, and occasionally we overlook rare patterns of multiple faults. In this dissertation, we discuss the ideas and their trade-offs, and present future research directions.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147637/1/doowon_1.pd

    Optimización del rendimiento y la eficiencia energética en sistemas masivamente paralelos

    Get PDF
    RESUMEN Los sistemas heterogéneos son cada vez más relevantes, debido a sus capacidades de rendimiento y eficiencia energética, estando presentes en todo tipo de plataformas de cómputo, desde dispositivos embebidos y servidores, hasta nodos HPC de grandes centros de datos. Su complejidad hace que sean habitualmente usados bajo el paradigma de tareas y el modelo de programación host-device. Esto penaliza fuertemente el aprovechamiento de los aceleradores y el consumo energético del sistema, además de dificultar la adaptación de las aplicaciones. La co-ejecución permite que todos los dispositivos cooperen para computar el mismo problema, consumiendo menos tiempo y energía. No obstante, los programadores deben encargarse de toda la gestión de los dispositivos, la distribución de la carga y la portabilidad del código entre sistemas, complicando notablemente su programación. Esta tesis ofrece contribuciones para mejorar el rendimiento y la eficiencia energética en estos sistemas masivamente paralelos. Se realizan propuestas que abordan objetivos generalmente contrapuestos: se mejora la usabilidad y la programabilidad, a la vez que se garantiza una mayor abstracción y extensibilidad del sistema, y al mismo tiempo se aumenta el rendimiento, la escalabilidad y la eficiencia energética. Para ello, se proponen dos motores de ejecución con enfoques completamente distintos. EngineCL, centrado en OpenCL y con una API de alto nivel, favorece la máxima compatibilidad entre todo tipo de dispositivos y proporciona un sistema modular extensible. Su versatilidad permite adaptarlo a entornos para los que no fue concebido, como aplicaciones con ejecuciones restringidas por tiempo o simuladores HPC de dinámica molecular, como el utilizado en un centro de investigación internacional. Considerando las tendencias industriales y enfatizando la aplicabilidad profesional, CoexecutorRuntime proporciona un sistema flexible centrado en C++/SYCL que dota de soporte a la co-ejecución a la tecnología oneAPI. Este runtime acerca a los programadores al dominio del problema, posibilitando la explotación de estrategias dinámicas adaptativas que mejoran la eficiencia en todo tipo de aplicaciones.ABSTRACT Heterogeneous systems are becoming increasingly relevant, due to their performance and energy efficiency capabilities, being present in all types of computing platforms, from embedded devices and servers to HPC nodes in large data centers. Their complexity implies that they are usually used under the task paradigm and the host-device programming model. This strongly penalizes accelerator utilization and system energy consumption, as well as making it difficult to adapt applications. Co-execution allows all devices to simultaneously compute the same problem, cooperating to consume less time and energy. However, programmers must handle all device management, workload distribution and code portability between systems, significantly complicating their programming. This thesis offers contributions to improve performance and energy efficiency in these massively parallel systems. The proposals address the following generally conflicting objectives: usability and programmability are improved, while ensuring enhanced system abstraction and extensibility, and at the same time performance, scalability and energy efficiency are increased. To achieve this, two runtime systems with completely different approaches are proposed. EngineCL, focused on OpenCL and with a high-level API, provides an extensible modular system and favors maximum compatibility between all types of devices. Its versatility allows it to be adapted to environments for which it was not originally designed, including applications with time-constrained executions or molecular dynamics HPC simulators, such as the one used in an international research center. Considering industrial trends and emphasizing professional applicability, CoexecutorRuntime provides a flexible C++/SYCL-based system that provides co-execution support for oneAPI technology. This runtime brings programmers closer to the problem domain, enabling the exploitation of dynamic adaptive strategies that improve efficiency in all types of applications.Funding: This PhD has been supported by the Spanish Ministry of Education (FPU16/03299 grant), the Spanish Science and Technology Commission under contracts TIN2016-76635-C2-2-R and PID2019-105660RB-C22. This work has also been partially supported by the Mont-Blanc 3: European Scalable and Power Efficient HPC Platform based on Low-Power Embedded Technology project (G.A. No. 671697) from the European Union’s Horizon 2020 Research and Innovation Programme (H2020 Programme). Some activities have also been funded by the Spanish Science and Technology Commission under contract TIN2016-81840-REDT (CAPAP-H6 network). The Integration II: Hybrid programming models of Chapter 4 has been partially performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme. In particular, the author gratefully acknowledges the support of the SPMT Department of the High Performance Computing Center Stuttgart (HLRS)

    Research theme reports from April 1, 2019 - March 31, 2020

    Get PDF
    corecore