22,307 research outputs found

    Deep Recurrent Survival Analysis

    Full text link
    Survival analysis is a hotspot in statistical research for modeling time-to-event information with data censorship handling, which has been widely used in many applications such as clinical research, information system and other fields with survivorship bias. Many works have been proposed for survival analysis ranging from traditional statistic methods to machine learning models. However, the existing methodologies either utilize counting-based statistics on the segmented data, or have a pre-assumption on the event probability distribution w.r.t. time. Moreover, few works consider sequential patterns within the feature space. In this paper, we propose a Deep Recurrent Survival Analysis model which combines deep learning for conditional probability prediction at fine-grained level of the data, and survival analysis for tackling the censorship. By capturing the time dependency through modeling the conditional probability of the event for each sample, our method predicts the likelihood of the true event occurrence and estimates the survival rate over time, i.e., the probability of the non-occurrence of the event, for the censored data. Meanwhile, without assuming any specific form of the event probability distribution, our model shows great advantages over the previous works on fitting various sophisticated data distributions. In the experiments on the three real-world tasks from different fields, our model significantly outperforms the state-of-the-art solutions under various metrics.Comment: AAAI 2019. Supplemental material, slides, code: https://github.com/rk2900/drs

    Speech-Based Blood Pressure Estimation with Enhanced Optimization and Incremental Clustering

    Full text link
    Blood Pressure (BP) estimation plays a pivotal role in diagnosing various health conditions, highlighting the need for innovative approaches to overcome conventional measurement challenges. Leveraging machine learning and speech signals, this study investigates accurate BP estimation with a focus on preprocessing, feature extraction, and real-time applications. An advanced clustering-based strategy, incorporating the k-means algorithm and the proposed Fact-Finding Instructor optimization algorithm, is introduced to enhance accuracy. The combined outcome of these clustering techniques enables robust BP estimation. Moreover, extending beyond these insights, this study delves into the dynamic realm of contemporary digital content consumption. Platforms like YouTube have emerged as influential spaces, presenting an array of videos that evoke diverse emotions. From heartwarming and amusing content to intense narratives, YouTube captures a spectrum of human experiences, influencing information access and emotional engagement. Within this context, this research investigates the interplay between YouTube videos and physiological responses, particularly Blood Pressure (BP) levels. By integrating advanced BP estimation techniques with the emotional dimensions of YouTube videos, this study enriches our understanding of how modern media environments intersect with health implications.Comment: 29 pages, 2 tables, 9 figure

    Singing voice correction using canonical time warping

    Full text link
    Expressive singing voice correction is an appealing but challenging problem. A robust time-warping algorithm which synchronizes two singing recordings can provide a promising solution. We thereby propose to address the problem by canonical time warping (CTW) which aligns amateur singing recordings to professional ones. A new pitch contour is generated given the alignment information, and a pitch-corrected singing is synthesized back through the vocoder. The objective evaluation shows that CTW is robust against pitch-shifting and time-stretching effects, and the subjective test demonstrates that CTW prevails the other methods including DTW and the commercial auto-tuning software. Finally, we demonstrate the applicability of the proposed method in a practical, real-world scenario

    Joint model-based recognition and localization of overlapped acoustic events using a set of distributed small microphone arrays

    Get PDF
    In the analysis of acoustic scenes, often the occurring sounds have to be detected in time, recognized, and localized in space. Usually, each of these tasks is done separately. In this paper, a model-based approach to jointly carry them out for the case of multiple simultaneous sources is presented and tested. The recognized event classes and their respective room positions are obtained with a single system that maximizes the combination of a large set of scores, each one resulting from a different acoustic event model and a different beamformer output signal, which comes from one of several arbitrarily-located small microphone arrays. By using a two-step method, the experimental work for a specific scenario consisting of meeting-room acoustic events, either isolated or overlapped with speech, is reported. Tests carried out with two datasets show the advantage of the proposed approach with respect to some usual techniques, and that the inclusion of estimated priors brings a further performance improvement.Comment: Computational acoustic scene analysis, microphone array signal processing, acoustic event detectio
    • …
    corecore