34,669 research outputs found

    Predicting financial distress:A comparison of survival analysis and decision tree techniques

    Get PDF
    AbstractFinancial distress and then the consequent failure of a business is usually an extremely costly and disruptive event. Statistical financial distress prediction models attempt to predict whether a business will experience financial distress in the future. Discriminant analysis and logistic regression have been the most popular approaches, but there is also a large number of alternative cutting – edge data mining techniques that can be used. In this paper, a semi-parametric Cox survival analysis model and non-parametric CART decision trees have been applied to financial distress prediction and compared with each other as well as the most popular approaches. This analysis is done over a variety of cost ratios (Type I Error cost: Type II Error cost) and prediction intervals as these differ depending on the situation. The results show that decision trees and survival analysis models have good prediction accuracy that justifies their use and supports further investigation

    Mapping the State of Financial Stability

    Get PDF
    The paper uses the Self-Organizing Map for mapping the state of financial stability and visualizing the sources of systemic risks on a two-dimensional plane as well as for predicting systemic financial crises. The Self-Organizing Financial Stability Map (SOFSM) enables a two-dimensional representation of a multidimensional financial stability space and thus allows disentangling the individual sources impacting on systemic risks. The SOFSM can be used to monitor macro-financial vulnerabilities by locating a country in the financial stability cycle: being it either in the pre-crisis, crisis, post-crisis or tranquil state. In addition, the SOFSM performs better than or equally well as a logit model in classifying in-sample data and predicting out-of-sample the global financial crisis that started in 2007. Model robustness is tested by varying the thresholds of the models, the policymaker’s preferences, and the forecasting horizon.systemic financial crisis; systemic risk; self-organizing maps; visualisation; prediction; macroprudential supervision

    Evolutionary Subject Tagging in the Humanities; Supporting Discovery and Examination in Digital Cultural Landscapes

    Get PDF
    In this paper, the authors attempt to identify problematic issues for subject tagging in the humanities, particularly those associated with information objects in digital formats. In the third major section, the authors identify a number of assumptions that lie behind the current practice of subject classification that we think should be challenged. We move then to propose features of classification systems that could increase their effectiveness. These emerged as recurrent themes in many of the conversations with scholars, consultants, and colleagues. Finally, we suggest next steps that we believe will help scholars and librarians develop better subject classification systems to support research in the humanities.NEH Office of Digital Humanities: Digital Humanities Start-Up Grant (HD-51166-10

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Attribute Identification and Predictive Customisation Using Fuzzy Clustering and Genetic Search for Industry 4.0 Environments

    Get PDF
    Today®s factory involves more services and customisation. A paradigm shift is towards “Industry 4.0” (i4) aiming at realising mass customisation at a mass production cost. However, there is a lack of tools for customer informatics. This paper addresses this issue and develops a predictive analytics framework integrating big data analysis and business informatics, using Computational Intelligence (CI). In particular, a fuzzy c-means is used for pattern recognition, as well as managing relevant big data for feeding potential customer needs and wants for improved productivity at the design stage for customised mass production. The selection of patterns from big data is performed using a genetic algorithm with fuzzy c-means, which helps with clustering and selection of optimal attributes. The case study shows that fuzzy c-means are able to assign new clusters with growing knowledge of customer needs and wants. The dataset has three types of entities: specification of various characteristics, assigned insurance risk rating, and normalised losses in use compared with other cars. The fuzzy c-means tool offers a number of features suitable for smart designs for an i4 environment

    Self-organizing maps could improve the classification of Spanish mutual funds.

    Get PDF
    In this paper, we apply nonlinear techniques (Self-Organizing Maps, k-nearest neighbors and the k-means algorithm) to evaluate the official Spanish mutual funds classification. The methodology that we propose allows us to identify which mutual funds are misclassified in the sense that they have historical performances which do not conform to the investment objectives established in their official category. According to this, we conclude that, on average, over 40% of mutual funds could be misclassified. Then, we propose an alternative classification, based on a double-step methodology, and we find that it achieves a significantly lower rate of misclassifications. The portfolios obtained from this alternative classification also attain better performances in terms of return/risk and include a smaller number of assets.Finance; Mutual funds; Clustering; Self-organizing map (SOM); Investment analysis;

    Mapping the state of financial stability

    Get PDF
    The paper uses the Self-Organizing Map for mapping the state of financial stability and visualizing the sources of systemic risks as well as for predicting systemic financial crises. The Self-Organizing Financial Stability Map (SOFSM) enables a two-dimensional representation of a multidimensional financial stability space that allows disentangling the individual sources impacting on systemic risks. The SOFSM can be used to monitor macro-financial vulnerabilities by locating a country in the financial stability cycle: being it either in the pre-crisis, crisis, post-crisis or tranquil state. In addition, the SOFSM performs better than or equally well as a logit model in classifying in-sample data and predicting out-of-sample the global financial crisis that started in 2007. Model robustness is tested by varying the thresholds of the models, the policymaker’s preferences, and the forecasting horizons. JEL Classification: E44, E58, F01, F37, G01macroprudential supervision, prediction, Self-Organizing Map (SOM), Systemic financial crisis, systemic risk, visualization
    • 

    corecore