67,553 research outputs found

    A Parameterization Scheme for Lossy Transmission Line Macromodels with Application to High Speed Interconnects in Mobile Devices

    Get PDF
    We introduce a novel parameterization scheme based on the generalized method of characteristics (MoC) formacromodels of transmission-line structures having a cross section depending on several free geometrical and material parameters. This situation is common in early design stages, when the physical structures still have to be finalized and optimized under signal integrity and electromagnetic compatibility constraints. The topology of the adopted line macromodels has been demonstrated to guarantee excellent accuracy and efficiency. The key factors are propagation delay extraction and rational approximations, which intrinsically lead to a SPICE-compatible macromodel stamp. We introduce a scheme that parameterizes this stamp as a function of geometrical and material parameters such as conductor-width and separation, dielectric thickness, and permettivity. The parameterization is performed via multidimensional interpolation of the residue matrices in the rational approximation of characteristic admittance and propagation operators. A significant advantage of this approach consists of the possibility of efficiently utilizing the MoC methodology in an optimization scheme and eventually helping the design of interconnects.We apply the proposed scheme to flexible printed interconnects that are typically found in portable devices having moving parts. Several validations demonstrate the effectiveness of the approac

    Non equilibrium optical properties in semiconductors from first--principles: a combined theoretical and experimental study of bulk silicon

    Get PDF
    The calculation of the equilibrium optical properties of bulk silicon by using the Bethe--Salpeter equation solved in the Kohn--Sham basis represents a cornerstone in the development of an ab--initio approach to the optical and electronic properties of materials. Nevertheless calculations of the {\em transient} optical spectrum using the same efficient and successful scheme are scarce. We report, here, a joint theoretical and experimental study of the transient reflectivity spectrum of bulk silicon. Femtosecond transient reflectivity is compared to a parameter--free calculation based on the non--equilibrium Bethe--Salpeter equation. By providing an accurate description of the experimental results we disclose the different phenomena that determine the transient optical response of a semiconductor. We give a parameter--free interpretation of concepts like bleaching, photo--induced absorption and stimulated emission, beyond the Fermi golden rule. We also introduce the concept of optical gap renormalization, as a generalization of the known mechanism of band gap renormalization. The present scheme successfully describes the case of bulk silicon, showing its universality and accuracy.Comment: 14 pages, 13 figure

    Tunable phonon blockade in weakly nonlinear coupled mechanical resonators via Coulomb interaction

    Full text link
    Realizing quantum mechanical behavior in micro- and nanomechanical resonators has attracted continuous research effort. One of the ways for observing quantum nature of mechanical objects is via the mechanism of phonon blockade. Here, we show that phonon blockade could be achieved in a system of two weakly nonlinear mechanical resonators coupled by a Coulomb interaction. The optimal blockade arises as a result of the destructive quantum interference between paths leading to two-phonon excitation. It is observed that, in comparison to a single drive applied on one mechanical resonator, driving both the resonators can be beneficial in many aspects; such as, in terms of the temperature sensitivity of phonon blockade and also with regard to the tunability, by controlling the amplitude and the phase of the second drive externally. We also show that via a radiation pressure induced coupling in an optomechanical cavity, phonon correlations can be measured indirectly in terms of photon correlations of the cavity mode

    An Overview of Integral Quadratic Constraints for Delayed Nonlinear and Parameter-Varying Systems

    Full text link
    A general framework is presented for analyzing the stability and performance of nonlinear and linear parameter varying (LPV) time delayed systems. First, the input/output behavior of the time delay operator is bounded in the frequency domain by integral quadratic constraints (IQCs). A constant delay is a linear, time-invariant system and this leads to a simple, intuitive interpretation for these frequency domain constraints. This simple interpretation is used to derive new IQCs for both constant and varying delays. Second, the performance of nonlinear and LPV delayed systems is bounded using dissipation inequalities that incorporate IQCs. This step makes use of recent results that show, under mild technical conditions, that an IQC has an equivalent representation as a finite-horizon time-domain constraint. Numerical examples are provided to demonstrate the effectiveness of the method for both class of systems

    Interacting many-body systems in quantum wells: Evidence for exciton-trion-electron correlations

    Get PDF
    We report on the nonlinear optical dynamical properties of excitonic complexes in CdTe modulation-doped quantum wells, due to many-body interactions among excitons, trions and electrons. These were studied by time and spectrally resolved pump-probe experiments. The results reveal that the nonlinearities induced by trions differ from those induced by excitons, and in addition they are mutually correlated. We propose that the main source of these subtle differences comes from the Pauli exclusion-principle through phase-space filling and short-range fermion exchange.Comment: 5 pages, 4 figures. accepted for publications in Phys. Rev.

    Characterization and Compensation of Network-Level Anomalies in Mixed-Signal Neuromorphic Modeling Platforms

    Full text link
    Advancing the size and complexity of neural network models leads to an ever increasing demand for computational resources for their simulation. Neuromorphic devices offer a number of advantages over conventional computing architectures, such as high emulation speed or low power consumption, but this usually comes at the price of reduced configurability and precision. In this article, we investigate the consequences of several such factors that are common to neuromorphic devices, more specifically limited hardware resources, limited parameter configurability and parameter variations. Our final aim is to provide an array of methods for coping with such inevitable distortion mechanisms. As a platform for testing our proposed strategies, we use an executable system specification (ESS) of the BrainScaleS neuromorphic system, which has been designed as a universal emulation back-end for neuroscientific modeling. We address the most essential limitations of this device in detail and study their effects on three prototypical benchmark network models within a well-defined, systematic workflow. For each network model, we start by defining quantifiable functionality measures by which we then assess the effects of typical hardware-specific distortion mechanisms, both in idealized software simulations and on the ESS. For those effects that cause unacceptable deviations from the original network dynamics, we suggest generic compensation mechanisms and demonstrate their effectiveness. Both the suggested workflow and the investigated compensation mechanisms are largely back-end independent and do not require additional hardware configurability beyond the one required to emulate the benchmark networks in the first place. We hereby provide a generic methodological environment for configurable neuromorphic devices that are targeted at emulating large-scale, functional neural networks
    corecore