31 research outputs found

    A Semi-Implicit Multiscale Scheme for Shallow Water Flows at Low Froude Number

    Get PDF
    A new large time step semi-implicit multiscale method is presented for the solution of low Froude-number shallow water flows. While on small scales which are under-resolved in time the impact of source terms on the divergence of the flow is essentially balanced, on large resolved scales the scheme propagates free gravity waves with minimized diffusion. The scheme features a scale decomposition based on multigrid ideas. Two different time integrators are blended at each scale depending on the scale-dependent Courant number for gravity wave propagation. The finite-volume discretization is based on a Cartesian grid and is second order accurate. The basic properties of the method are validated by numerical tests. This development is a further step in the development of asymptotically adaptive numerical methods for the computation of large scale atmospheric flows

    An application of 3-D kinematical conservation laws: propagation of a 3-D wavefront

    Get PDF
    Three-dimensional (3-D) kinematical conservation laws (KCL) are equations of evolution of a propagating surface Omega(t) in three space dimensions. We start with a brief review of the 3-D KCL system and mention some of its properties relevant to this paper. The 3-D KCL, a system of six conservation laws, is an underdetermined system to which we add an energy transport equation for a small amplitude 3-D nonlinear wavefront propagating in a polytropic gas in a uniform state and at rest. We call the enlarged system of 3-D KCL with the energy transport equation equations of weakly nonlinear ray theory (WNLRT). We highlight some interesting properties of the eigenstructure of the equations of WNLRT, but the main aim of this paper is to test the numerical efficacy of this system of seven conservation laws. We take several initial shapes for a nonlinear wavefront with a suitable amplitude distribution on it and let it evolve according to the 3-D WNLRT. The 3-D WNLRT is a weakly hyperbolic 7 × 7 system that is highly nonlinear. Here we use the staggered Lax–Friedrichs and Nessyahu–Tadmor central schemes and have obtained some very interesting shapes of the wavefronts. We find the 3-D KCL to be suitable for solving many complex problems for which there presently seems to be no other method capable of giving such physically realistic features

    Convergence to Equilibrium in Wasserstein distance for damped Euler equations with interaction forces

    Get PDF
    We develop tools to construct Lyapunov functionals on the space of probability measures in order to investigate the convergence to global equilibrium of a damped Euler system under the influence of external and interaction potential forces with respect to the 2-Wasserstein distance. We also discuss the overdamped limit to a nonlocal equation used in the modelling of granular media with respect to the 2-Wasserstein distance, and provide rigorous proofs for particular examples in one spatial dimension
    corecore