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Abstract: We develop tools to construct Lyapunov functionals on the space of proba-
bility measures in order to investigate the convergence to global equilibrium of a damped
Euler system under the influence of external and interaction potential forces with respect
to the 2-Wasserstein distance. We also discuss the overdamped limit to a nonlocal equa-
tion used in the modelling of granular media with respect to the 2-Wasserstein distance,
and provide rigorous proofs for particular examples in one spatial dimension.

1. Introduction

In this paper, we develop tools to analyse the large-time behavior of second-order dynam-
ics that describe evolutions in the space of probability measures driven by a free energy
F . More precisely, we consider the evolution of probability measures μ with Lebesgue
densities � and their velocities u described by damped Euler systems with damping
parameter γ > 0 of the form

∂t�t + ∇ · (�t ut ) = 0, (t, x) ∈ R+ × R
d ,

∂t (�t ut ) + ∇ · (�t ut ⊗ ut ) = −�t∇(δμF)(μt ) − γ �t ut ,
(1)

subject to initial density and velocity conditions

(�t , ut )|t=0 = (�0, u0) for x ∈ R
d , (2)

where δμF = δF/δμ is the variational derivative of a free energyF acting on probability
measures μ that are absolutely continuous with respect to the Lebesgue measure on Rd

with Radon–Nikodym derivative dμ/dx = �, given by

F(μ) :=
∫
Rd

U (�) dx +
∫
Rd

V (x) dμ(x) +
1

2

∫∫
Rd×Rd

W (x − y) dμ(x) dμ(y). (3)
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Here, U denotes an increasing function describing the internal energy of the density
dμ/dx = �, V : Rd → R and W : Rd → R are the confinement and the interaction
potentials respectively. In this case, the variational derivative of F in (3) is given by
[1,62]

(δμF)(μ) = U ′(�) + V (x) +W � μ.

In Sect. 2.1 we will make sufficient assumptions on U , V and W in order to ensure the
existence of a stationary measure μ∞ for the damped Euler system (1) that may also
be characterized as a minimizer of the free energy F . In the sequel, we will identify the
measure μ with its density � as soon as the measure μ has a Lebesgue density.

While the well-posedness of (1) remains a challenging open question—even for
restricted classes of initial data (2)—and not dealt with in this paper, damped Euler
systems without confining and interaction forces (V = W ≡ 0) have been investigated
in multiple contexts. For instance, the global existence of BV and L∞ entropy weak
solutions for the one-dimensional case were addressed in [29,31,40,42] respectively.
The asymptotic behavior of solutions were also discussed in [39,41–43,58]. For the
multi-dimensional case, global existence and pointwise estimates of solutions based on
the Green’s function approach together with energy estimates were obtained in [63],
while the global existence of classical solutions and the large-time behavior of solutions
were studied in [8,37,60] under the smallness assumptions on the initial data. We also
refer to [35,51] for the study of global well-posedness and asymptotic behavior of
solutions based on the framework of Besov spaces. We refer the reader to [25] for a
general survey of the Euler equations.

An initial attempt at proving equilibration results with explicit decay rates was con-
ducted in [48] for the case U (s) = s log s, V (x) = |x |2/2 and W ≡ 0. There, the
authors used entropy dissipation methods to heuristically derive functional inequalities
that provided the decay rates to equilibrium under relatively strong global regularity
assumptions on (�, u). The results in [48] indicate a convergence behavior similar to
spatially inhomogeneous entropy-dissipating kinetic equations where hypocoercivity of
the operators involved played an important role in determining convergence to equilib-
rium [30,32,33,46,47,61]. There, the exponential decay rate λ = λ(γ ) has the property
that λ → 0 as γ → 0 and γ → +∞, i.e., the best equilibration rate for (1) holds for
some γ ∈ (0,∞).

A related equation is the well-known aggregation-diffusion equation

∂t �̄t = ∇ · (
�̄t∇(δμF)(�̄t )

)
, (t, x) ∈ R+ × R

d , (4)

with �̄t a probability density on Rd . The long-time asymptotics for (4) are given by the
minimizer of the free energyF as t → ∞, whenever the potentials are uniformly convex
as in one of the earliest applications of these equations in granular media modelling [3,4,
23,50]. Both Eqs. (1) and (4), also find numerous applications in mathematical biology
and technology such as swarming of animal species, cell movement by chemotaxis,
self-assembly of particles, and dynamical density functional theory (DDFT)—see for
instance [21,36,38,49] and the references therein.

Explicit equilibration rates for the aggregation-diffusion Eq. (4) have been derived
using entropy dissipation methods [23,27] or, more recently, by using contraction esti-
mates in the 2-Wasserstein distance [9–11] under convexity assumptions on the poten-
tials. The entropy dissipation method is based on studying the time derivative of an
appropriate Lyapunov functional along the flow generated by the aggregation-diffusion
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Eq. (4), and using functional inequalities to bound the dissipation from below in terms of
the Lyapunov functional. Actually, the solutions of (4) formally satisfy the free energy
dissipation

d

dt
F(�̄t ) = −

∫
Rd

|∇(δμF)(�̄t )|2�̄t dx . (5)

Heuristically, one may view solutions of (4) as gradient flows of the free energy F on
the space of probability measures, endowed with the 2-Wasserstein distance [1,24,59].
On the other hand, the method of using Wasserstein contraction estimates introduced in
[10,11,24], is based on comparing the 2-Wasserstein distance with its dissipation along
the evolution. This theory can deal with displacement convex functionals, as introduced
in the seminal paper of McCann [56], which include certain non uniformly convex
potentials [19,20]. However, much less is known in terms of rates of convergence if
uniform convexity of the potentials is not present, see [2,5,6,15,22] and the references
therein for blow-up time, equilibrium solutions and qualitative covergence results.

In fact, Eq. (4) may be seen as an overdamped limit (γ → +∞) of the damped
Euler Eq. (1) and has been studied in [28,44] for the isothermal pressure law case
(U (s) = s log s, V = W ≡ 0). It was shown that the solutions to the damped isothermal
Euler equations converge to that of the heat equation. For the isentropic pressure law
case (U (s) = sm , m > 1, V = W ≡ 0), the convergence to the porous media equation
was discussed in [52,54] in one and multi-dimensions, respectively. Some particular
cases in one spatial dimension have received a lot of attention due to the appearance of
δ-shocks, and their application to sticky particles [13,14] or to consensus/contagion in
swarming/crowd models [7,17,18].

The objective of this paper is to develop contraction estimates in the 2-Wasserstein
distance in the presence of uniform convexity of the potentials, in order to (a) prove
convergence to equilibrium results for the damped Euler Eq. (1) in its full generality,
and (b) to prove the overdamped limit (γ → ∞) of (1) to (4) after suitable scaling. The
general idea in handling both problems stems from viewing (1) as a damped harmonic
oscillator for the pair (�, u) with energy

H(�t , ut ) := F(�t ) +
1

2

∫
Rd

|ut |2�t dx,

which plays the role of a mathematical entropy and provides for a Lyapunov functional
of (1). Indeed, for smooth solutions (�, u) of (1), the identity

d

dt
H(�t , ut ) = − γ

∫
Rd

|ut |2�t dx ≤ 0, (6)

holds. Although this inequality clearly states the dissipation of H with time t ≥ 0,
one cannot conclude the convergence to (global) equilibrium, since the right-hand side
vanishes at local equilibria (ut ≡ 0). Integrating (6) gives the estimate

F(�t ) +
1

2

∫
Rd

|ut |2�t dx + γ

∫ t

0

∫
Rd

|us |2�s dx ds ≤ F(�0) +
1

2

∫
Rd

|u0|2�0 dx,

for all t ≥ 0. A solution (�, u) of (1) satisfying this estimate is called an energy decay-
ing solution in the sequel. We will assume that these solutions exist globally in time
with certain regularity for their velocity fields. We emphasize otherwise that our results
hold without any smallness assumption on the initial data or closeness assumption to
equilibrium solutions.
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A good intuition for our strategy comes from the finite-dimensional setting. It is well-
known that finite-dimensional gradient flows of uniformly convex energy landscapes
enjoy exponential equilibration towards their unique global minimum. More precisely,
assume E : R

d −→ R to be a uniformly C2 convex function achieving its global
minimum at zero with D2E ≥ λId , for some λ > 0. Then, a good quantity to estimate
the decay to zero of all solutions is given by the euclidean distance of a trajectory of the
gradient flow ẋ = −∇E(x) to the origin. Actually, one can show that

d

dt
|x(t)|2 ≤ −λ|x(t)|2 for all t ≥ 0.

The gradient flow ẋ = −∇E(x) is the finite-dimensional counterpart of the aggregation-
diffusion Eq. (4). For the damped Euler system (1), the finite dimensional counterpart
is the classical damped oscillator ẋ = v, v̇ = −∇E(x) − γ v. Observe that the energy
E(x) is dissipated by the gradient flow ẋ = −∇E(x), that is, d

dt E(x) = − |∇E(x)|2
that resembles the gradient flow structure of (4) and its dissipation (5). In the case of the
classical damped oscillator, we have the following dissipation of the total energy

d

dt

[
1

2
|v(t)|2 + E(x(t))

]
= − γ |v(t)|2 for all t ≥ 0 ,

that resembles (6). Since the quantity |x(t)|2 was a good measure of the equilibration
of the gradient flow equation, it seems quite natural to check if it is also the case for the
classical damped oscillator. In fact, one can show that

d2

dt2
|x(t)|2 + γ

d

dt
|x(t)|2 + λ|x(t)|2 ≤ 2|v(t)|2 for all t ≥ 0.

This relation together with the energy identity implies the convergence, without rate,
for the solutions of the classical damped oscillator towards the origin. Its proof will be
discussed in Sect. 4 in the framework of solutions to the Euler Eq. (1).

To analyse the evolution of probability measures, it is classical that the euclidean
Wasserstein distance towards the global equilibrium of the free energy F plays the
role of the euclidean distance in R

d to the origin. Therefore, motivated by the finite
dimensional computation above and the work in [48] (cf. [61]), we construct a Lyapunov
functional based on the weighted sum of the energy H, the 2-Wasserstein distance and
its temporal derivative. In particular, we will require an estimate for the second-order
temporal derivative of the 2-Wasserstein distance, which is provided by Theorem 1 in
Sect. 3. Roughly speaking, it states that for solutions (�, u) satisfying (1), the second-
order temporal derivative of the 2-Wasserstein distance betweenμt , with density �t , and
any probability measure σ with finite second moment, is given by

1

2

d+

dt

d

dt
W 2

2 (μt , σ ) +
γ

2

d

dt
W 2

2 (μt , σ )

≤
∫
Rd

|ut |2dμt −
∫
Rd

〈Tt (y) − y,∇(δμF)(μt ) ◦ Tt (y)〉 dσ,

where Tt : Rd → R
d is an optimal transport map between μt and σ , satisfying Tt#σ =

μt , i.e., μt is the push-forward of σ under the map Tt .
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When V and W satisfy certain λ-convexity assumptions ((H1) and (H2) below) and
σ = μ∞ is a sufficiently smooth minimizer of F , i.e., μ∞, with density �∞, satisfies
μ∞∇(δμF)(μ∞) = 0, then the previous estimate reduces to (cf. Corollary 1)

1

2

d+

dt

d

dt
W 2

2 (μt , μ∞) +
γ

2

d

dt
W 2

2 (μt , μ∞) ≤
∫
Rd

|ut |2dμt − λ

2
W 2

2 (μt , μ∞),

for some λ > 0. It is this form of the estimate, along with estimate (6), that will be
used to construct a strict Lyapunov function for the evolution, thereby resulting in the
equilibration statements found in Theorems 3 and 4 (see also Corollaries 2 and 3): For
initial data (�0, u0) with bounded energy and W2(μ0, μ∞) < ∞, one obtains

W2(μt , μ∞) −→ 0 as t → ∞.

In order to also deduce the convergence ‖ut‖L2(μt )
→ 0 as t → ∞, one requires an

additional assumption (H3) on the relationship betweenF andW2, and on the regularity
of the solution.

A similar approach is used to prove the overdamped limit (γ → +∞) in Sect. 5,
where we compare a rescaled version of the solution (�γ , uγ ) to the Euler system (1)
with the solution �̄ of the granularmedia Eq. (4). Since both�γ and �̄ are time dependent,
we extend the second-order estimate above to include measures σ that evolve in time
(Theorem 2). This enables us to show in Theorem 5 that

∫ T

0
W 2

2 (�
γ
t dx, �̄t dx) dt −→ 0 as γ → ∞,

for any T > 0 provided that the initial conditions are well-prepared.
The final section of the paper—Sect. 6—gives rigorous proofs for particular examples

in one dimension for which the calculus developed for equilibration in Sect. 4 provides
(a) explicit exponential decay rates in the case when solutions are smooth, and (b) equi-
libration (without rates) whenever solutions form δ-shocks in finite time. The example
in (b) clearly illustrates the strength of the calculus even for the one dimensional case,
where standard tools fail due to lack of regularity. In short, we show that all global in
time Lagrangian solutions in the sense of [13] converge in W2 towards a Dirac Delta at
the center of mass of the initial density.

2. Preliminary Results

We begin this section by introducing known results and stating restrictions on the free
energy F that will be assumed throughout this paper. The next part of this section
describes the general strategy applied to a toy example.

Definition 1. Let P2(R
d) denote the set of Borel probability measures onRd with finite

second moment, i.e.,
∫ |x |2dμ < ∞ for all μ ∈ P2(R

d). The 2-Wasserstein distance
between two measures μ and ν in P2(R

d) is defined as

W2(μ, ν) = infπ∈�(μ,ν)

(∫∫
Rd×Rd

|x − y|2dπ(x, y)

)1/2

,

where �(μ, ν) denotes the collection of all Borel probability measures on R
d × R

d

with marginals μ and ν on the first and second factors respectively. The set �(μ, ν)
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is also known as the set of all couplings of μ and ν ∈ P2(R
d). We further denote by

�0(μ, ν) the set of optimal couplings betweenμ and ν. TheWasserstein distance defines
a distance onP2(R

d)which metricizes the narrow convergence, up to a condition on the
moments. We denote the set of probability measures having finite second moment with
Lebesgue densities by Pac

2 (Rd).

2.1. Existence of stationary measures. To emphasize on the presentation of the equili-
bration method, we do not consider the most general assumptions to ensure the existence
of minimizers of the free energy F . Throughout this paper, we assume the conditions
below:

(H1) U ∈ C([0,∞)) ∩ C2((0,∞)) with U (0) = 0, and the function r �→ rdU (r−d) is
convex nonincreasing on (0,∞), or equivalently,

(d − 1)p(r) ≤ drp′(r) on (0,∞), p(r) = rU ′(r) −U (r),

or r �→ r−1+1/d p(r) is nondecreasing on (0,∞).
(H2) V and W are C1(Rd) potentials on R

d with W (−x) = W (x) for all x ∈ R
d ,

satisfying

〈x − y,∇V (x) − ∇V (y)〉 ≥ cV |x − y|2
〈x − y,∇W (x) − ∇W (y)〉 ≥ cW |x − y|2

}
for all x, y ∈ R

d ,

with either cV > 0 and cV + cW > 0 if V �≡ 0, or cV = 0 and cW > 0 if V ≡ 0.

Under these conditions, we have the following result found in [1,11,23,56].

Proposition 1. The free energyF : P2(R
d) → (−∞,+∞] defined by (3) for absolutely

continuous measures (w.r.t. the Lebesgue measure) and by +∞ otherwise achieves its
minimum. A minimizer μ∞ of F has a non-negative density �∞ on R

d satisfying

∇ p(�∞) + �∞(∇V + ∇W � �∞) = 0 a.e.

In particular, we have

U ′(�∞) + V +W � �∞ = c μ∞-a.e.,

for some constant c ∈ R.

Remark 1. For isothermal/isentropic flows in fluid dynamics the pressure law p(�) is
typically prescribed by

p(�) = �m with m ≥ 1.

In this case, the internal energy U is uniquely given by

U (�) =
{

� log � if m = 1,
�m/(m − 1) if m > 1,

and condition (H1) takes the form m ≥ 1 − 1/d which is now classical. Consequently,
the isentropic pressure satisfies condition (H1) for any m ≥ 1.

Remark 2. In the seminal work [56], McCann showed that assumption (H1) is equiv-
alent to the requirement that

∫
Rd U (�) dx is (geodesically) displacement convex on

(P2(R
d),W2).
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2.2. Equilibration of the center of mass. Here, we provide a simple construction of a
strict Lyapunov functional for a toy example, for which we obtain exponential decay
rates of the center of mass of μ, with density �, where (�, u) solves (1) with V (x) =
cV |x − x̄ |2/2, cV > 0 for a given x̄ ∈ R

d and W ≡ 0. In this case, the free energy is
given by

F(μ) =
∫
Rd

U (�) dx +
cV
2

∫
Rd

|x − x̄ |2 dμ,

with variational derivative (δμF)(μ) = U ′(�) + cV (x − x̄).
By examining the evolution of the center of mass of μt , we find that

d

dt

∫
Rd

x dμt =
∫
Rd

ut dμt ,
d

dt

∫
Rd

ut dμt = −
∫
Rd

∇V dμt − γ

∫
Rd

ut dμt ,

(7)

which clearly resembles a damped harmonic oscillator. Note that the computations above
are done component-wise, i.e.,

d

dt

∫
Rd

xi dμt =
∫
Rd

ui,t dμt for all i = 1, . . . , d.

From this observation, one may easily deduce the exponential convergence of the center
of mass of μt towards x̄ ∈ R

d at a rate λ that has the properties λ(γ ) → 0 as γ → 0
and γ → +∞.

Indeed, it follows from (7) that

d2

dt2

∫
Rd

(x − x̄) dμt + γ
d

dt

∫
Rd

(x − x̄) dμt + cV

∫
Rd

(x − x̄) dμt = 0.

Thus, from classical theory of differential equations, we may solve the second-order
linear equation to obtain explicit decay rates. However, we use an alternative approach
to estimate the decay rate, which simultaneously illustrates the basic idea behind our
strategy. First of all, notice that

1

2

d

dt

[
cV

∣∣∣∣
∫
Rd

(x − x̄) dμt

∣∣∣∣
2

+

∣∣∣∣
∫
Rd

ut dμt

∣∣∣∣
2
]

= − γ

∣∣∣∣
∫
Rd

ut dμt

∣∣∣∣
2

,

i.e., we are in the same conditions as in Eq. (6). Now consider the temporal derivative of

J (t) := α

∣∣∣∣
∫
Rd

(x − x̄) dμt

∣∣∣∣
2

+ 2

(∫
Rd

(x − x̄) dμt

)
·
(∫

Rd
ut dμt

)
+ β

∣∣∣∣
∫
Rd

ut dμt

∣∣∣∣
2

=: αJ1(t) + 2J2(t) + βJ3(t),

where α, β > 0 are to be chosen appropriately. We note that for αβ > 1, we have the
equivalence

p(J1 + J3) ≤ J ≤ q(J1 + J3),

for some constant p, q > 0, depending only on α and β. Simple computations yield

d

dt
J (t) = − 2cVJ1(t) + 2(α − βcV − γ )J2(t) − 2(βγ − 1)J3(t).
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Choosing β = (1 + cV )/γ and α = βcV + γ , and using the fact that αβ ≥ 1 + cV > 1,
we obtain

d

dt
J (t) = − 2cV (J1(t) + J3(t)) ≤ −2(cV /q)J (t).

A simple application of the Grownwall inequality provides the exponential decay

J (t) ≤ J (0)e−(2cV /q)t , q = (α + β) +
√
4 + (β − α)2

2
.

With the explicit choice of α and β, one easily examines the γ dependent decay rate.

Remark 3. Notice that while the above computations provide exponential convergence
of the center of mass of μ and the momentum uμ towards (x̄, 0), nothing can be said
about (�, u) itself.

3. Temporal Derivatives of the Wasserstein Distance

Before we show any convergence results, we extend a basic result regarding the time
derivatives of theWasserstein distance between two evolvingmeasures [1,10,11,62].We
begin by recalling a known result for the first temporal derivative [1], [62, Theorem23.9].

Proposition 2. Let μ, ν ∈ C([0,∞),Pac
2 (Rd)) be solutions of the continuity equations

∂tμt + ∇ · (μtξt ) = 0, ∂tνt + ∇ · (νtηt ) = 0, in distribution,

for locally Lipschitz vector fields ξ and η satisfying

∫ ∞

0

(∫
Rd

|ξt |2dμt +
∫
Rd

|ηt |2dνt

)
dt < ∞,

then μ, ν ∈ AC([0,∞),Pac
2 (Rd)) and for almost every t ∈ (0,∞),

1

2

d

dt
W 2

2 (μt , νt ) =
∫∫

Rd×Rd
〈x − y, ξt (x) − ηt (y)〉 dπt (8)

=
∫
Rd

〈x − ∇ϕ∗
t (x), ξt (x)〉 dμt +

∫
Rd

〈y − ∇ϕt (y), ηt (y)〉 dνt ,

where πt ∈ �0(μt , νt ) and ∇ϕt#νt = μt , ∇ϕ∗
t #μt = νt .

Remark 4. Note that when ξ and η are globally Lipschitz vector fields, then the first
temporal derivative (8) holds for all t ∈ (0,∞). We will implicitly use this fact in
Theorem 1 below.
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Heuristical ideas For any two given measures μt , νt ∈ Pac
2 (Rd), Brenier’s theorem

[12,55] asserts the existence of a (proper) convex function ϕt : Rd → (−∞,+∞] such
that ∇ϕt#νt = μt and ∇ϕ∗

t #μt = νt , where ϕt (x)∗ = supRd {〈x, y〉 − ϕ(y)} is the
Legendre–Fenchel dual of ϕt satisying

(∇ϕ∗
t ◦ ∇ϕt )(y) = y νt -a.e.

In particular, we have the change of variables formula∫
Rd

g(t,∇ϕt (y)) dνt =
∫
Rd

g(t, x) dμt ,

for any test function g ∈ Cb(R+ × R
d). Taking the temporal derivative gives∫

Rd
〈∇g(t,∇ϕt (y)), ∂t∇ϕt (y)〉 dνt +

∫
Rd

g(t,∇ϕt (y)) d(∂tνt ) =
∫
Rd

g(t, x) d(∂tμt ).

(9)

By choosing g(t, x) = |x |2/2 − ϕ∗
t (x), we obtain from [62] (see also [1])

1

2

d

dt
W 2

2 (μt , νt ) = 1

2

d

dt

∫
Rd

|∇ϕt (y) − y|2dνt

=
∫
Rd

〈∇ϕt (y) − y, ∂t∇ϕt (y)〉 dνt +
1

2

∫
Rd

|∇ϕt (y) − y|2d(∂tνt )

=
∫
Rd

g(t, x) d(∂tμt ) −
∫
Rd

g(t,∇ϕt (y)) d(∂tνt )

+
1

2

∫
Rd

|∇ϕt (y) − y|2d(∂tνt ).

The last two terms on the right hand side may be expressed as
∫
Rd

( |y|2
2

− 〈∇ϕt (y), y〉 + ϕ∗
t (∇ϕt (y))

)
d(∂tνt ).

Since ϕt and ϕ∗
t are duals of each other, we have that

ϕt (y) + ϕ∗
t (∇ϕt (y)) = 〈∇ϕt (y), y〉.

Consequently, we obtain

1

2

d

dt
W 2

2 (μt , νt ) =
∫
Rd

g(t, x) d(∂tμt ) +
∫
Rd

h(t, y) d(∂tνt ),

with h(t, y) = |y|2/2−ϕt (y). Finally, inserting the respective continuity equations and
integrating by parts yield the required equality in (8). The absolute continuity of t �→ μt
and t �→ νt follows directly from [62, Theorem 23.9]. In fact, they are shown to be
Hölder-1/2 continuous.

The next part of this section is devoted to the representation of the second temporal
derivative for the 2-Wasserstein distance along the flow of generic Euler equations of
the form

∂tμt + ∇ · (μtξt ) = 0,

∂t (μtξt ) + ∇ · (μtξt ⊗ ξt ) = −μtGμt ,

where Gμ = Gμ(t, x) is a sufficiently smooth function.
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Remark 5. In our particular case (1), Gμ is related to the variational derivative of the
free energy F and takes the form

Gμ(μ, ξ) = ∇(δμF)(μ) + γ ξ = ∇(
U ′(�) + V +W � μ

)
+ γ ξ ,

with � being the density of μ.

Heuristical ideas To simplify the notations, we set

Tt (y) := ∇ϕt (y), T ∗
t (x) := ∇ϕ∗

t (x).

Assuming that μ and ν satisfy the generic Euler equations

∂tμt + ∇ · (μtξt ) = 0,

∂t (μtξt ) + ∇ · (μtξt ⊗ ξt ) = −μtGμt ,

∂tνt + ∇ · (νtηt ) = 0,

∂t (νtηt ) + ∇ · (νtηt ⊗ ηt ) = −νtGνt ,

with sufficiently smooth velocity fields ξt and ηt , we deduce from (9) that
∫
Rd

〈∇g(t, Tt (y)), ∂t Tt (y) + ∇Tt (y)ηt (y) − ξt (Tt (y))〉 dνt = 0,

for all smooth test functions g ∈ C1b(R × R
d). This essentially means

∂t Tt (y) + ∇Tt (y)ηt (y) = ξt (Tt (y)) νt -a.e. (10)

Let us now consider the second temporal derivative of the Wasserstein distance, i.e., we
formally take the temporal derivative of (8) to obtain

1

2

d2

dt2
W 2

2 (μt , νt ) = −
∫
Rd

〈∂t T ∗
t (x), ξt (x)〉 dμt −

∫
Rd

〈∂t Tt (y), ηt (y)〉 dνt

+
∫
Rd

〈x − T ∗
t (x), ∂t (μtξt )〉 +

∫
Rd

〈y − Tt (y), ∂t (νtηt )〉.
(11)

For the first term, we notice the fact that

0 = ∂t (T
∗
t ◦ Tt )(y) = ∂t T

∗
t (Tt (y)) + ∇T ∗

t (Tt (y))∂t Tt (y).

Using the previous equality, (10) and the fact that ∇T ∗
t (Tt (y))∇Tt (y) = Id , we obtain∫

Rd
〈∂t T ∗

t (x), ξt (x)〉 dμt =
∫
Rd

〈∂t T ∗
t (Tt (y)), ξt (Tt (y))〉 dνt

= −
∫
Rd

〈∇T ∗
t (Tt (y))∂t Tt (y), ξt (Tt (y))〉 dνt

=
∫
Rd

〈∇T ∗
t (Tt (y))

(
∇Tt (y)ηt (y) − ξt (Tt (y))

)
, ξt (Tt (y))〉 dνt

=
∫
Rd

〈ηt (y), ξt (Tt (y))〉 dνt −
∫
Rd

〈∇T ∗
t (x)ξt (x), ξt (x)〉 dμt .

Computing the second term analogously gives
∫
Rd

〈∂t Tt (y), ηt (y)〉 dνt = −
∫
Rd

〈∇Tt (y)ηt (y), ηt (y)〉 dνt +
∫
Rd

〈ξt (Tt (y)), ηt (y)〉 dνt .
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The last two terms of (11) may be handled simultaneously to give
∫
Rd

〈x − T ∗
t (x), ∂t (μtξt )〉 +

∫
Rd

〈y − Tt (y), ∂t (νtηt )〉

=
∫
Rd

〈(Id − ∇T ∗
t (x))ξt (x), ξt (x)〉 dμt −

∫
Rd

〈x − T ∗
t (x),Gμt 〉 dμt

+
∫
Rd

〈(Id − ∇Tt (y))ηt (y), ηt (y)〉 dνt −
∫
Rd

〈y − Tt (y),Gνt 〉 dνt .

The previous heuristic ideas can now be turned into the following theorem under the
right assumptions.

Theorem 1. Let μ ∈ C([0, T ),Pac
2 (Rd)) satisfy the Euler type equation

∂tμt + ∇ · (μtξt ) = 0,

μt
(
∂tξt + ξt · ∇ξt

) = −μtGμt ,

}
in distribution,

with locally in t > 0 and globally in x ∈ R
d Lipschitz vector field x �→ ξt (x) satisfying

t �→ ‖ξt‖L2(μt )
, ‖Gμt (t, ·)‖L2(μt )

∈ C([0,∞)) ∩ L2([0,∞)).

For any σ ∈ P2(R
d), define

K(μt , σ ) := d

dt
W 2

2 (μt , σ ) = 2
∫∫

Rd×Rd
〈x − y, ξt (x)〉 dπt .

Then for any T > 0 the following inequality holds:

K(μT , σ ) ≤ K(μ0, σ ) + 2
∫ T

0

(∫
Rd

|ξt |2 dμt −
∫∫

Rd×Rd
〈x − y,Gμt (t, x)〉 dπt

)
dt,

for the optimal transference plan πt ∈ �0(μt , σ ). In particular, we obtain

1

2

d+

dt

d

dt
W 2

2 (μt , σ ) = 1

2

d+

dt
K(μt , σ )≤

∫
Rd

|ξt |2 dμt −
∫∫

Rd×Rd
〈x−y,Gμt (t, x)〉 dπt ,

where d+/dt denotes the upper derivative in almost every t > 0.

Proof. Step 1: For some fixed t ∈ (0,∞) let

∂τ�τ (x) = (ξt+τ ◦ �τ )(x), �0 = x for μt -a.e. x, (12)

be the well-defined global in τ ∈ (−t,∞) corresponding Lipschitz flow and set

μt+h = �h#μt , μt−h = �−h#μt ,

for each h ∈ (0, t). Furthermore, taking the temporal derivative of (12) and using the
momentum equation for μtξt provides the representation

∂2τ �τ (x) = (
∂tξt+τ + ξt+τ · ∇xξt+τ

) ◦ �τ (x) = −Gμt (t + τ,�τ (x)) for μt -a.e. x,
(13)

and a.e. τ ∈ (−t,∞), which will be used in the following steps.
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Finally let πt ∈ �0(μt , σ ) be the unique optimal plan between μt and σ ∈ P2(R
d).

One clearly sees that πτ
t := (�τ × id)#πt induces a transference plan between μt+τ

and σ ∈ P2(R
d).

Step 2: For some fixed t ∈ (0,∞) and h ∈ (0, t), consider the finite difference

�hK(μt , σ ) := (Dsym
h
2

Dsym
h
2

W 2
2 )(μt , σ ),

where Dsym
τ denotes the symmetric difference operator with step τ > 0, i.e.,

(Dsym
τ W 2

2 )(μt , σ ) := 1

2τ

(
W 2

2 (μt+τ , σ ) − W 2
2 (μt−τ , σ )

)
.

Thus, we explicitly obtain

�hK(μt , σ ) = 1

h2

(
W 2

2 (μt+h, σ ) − 2W 2
2 (μt , σ ) +W 2

2 (μt−h, σ )
)
,

i.e., �h is a second order symmetric difference operator. Notice that, by passing to the
limit h → 0 in �hK(μt , σ ), one obtains

lim
h→0

�hK(μt , σ ) = d2

dt2
W 2

2 (μt , σ ) = d

dt
K(μt , σ ),

whenever the right-hand side is well-defined. Unfortunately, the existence of a second
temporal 2-Wasserstein derivative may not be easily justified. Instead, we proceed with
the finite difference computations, while mimicking the formal differential computa-
tions.

Recall that πτ
t := (�τ × id)#πt ∈ �(μt+τ , σ ) for any τ ∈ [−h, h]. Hence, we find

W 2
2 (μt+τ , σ ) ≤

∫∫
Rd×Rd

|x − y|2dπτ
t =

∫∫
Rd×Rd

|�τ (x) − y|2dπt .

Consequently, for any h ∈ (0, t), we have

�hK(μt , σ ) = 1

h2

(
W 2

2 (μt+h, σ ) − 2W 2
2 (μt , σ ) +W 2

2 (μt−h, σ )
)

≤ 1

h2

∫∫
Rd×Rd

|�h(x) − y|2 − 2|x − y|2 + |�−h(x) − y|2 dπt = (I).

Using the fundamental theorem of calculus and Jensen’s inequality, (I) can be reformu-
lated as

(I) = 1

h2

∫∫
Rd×Rd

|�h(x) − x |2 + 2〈�h(x)

− 2x + �−h(x), x − y〉 + |�−h(x) − x |2 dπt

≤ 1

h

∫ h

−h

∫
Rd

|∂τ�τ (x)|2dμt dτ +
1

h2

∫ h

0

∫∫
Rd×Rd

(h − τ)〈x − y, ∂2τ �τ (x)〉 dπt dτ

+
1

h2

∫ 0

−h

∫∫
Rd×Rd

(h + τ)〈x − y, ∂2τ �τ (x)〉 dπt dτ

=
∫ 1

−1

∫
Rd

|ξt+sh(x)|2dμt+sh ds
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−
∫ 1

0
(1 − s)

∫∫
Rd×Rd

〈x − y,Gμt+sh (t + sh,�sh(x))〉 dπt ds

−
∫ 0

−1
(1 + s)

∫∫
Rd×Rd

〈x − y,Gμt+sh (t + sh,�sh(x))〉 dπt ds,

where we inserted the representation (13) in the last equality.
Step 3: For a fixed T > 0, we choose N ∈ N in such a way that h = T/N . Now

consider a family {μnh}n∈IN ⊂ Pac
2 (Rd) for IN = {0, . . . , N } ⊂ N0, defined recursively

by μ(n+1)h = �n
h#μnh for n ∈ IN , where �n

h satisfies

∂τ�
n
τ (x) = (ξnh+τ ◦ �n

τ )(x), �n
0 = x for μnh-a.e. x,

and τ ∈ (−h, h). Then, for each n ∈ IN , Step 2 provides the inequality

�hK(μnh, σ ) ≤
∫ 1

−1

∫
Rd

|ξ(n+s)h(x)|2dμ(n+s)h ds

−
∫ 1

0
(1 − s)

∫∫
Rd×Rd

〈x − y,Gμ(n+s)h ((n + s)h,�n
sh(x))〉 dπnh ds

−
∫ 0

−1
(1 + s)

∫∫
Rd×Rd

〈x − y,Gμ(n+s)h ((n + s)h,�n
sh(x))〉 dπnh ds

=: (A) + (B) + (C). (14)

Multiplying the inequality with h and summing over n ∈ IN yields for the left-hand side

N−1∑
n=1

h �hK(μnh, σ ) = (Dsym
h
2

W 2
2 )(μ(N− 1

2 )h, σ ) − (Dsym
h
2

W 2
2 )(μ h

2
, σ ).

Before proceeding, we first note that the fundamental theorem of calculus and the repre-
sentation of the first temporal 2-Wasserstein derivative provided in Proposition 2 yields

(Dsym
h
2

W 2
2 )(μ(n+ 1

2 )h, σ ) = 1

h

(
W 2

2 (μ(n+1)h, σ ) − W 2
2 (μnh, σ )

)

= 1

h

∫ (n+1)h

nh

d

dτ
W 2

2 (μτ , σ ) dτ

= 2

h

∫ (n+1)h

nh

∫∫
Rd×Rd

〈x − y, ξτ (x)〉 dπτ dτ

= 2
∫ 1

0

∫∫
Rd×Rd

〈x − y, ξ(n+s)h(x)〉 dπ(n+s)h ds for any n ∈ IN .

Therefore, passing to the limit N → ∞ with T = hN gives

lim
N→∞

N−1∑
n=1

h �hK(μnh, σ ) = 2

(∫∫
Rd×Rd

〈x − y, ξT (x)〉 dπT

−
∫∫

Rd×Rd
〈x − y, ξ0(x)〉 dπ0

)

= K(μT , σ ) − K(μ0, σ ),
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which holds due to Lebesgue’s dominated convergence theorem. On the other hand, the
following convergences hold for the terms on the right-hand side of (14):

N−1∑
n=1

h(A) −→ 2
∫ T

0

∫
Rd

|ξt (x)|2dμt dt,

N−1∑
n=1

h(B) −→ 1

2

∫ T

0

∫∫
Rd×Rd

〈x − y,Gμt (t, x)〉 dπt dt

N−1∑
n=1

h(C) −→ 3

2

∫ T

0

∫∫
Rd×Rd

〈x − y,Gμt (t, x)〉 dπt dt.

These convergences hold simply by definition of Riemann integrable functions and
the assumed regularity of ξ and Gμ. Indeed, due to the assumed continuity of f (t) :=
‖ξt‖2L2(μt )

, we know that f is Riemann integrable on [0, T ]. Therefore, the corresponding
upper Darboux sum satisfies

N−1∑
n=0

h sup
s∈[0,1]

f ((n + s)h) −→
∫ T

0
f (t) dt as N → ∞.

In particular, we have for any s ∈ [0, 1], that

I Nf (s) :=
N−1∑
n=0

h f ((n + s)h) −→
∫ T

0
f (t) dt as N → ∞.

Furthermore, we may reformulate the sum to obtain

N−1∑
n=1

h(A) =
N−1∑
n=1

h
∫ 1

−1

∫
Rd

|ξ(n+s)h(x)|2dμ(n+s)h ds =
∫ 1

−1

N−1∑
n=1

h f ((n + s)h) ds

=
∫ 1

0

N−1∑
n=1

h f ((n + s)h) ds +
∫ 0

−1

N−1∑
n=1

h f ((n + s)h) ds

=
∫ 1

0

N−1∑
n=1

h f ((n + s)h) ds +
∫ 1

0

N−2∑
n=0

h f ((n + s)h) ds

= 2
∫ 1

0
I Nf (s) ds −

∫ 1

0
h f (sh) ds −

∫ 1

0
h f (T − (1 − s)h) ds.

It is not hard to see that |I Nf (s)| ≤ c with some constant c > 0 for all N � 1 sufficiently
large, and that the two last terms vanish as N → ∞ due to the boundedness of f on
[0, T ]. Therefore, an application of the Lebesgue dominated convergence yields

lim
N→∞

N−1∑
n=1

h(A) = 2
∫ 1

0
lim

N→∞ I Nf (s) ds = 2
∫ 1

0

∫ T

0
f (t) dt ds = 2

∫ T

0
f (t) dt,

as required. The convergence of the sums for (B) and (C) may be shown in a similar
fashion. Collecting all the terms together finally yields the statement. ��
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Mimicking the strategy of the proof to Theorem 1, we arrive at the following result.

Theorem 2. Let μt and νt ∈ Pac
2 (Rd), t ≥ 0, satisfy Euler type equations of the form

∂tμt + ∇ · (μtξt ) = 0,

μt
(
∂tξt + ξt · ∇ξt

) = −μtGμ,

∂tνt + ∇ · (νtηt ) = 0,

νt
(
∂tηt + ηt · ∇ηt

) = − νtGν,

}
in distribution,

with locally in t > 0 and globally in x ∈ R
d Lipschitz vector fields x �→ ξt (x), ηt (x)

satisfying

t �→ ‖ξt‖L2(μt )
, ‖ηt‖L2(νt )

, ‖Gμt (t, ·)‖L2(μt )
, ‖Gνt (t, ·)‖L2(νt )

∈ C([0,∞)) ∩ L2([0,∞)).

Then for any T > 0 the following inequality holds:

K(μT , νT ) ≤ K(μ0, ν0)

+ 2
∫ T

0

∫
Rd×Rd

|ξt (x) − ηt (y)|2 − 〈x − y,Gμt (t, x) − Gνt (t, y)〉 dπt dt,

for the optimal transference plan πt ∈ �0(μt , νt ). In particular, we obtain

1

2

d+

dt
K(μt , νt ) ≤

∫∫
Rd

|ξt (x) − ηt (y)|2dπt

−
∫∫

Rd×Rd
〈x − y,Gμt (t, x) − Gνt (t, y)〉 dπt .

A direct consequence of Theorem 2 is the following result.

Corollary 1. Let (�, u) be an energy decaying solution of the Euler Eq. (1) with μ, with
density �, and u satisfying additionally the assumptions of Theorem 1. Furthermore, let
ν, with densityω, satisfy∇ p(ω)+ω(∇V +∇W �ν) = 0 a.e. Suppose that p′(ω) ∈ L2(ν)

and p′(�t ) ∈ L2(μt ) for almost every t ∈ (0,∞). Then, the following inequality

1

2

d+

dt

d

dt
W 2

2 (μt , ν) ≤ ‖ξt‖2L2(μt )
− γ

2

d

dt
W 2

2 (μt , ν) − JV (μt |ν) − JW (μt |ν),

holds for almost every t > 0. Here, the functionals JV and JW are defined by

JV (μt |ν) :=
∫
Rd

〈y − Tt (y),∇V (y) − ∇V (Tt (y))〉 dν(y),

JW (μt |ν) := 1

2

∫∫
Rd×Rd

〈(y − ŷ) − Tt (y) − Tt (ŷ),

∇W (y − ŷ) − ∇W
(
Tt (y) − Tt (ŷ)

)〉 dν(y)dν(ŷ),

where Tt is the unique transport map satisfying Tt#ν = μt .

Proof. We make use of Theorem 1 with (νt , ηt ) = (ν, 0) and

Gμ = ∇(
U ′(�) + V +W � μ

)
+ γ ξ, Gν = ∇(

U ′(ω) + V +W � ν
)
.

In fact, we have that ωGν ≡ 0 a.e. Indeed, by construction we find

ωGν = ω∇(
U ′(ω) + V +W � ν

) = ∇ p(ω) + ω∇(
V +W � ν

) = 0 a.e.
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We begin by computing the term∫
Rd

〈y − Tt (y),Gνt (t, y)〉 dν =
∫
Rd

〈y − Tt (y),∇ p(ω)〉 dy

+
∫
Rd

〈y − Tt (y),∇
(
V +W � ν

)〉 dν,

where we used the fact that ω∇U ′(ω) = ∇ p(ω). Similarly, we obtain∫
Rd

〈y − Tt (y),Gμt (t, Tt (y))〉 dν =
∫
Rd

〈T ∗
t (x) − x,∇ p(�t )〉 dx

+ γ

∫
Rd

〈T ∗
t (x) − x, ξt (x)〉 dμt

+
∫
Rd

〈T ∗
t (x) − x,∇(

V +W � μt
)〉 dμt .

Subtracting the equation above from the previous one, we get∫
Rd

〈y − Tt (y),Gνt (t, y) − Gμt (t, Tt (y))〉 dν

=
∫
Rd

〈y − Tt (y),∇ p(ω)〉 dy −
∫
Rd

〈T ∗
t (x) − x,∇ p(�t )〉 dx

+
γ

2

d

dt
W 2

2 (μt , ν)

+ JV (μt |ν) +
∫
Rd

〈y − Tt (y), (∇W � ν)(y) − (∇W � μt )(Tt (y))〉 dν

= I1 +
γ

2

d

dt
W 2

2 (μt , ν) + JV (μt |ν) + I2.

In order to deal with I1, we proceed by a “weak” integration by parts as in [10,24,53].
We give some details on this. We consider a smooth cut-off function χR ∈ C∞

0 (Rd)

satisfying the properties

0 ≤ χR ≤ 1, |∇χR | ≤ C

R
, χR ≡ 1 on BR(0), χR ≡ 0 on R

d \ B2R(0).

Under the assumption p′(�t ) ∈ L2(μt ), we obtain from (H1)
∫
Rd

p(�t ) dx ≤ d

d − 1

∫
Rd

�t p
′(�t ) dx ≤ d

d − 1

(∫
Rd

|p′(�t )|2dμt

)1/2

,

∫
Rd

|T ∗
t − id| p(�t ) dx ≤ d

d − 1

∫
Rd

|T ∗
t − id| p′(�t ) dμt

≤ d

d − 1
W2(μt , ν)

(∫
Rd

|p′(�t )|2dμt

)1/2

,

and therefore, p(�t ) and |T ∗
t − id| p(�t ) are in L1(Rd) a.e. t ∈ (0,∞). On the other

hand, the assumption on Gμ(t, ·) provides
∫
Rd

|∇ p(�t )| dx =
∫
Rd

|∇U ′(�t )| dμt ≤ ‖∇U ′(�t )‖L2(μt )
a.e. t ∈ (0,∞),
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and therefore, p(�t ) ∈ W 1,1(Rd) a.e. t ∈ (0,∞).
Since χR(T ∗

t − id) ∈ L∞(Rd)∩ BV (Rd), we perform integration by parts to obtain

−
∫
Rd

χR〈T ∗
t − id,∇ p(�t )〉 dx ≥

∫
Rd

∇̃ · (
χR (T ∗

t − id)
)
p(�t ) dx

=
∫
Rd

χR (∇̃ · T ∗
t ) p(�t ) dx − d

∫
Rd

χR p(�t ) dx

+
∫
Rd

∇χR · (T ∗
t − id) p(�t ) dx, (15)

where we used the fact that the distributional trace of the jacobian ∇ · T ∗
t ≥ 0 is a

nonnegativemeasure, and ∇̃· represents the dx-absolutely continuous part of∇·, defined
in the Alexandrov almost everywhere sense, see [56] for details.

Notice that by construction, the following convergences hold:

χR〈T ∗
t − id,∇ p(�t )〉 → 〈T ∗

t − id,∇ p(�t )〉
χR (∇̃ · T ∗

t ) p(�t ) → (∇̃ · T ∗
t ) p(�t )

χR p(�t ) → p(�t )

⎫⎪⎬
⎪⎭ as R → ∞,

for almost every t ∈ (0,∞). Furthermore, we know that ∇̃ · T ∗
t ≥ 0, and that

‖χR〈T ∗
t − id,∇ p(�t )〉‖L1(Rd ) ≤ ‖〈T ∗

t − id,∇ p(�t )〉‖L1(Rd )

‖χR p(�t )‖L1(Rd ) ≤ ‖p(�t )‖L1(Rd )

}
for all R > 0.

For the first bound, we used that ∇ p(�t ) = �t∇U ′(�t ) to get

‖〈T ∗
t − id,∇ p(�t )〉‖L1(Rd ) ≤ W2(μt , ν)

(∫
Rd

|∇U ′(�t )|2dμt

)1/2

.

In particular, using the Lebesgue dominated convergence, we deduce
∫
Rd

χR〈T ∗
t − id,∇ p(�t )〉 dx →

∫
Rd

〈T ∗
t − id,∇ p(�t )〉 dx

∫
Rd

χR p(�t ) dx →
∫
Rd

p(�t ) dx
∫
Rd

∇χR · (T ∗
t − id) p(�t ) dx → 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

as R → ∞.

As for the other term, we obtain from Fatou’s lemma
∫
Rd

(∇̃ · T ∗
t ) p(�t ) dx ≤ lim inf

R→∞

∫
Rd

χR (∇̃ · T ∗
t ) p(�t ) dx .

Consequently, we pass to the limit as R → ∞ in (15) to obtain the “weak” integration
by parts formula

−
∫
Rd

〈T ∗
t − id,∇ p(�t )〉 dx ≥

∫
Rd

(∇̃ · T ∗
t − d) p(�t ) dx,
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for almost every t ∈ (0,∞). Using the same arguments, we can perform a “weak”
integration by parts also for the other term in I1, thereby obtaining

I1 ≥ −
∫
Rd

(
d − (∇̃ · Tt )(y)

)
p(ω) dy +

∫
Rd

(
(∇̃ · T ∗

t )(x) − d
)
p(�t ) dx

=
∫
Rd

(
(∇̃ · Tt )(y) + (∇̃ · T ∗

t )(Tt (y)) − 2d
)
p(ω) dy ≥ 0,

(16)

where the last inequality follow from [10,24,53], where similar arguments were used.
Finally, using the fact that ∇W (−x) = −∇W (x) for x ∈ R

d , we can rewrite I2 as

I2 = 1

2

∫∫
Rd×Rd

〈y − Tt (y) + Tt (ŷ) − ŷ,∇W (y − ŷ)

− ∇W (Tt (y) − Tt (ŷ))〉 dν(y)dν(ŷ)

= JW (μt |ν).

Putting all the terms together and invoking Theorem 2 concludes the proof. ��
Remark 6. In the isothermal case with U (r) = r log(r), p′(r) = rU ′′(r) = 1, and
hence the assumption p′(�t ) ∈ L2(μt ) is trivially satisfied. As for the isentropic case,
additional regularity is required.

A simple outcome of (H2) is the following result which follows from direct compu-
tations using the convexity assumptions on the potentials, see [23] for more details.

Proposition 3. Under condition (H2) for the potentials V and W, we have that
JV (μt |μ∞) and JW (μt |μ∞) defined in Corollary 1 are bounded from below, where
μ∞ ∈ Pac

2 (Rd) is a minimizer of the free energy F provided in Proposition 1. In par-
ticular, we have

JV (μt |μ∞) ≥ cVW
2
2 (μt , μ∞),

JW (μt |μ∞) ≥ cWW 2
2 (μt , μ∞) − cW

∣∣∣∣
∫
Rd

x dμ∞ −
∫
Rd

x dμt

∣∣∣∣
2

,

where cV and cW are given in (H2).

We now have the essential ingredients to construct a Lyapunov functional for estab-
lishing the convergence to equilibrium of energy decaying solutions to the damped Euler
Eq. (1) in the space P2(R

d) endowed with the 2-Wasserstein distance.

4. Equilibration in Wasserstein Distance

Webegin this section by introducing the functionals involved and discuss their properties.
The idea behind lies in the fact that the second temporal derivative of the Wasserstein
distance produces a term on the right-hand side which gives a term that dissipates the
Wasserstein distance itself (cf. Proposition 3). For this reason, we will have to include
the term dW 2

2 /dt into the Lyapunov functional. In addition to the free energy F , we
consider the functionals

E(μt , μ∞) := W 2
2 (μt , μ∞) +

∫
Rd

|ut |2dμt ,

J (μt , μ∞) := αW 2
2 (μt , μ∞) +

d

dt
W 2

2 (μt , μ∞) + β

∫
Rd

|ut |2dμt ,
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with constants α, β > 0. Since the dW 2
2 /dt term can be bounded from above by

1

2

∣∣∣∣ ddt W
2
2 (μt , μ∞)

∣∣∣∣ ≤
∫
Rd

|〈y − Tt (y), ut (Tt (y))〉| dμ∞

≤ W2(μt , μ∞)

(∫
Rd

|ut |2dμt

)1/2

,

for all t ≥ 0, where Tt#μ∞ = μt , we conclude that E and J are equivalent in the
following sense:

p E ≤ J ≤ q E, (17)

for constants p, q > 0, depending only on α and β whenever αβ > 1.

Remark 7. If (�, u) is an energy decaying solution of the damped Euler Eq. (1), then
we obtain the uniform (in t) boundedness of ‖ut‖L2(μt )

from the energy estimate (6).
Therefore, if W2(μt , μ∞) is also uniformly bounded in time, then

supt≥0

∣∣∣∣ ddt W
2
2 (μt , μ∞)

∣∣∣∣ ≤ M,

for some constantM < ∞, which asserts that t �→ W 2
2 (�t , μ∞) is uniformly continuous.

In order to provide the equilibration also for the velocity field u, we impose additional
assumptions on the free energy F :

(H3) The free energy F satisfies the stability estimate

F(μt ) − F(μ∞) ≤ cF (μt )W2(μt , μ∞), (18)

for some time dependent function cF (μt ) > 0 satisfying additionally

lim
t→∞

1

1 + t

∫ t

0

c2F (μs)

1 + s
ds = 0. (19)

Remark 8. A well-known inequality which takes the form (18) is the so-called HWI
inequality [23,24,62]:

F(μt ) − F(μ∞) ≤ ‖∇(δμF)(μt )‖2L2(μt )
W2(μt , μ∞) − (λ/2)W 2

2 (μt , μ∞),

for some λ ≥ 0. A classical example of a free energy satisfying the HWI inequality is
given by

F(�) =
∫
Rd

� log � dx +
∫
Rd

V (x)� dx,

where V is a smooth convex potential such that
∫
Rd exp(−V (x)) dx = 1. Then the

corresponding stationary state is simply �∞ = e−V . Furthermore, since F(�∞) = 0,
we have

0 ≤ F(�) − F(�∞) =
∫
Rd

� log(�eV ) dx .

Then from the standardHWI inequality [62],weobtain (18)with c2F (�) = ∫
Rd |∇(log �+

V )|2 d�.
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Remark 9. (i) Observe that (H3) is also an assumption on the regularity of solutions to
the damped Euler Eq. (1).

(ii) A sufficient condition for (19) includes the case cF (μt ) ≤ c∞ uniformly in time.
Indeed,

1

1 + t

∫ t

0

c∞
1 + s

ds = c∞ (1 + t)−1 ln(1 + t) −→ 0 for t → ∞.

In view of condition (H2), we will study the equilibration for two separate cases.

4.1. The case with confinement. Here, we consider the case where the confinement
potential V is present and satisfies condition (H2), as well as the interaction potential
W . In this case, Proposition 1 provides a stationarymeasureμ∞, with density �∞, which
satisfies

∇ p(�∞) + �∞∇(
V +W � �∞

) = 0 a.e.

Hence, Theorem 1, with σ = μ∞, and Proposition 3 holds true with

JV (μt |μ∞) + JW (μt |μ∞) ≥ c�W
2
2 (μt , μ∞), c� =

{
cV for cW ≥ 0
cV + cW for cW < 0

.

Note that in the case cW ≥ 0, we have that JW (μt |μ∞) ≥ 0 due to Jensen’s inequality.

Theorem 3. Let (�, u) be an energy decaying solution to the Euler Eq. (1), with μt ∈
Pac
2 (Rd) the measure whose density is �t for all t ≥ 0, and u satisfying additionally

the assumptions of Theorem 1, and U, V �≡ 0 and W satisfying conditions (H1)–(H2).
Furthermore, assume that the initial data satisfiesF(μ0)+W2(μ0, μ∞) < ∞ , then we
have

lim
t→∞ W2(μt , μ∞) = 0.

Proof. Consider the functional

G(μt , μ∞) := 2β
(
F(μt ) − F(μ∞)

)
+ J (μt , μ∞)

= αW 2
2 (μt , μ∞) +

d

dt
W 2

2 (μt , μ∞) + 2β
(
H(�t , ut ) − H(�∞, 0)

) ≥ 0,

with constants α, β > 0 to be specified later. Note that the first equality easily provides
the nonnegativity of G, while the second allows for the computation of the temporal
derivative using (6). Taking the temporal derivative of G along the flow generated by the
damped Euler Eq. (1) and applying Corollary 1 we obtain

d+

dt
G(μt , μ∞) ≤ −2c�W

2
2 (μt , μ∞) + (α − γ )

d

dt
W 2

2 (μt , μ∞)

− 2(βγ − 1)
∫
Rd

|ut |2dμt .

Choosing α = γ and β = (1 + c�)/γ , we further obtain

d+

dt
G(μt , μ∞) ≤ −2c�E(μt , μ∞). (20)
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Since αβ = 1 + c� > 1, we have the equivalence between J and E , which concludes
the proof. Indeed, integrating (20) over time interval [0, t] gives

G(μt , μ∞) + 2c�

∫ t

0
E(μs, μ∞) ds ≤ G(μ0, μ∞).

Observe that pW 2
2 (μt , μ∞) ≤ G(μt , μ∞) ≤ G(μ0, μ∞) due to (17), which implies the

uniform boundedness in time of W 2
2 (μt , μ∞), see Remark 7. Since G is non-negative,

we have that

2c�

∫ ∞

0
W 2

2 (μs, μ∞) ds ≤ 2c�

∫ ∞

0
E(μs, μ∞) ds ≤ G(μ0, μ∞).

Owing to the uniform continuity of t �→ W 2
2 (μt , μ∞) we obtain the asserted conver-

gence [45]. ��
Note that if t �→ ‖ut‖L2(μt )

is further assumed to be uniformly continuous in (0,∞),
then one also obtains ‖ut‖L2(μt )

→ 0 as t → ∞. On the other hand, one may obtain the
mentioned convergence under a different assumption provided in the following result.

Corollary 2. Let (�, u) be an energy decaying solution to the Euler Eq. (1), with μt ∈
Pac
2 (Rd) the measure whose density is �t for all t ≥ 0, and u satisfying additionally

the assumptions of Theorem 1, and U, V �≡ 0 and W satisfying conditions (H1)–(H3).
Furthermore, assume that the initial data satisfiesF(μ0)+W2(μ0, μ∞) < ∞ , then we
have

lim
t→∞

(
W 2

2 (μt , μ∞) + ‖ut‖2L2(μt )

)
= lim

t→∞ E(μt , μ∞) = 0.

Proof. Notice that for t ≥ 0, we obtain

d+

dt

(
(1 + t)G(μt , μ∞)

) = (1 + t)
d+

dt
G(μt , μ∞) + G(μt , μ∞)

≤ −2(c�/q)(1 + t)J (μt , μ∞)

+ 2β
(
F(μt ) − F(μ∞)

)
+ J (μt , μ∞)

≤ −2(c�/q)(1 + t)J (μt , μ∞)

+ 2βcF (μt )W2(μt , μ∞) + J (μt , μ∞),

where we used (20), the equivalence (17) and (H3). Integrating the equation for t ≥ 0
gives

(1 + t)G(μt , μ∞) +
2c�

q

∫ t

0
(1 + s)J (μs, μ∞) ds

≤ c0 + 2β
∫ t

0
cF (μs)W2(μs, μ∞) ds,

with the constant

c0 := G(μ0, μ∞) +
∫ ∞

0
J (μs, μ∞) ds < ∞.
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For the second term on the right, we estimate from above using Young’s inequality to
obtain

∫ t

0
cF (μt )W2(μs, μ∞) ds ≤ ε

2

∫ t

0
(1 + s)W 2

2 (μs, μ∞) ds +
1

2ε

∫ t

0

c2F (μs)

1 + s
ds

≤ ε

2p

∫ t

0
(1 + s)J (μs, μ∞) ds +

1

2ε

∫ t

0

c2F (μs)

1 + s
ds,

where we used the equivalence (17) again. Choosing ε > 0 such that βε = pc�/q yields

(1 + t)G(μt , μ∞) +
c�

q

∫ t

0
(1 + s)J (μs, μ∞) ds ≤ c0 + c1

∫ t

0

c2F (μs)

1 + s
ds,

which finally provides the required equilibration for t → ∞. ��

4.2. The case with no confinement. The casewithout confinement requires special atten-
tion since, in this case, the free energy F is translational invariant and consequently the
center of mass is not a priori fixed. However, since the evolution of the center of mass
(7) read

d

dt

∫
Rd

x dμt =
∫
Rd

ut dμt ,
d

dt

∫
Rd

ut dμt = − γ

∫
Rd

ut dμt ,

solving for the center of mass of μt clearly implies

∫
Rd

x dμt =
∫
Rd

x dμ0 +
1

γ
(1 − e−γ t )

∫
Rd

u0 dμ0

−→
∫
Rd

x dμ0 +
1

γ

∫
Rd

u0 dμ0 as t → ∞.

Owing to the limit above for the center of mass of μt , we choose a minimizer μ∞ of F
satisfying

∫
x dμ∞ =

∫
x dμ0 +

1

γ

∫
u0 dμ0.

For this choice of stationary measure μ∞ ∈ Pac
2 (Rd) we have the following statement.

Theorem 4. Let (�, u) be an energy decaying solution to the Euler Eq. (1), with μt ∈
Pac
2 (Rd) the measure whose density is �t for all t ≥ 0, and u satisfying additionally

the assumptions of Theorem 1, and U, V ≡ 0 and W satisfying conditions (H1)–(H2).
Furthermore, assume that the initial data satisfiesF(μ0)+W2(μ0, μ∞) < ∞ , then we
have

lim
t→∞ W2(μt , μ∞) = 0.
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Proof. As in Theorem 3, we make use of Corollary 1. In this particular case, we have
JV ≡ 0. As for JW we estimate as in Proposition 3 to obtain

JW (μt |μ∞) ≥ cWW 2
2 (μt , μ∞) − cW

∣∣∣∣
∫
Rd

x dμ∞ −
∫
Rd

x dμt

∣∣∣∣
2

.

On the other hand, we have that

∫
Rd

x dμ∞ −
∫
Rd

x dμt = 1

γ
e−γ t

∫
Rd

u0 dμ0,

which subsequently gives

JW (μt |μ∞) ≥ cWW 2
2 (μt , μ∞) − cW

γ 2 e
−2γ t

∫
Rd

|u0|2 dμ0.

Taking the temporal derivative of the functional G provided in the proof of Theorem 3
gives

d+

dt
G(μt , μ∞) ≤ −2cWE(μt , μ∞) + 2

cW
γ 2 e

−2γ t
∫
Rd

|u0|2 dμ0,

where we chose α = γ and β = (1 + cW )/γ . Integrating the inequality above in time
gives

G(μt , μ∞) + 2cW

∫ t

0
E(μs, μ∞) ds ≤ G(μ0, μ∞) +

cW
γ 3

∫
|u0|2 dμ0.

Since G(μt , μ∞) ≥ 0 for all times t ≥ 0, we finally obtain

2cW

∫ ∞

0
W 2

2 (μs, μ∞) ds ≤ 2cW

∫ ∞

0
E(μs, μ∞) ds ≤ G(μ0, μ∞)

+
cW
γ 3

∫
|u0|2 dμ0 < ∞,

and consequently the convergence due to the uniform continuity of t �→ W 2
2 (μt , μ∞).

��
Proceeding as in the proof of Corollary 2, we obtain the following result.

Corollary 3. Let (�, u) be an energy decaying solution to the Euler Eq. (1), with μt ∈
Pac
2 (Rd) the measure whose density is �t for all t ≥ 0, and u satisfying additionally

the assumptions of Theorem 1, and U, V ≡ 0 and W satisfying conditions (H1)–(H3).
Furthermore, assume that the initial data satisfiesF(μ0)+W2(μ0, μ∞) < ∞ , then we
have

lim
t→∞

(
W 2

2 (μt , μ∞) + ‖ut‖2L2(μt )

)
= lim

t→∞ E(μt , μ∞) = 0.
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5. Overdamped Limit (γ → ∞)

In this section we consider the overdamped limit of (1) for large damping γ � 1. In this
case, we rescale the time t = γ t̃ , density �t = �̃t̃ , and velocity ut = ũt̃/γ . Dropping
the tilde, we obtain the rescaled Euler equations

∂t�
γ
t + ∇ · (�

γ
t u

γ
t ) = 0,

∂t (�
γ
t u

γ
t ) + ∇ · (�

γ
t u

γ
t ⊗ uγ

t ) = − γ 2
[
∇ p(�γ

t ) + �
γ
t

(∇V + ∇W � �
γ
t
)
+ �

γ
t u

γ
t

]
,

(21)

where we introduced the superscript γ to make explicit the dependence of the solutions
(�γ , uγ ) on the damping parameter γ . For the limit γ → ∞, we wish to show that
solutions (�γ , uγ ) corresponding to (21) converge to the solution (�̄, ū) of the first order
equation

∂t �̄t + ∇ · (�̄t ūt ) = 0, ūt = −∇(δμF)(�̄t ). (22)

It is well-known that the first order Eq. (22) has a gradient flow structure in P2(R
d) for

the functional F and satisfies the decay estimates

d

dt
F(�̄t ) = −

∫
Rd

|ūt |2�̄t dx, d

dt

∫
Rd

|ūt |2�̄t dx = −D(�̄t ), (23)

with D(�̄t ) ≥ 0 for all times t ≥ 0 [23]. Furthermore, (�̄, ū) satisfies the momentum
equation

∂t (�̄t ūt ) + ∇ · (�̄t ūt ⊗ ūt ) = − �̄tG �̄t ,

with G �̄t = − (∂t ūt + ūt · ∇ūt ) which we assume to be in L2((0, T ), L2(�̄t dx)). In this
case, given the measures μγ and μ̄, with densities �γ and �̄ respectively, we get∫

Rd
〈y − Tt (y),Gμ̄t (t, y)〉 dμ̄t ≤ 1

2
W 2

2 (μ
γ
t , μ̄t ) +

1

2

∫
Rd

|Gμ̄t |2dμ̄t ,

due to Young’s inequality, where Tt#μ̄t = μ
γ
t . On the other hand, we have∫

Rd
〈y − Tt (y),Gμ

γ
t
(t, Tt (y))〉 dμ̄t ≤ −γ 2

[
c�W

2
2 (μ

γ
t , μ̄t ) +

1

2

d

dt
W 2

2 (μ
γ
t , μ̄t )

]
,

where c� = cV +min{cW , 0}. Here, we explicitly used the fact that ūt = −∇(δμF)(μ̄t ).
Hence, we have

d+

dt

d

dt
W 2

2 (μ
γ
t , μ̄t ) ≤ 2

∫
Rd

|uγ
t (Tt (y)) − ūt (y)|2dμ̄t

− (2c�γ
2 − 1)W 2

2 (μ
γ
t , μ̄t ) − γ 2 d

dt
W 2

2 (μ
γ
t , μ̄t ) +

∫
Rd

|Gμ̄t |2dμ̄t ,

(24)

holds due to Theorem 2. Now define the following functionals

E(μt , μ̄t ) := W 2
2 (μt , μ̄t ) +

∫
Rd

|ut |2dμt +
∫
Rd

|ūt |2dμ̄t ,

J (μt , μ̄t ) := αW 2
2 (μt , μ̄t ) +

d

dt
W 2

2 (μt , μ̄t ) + β

[∫
Rd

|ut |2dμt +
∫
Rd

|ūt |2dμ̄t

]
,
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where α, β > 0 are appropriately chosen constants. Note that for αβ > 1/2,

p E ≤ J ≤ q E

for some constants p, q > 0, depending only on α and β.

Theorem 5. Let (�γ , uγ ) be energy decaying solutions of (21) for all γ � 1 suffi-
ciently large and let (�̄, ū) be a gradient flow solution to (22) satisfying additionally the
assumptions of Theorem 2. We further assume the initial conditions to be well-prepared,
i.e., �γ

0 = �̄0 and uγ
0 = ū0 such that F(μ̄0) +W2(μ

γ
0 , μ̄0) < ∞ , then we have

lim
γ→∞

∫ T

0
W 2

2 (μ
γ
t , μ̄t ) dt = 0 ,

where μ
γ
t and μ̄t are the measures with densities �

γ
t and �̄t for all t ≥ 0 respectively.

Proof. The proof is based on Corollary 1 and follows the same line of arguments as in
the previous theorem. We begin by defining the functional

G(μ
γ
t , μ̄t ) := 2βγ 2(F(μ

γ
t ) + F(μ̄t )

)
+ J (μ

γ
t , μ̄t ).

The temporal derivative of G gives

d+

dt
G(μ

γ
t , μ̄t ) ≤ (α − γ 2)

d

dt
W 2

2 (μ
γ
t , μ̄t )

− 2βγ 2
[∫

Rd
|uγ

t |2dμ
γ
t +

∫
Rd

|ūt |2dμ̄t

]
− βD(�̄t )

+ 2
∫
Rd

|uγ
t (T γ

t (y)) − ūt (y)|2dμ̄t

− (2c�γ
2 − 1)W 2

2 (μ
γ
t , μ̄t ) +

∫
Rd

|Gμ̄t |2dμ̄t ,

where we used the estimates (23) and (24). Choosing α = γ 2 and noting that D(�̄t ) ≥ 0
and

∫
Rd

|uγ
t (T γ

t (y)) − ūt (y)|2dμ̄t ≤ 2

[∫
Rd

|uγ
t |2dμ

γ
t +

∫
Rd

|ūt |2dμ̄t

]
,

we further obtain

d+

dt
G(μ

γ
t , μ̄t ) ≤ − (2c�γ

2 − 1)W 2
2 (μ

γ
t , μ̄t )

− (βγ 2 − 2)
∫
Rd

|uγ
t (T γ

t (y)) − ūt (y)|2dμ̄t +
∫
Rd

|Gμ̄t |2dμ̄t .

We now choose β = 2/γ 2 and integrate in time t over [0, T ] to obtain

G(μ
γ

T , μ̄T ) + (2c�γ
2 − 1)

∫ T

0
W 2

2 (μ
γ
t , μ̄t ) dt ≤ G(μ

γ
0 , μ̄0) +

∫ T

0

∫
Rd

|G �̄|2dμ̄t dt.
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Since F(μ
γ
t ) + F(μ̄t ) ≥ −c0 for all t ≥ 0 for some constant c0 ≥ 0,

∫ T

0
W 2

2 (μ
γ
t , μ̄t ) dt ≤ M(γ, T ), (25)

where

M(γ, T )

= 1

(2c�γ 2 − 1)

(
4c0 + 8F(μ̄0) + (4/γ 2)

∫
Rd

|ū0|2dμ̄0 +
∫ T

0

∫
Rd

|Gμ̄t |2dμ̄t dt

)
,

whenever γ 2 > 1/(2c�). Passing to the limit γ → ∞ concludes the proof. ��
Remark 10. Notice that for γ 2 > 1/(2c�), if sup0≤T<∞ M(γ, T ) < ∞, the estimate
(25) with T → ∞ provides the convergence W2(μ

γ
t , μ̄t ) → 0 for t → ∞. Indeed,

since
∫ ∞
0 ‖G �̄‖2

L2(μ̄t )
dt is finite, M(γ ) < ∞. Hence, the claim follows again from the

uniform continuity of t �→ W 2
2 (μ

γ
t , μ̄t ). This means that the error between μ

γ
t and μ̄t

in W2 goes to zero as t → ∞.

6. Rigorous Examples in the 1D Case

In spatial dimension one, we obtain an easy representation of the 2-Wasserstein distance
given by the pseudo-inverse χt defined as follows. Let

Ft (x) =
∫ x

−∞
dμt = μt ((−∞, x]) ∈ � := [0, 1],

be the cumulative distribution of the probability measure μt . Then

χt (η) = inf{x ∈ R | Ft (x) > η},
defines the pseudo-inverse corresponding to μt . In this case, the Wasserstein distance
between two probability measures μt and νt is equivalently expressed as

W 2
2 (μt , νt ) =

∫
�

|χt (η) − ζt (η)|2dη,

where χt and ζt are pseudo-inverses corresponding to μt and νt respectively.
The free energy corresponding to (3) in terms of the pseudo-inverse χt is given by

F(χt ) = 1

m − 1

∫
�

(∂ηχt (η))1−mdη +
∫

�

V (χt (η)) dη

+
1

2

∫
�×�

W (χt (η) − χt (η̄)) dη̄ dη ,

and the entropy reads

H(χt , vt ) = F(χt ) +
1

2

∫
�

|vt (η)|2dη.
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In this case, the damped isentropic Euler equations can be transformed into

∂tχt (η) = ut (χt (η)) =: vt (η), (26a)

∂tvt (η) = − ∂η

(
(∂ηχt (η))−m) − (∂x V )(χt (η))

−
∫

�

(∂xW )(χt (η) − χt (η̄)) dη̄ − γ vt (η), (26b)

for the Lagrangian quantities (χt , vt ) on � × R
+ with initial condition (χ0, v0) on �.

As before, a simple verification of the temporal derivative ofH for smooth solutions
gives

d

dt
H(χt , vt ) = − γ

∫
�

|vt (η)|2 dη.

6.1. Temporal derivatives of the Wasserstein distance. We begin by computing the sec-
ond temporal derivative of the Wasserstein distance. The first temporal derivative reads

1

2

d

dt
W 2

2 (μt , νt ) = 1

2

d

dt

∫
�

|χt (η) − ζt (η)|2dη =
∫

�

〈χt (η) − ζt (η), vt (η) − wt (η)〉 dη,

where vt and wt are the velocities corresponding to χt and ζt respectively. This yields

1

2

d2

dt2
W 2

2 (μt , νt ) =
∫

�

|vt (η) − wt (η)|2dη +
∫

�

〈χt (η) − ζt (η), ∂tvt (η) − ∂twt (η)〉 dη

=: I1 + I2.

The second term on the right-hand side gives

I2 =
∫

�

〈∂ηχt (η) − ∂ηζt (η), (∂ηχt (η))−m − (∂ηζt (η))−m〉 dη − γ

2

d

dt
W 2

2 (μt , νt )

−
∫

�

〈χt (η) − ζt (η), (∂x V )(χt (η)) − (∂x V )(ζt (η))〉 dη

−
∫

�×�

〈χt (η) − ζt (η), (∂xW )(χt (η) − χt (η̄)) − (∂xW )(ζt (η) − ζt (η̄))〉 dη̄ dη.

Since the function z−m , m ≥ 1 is monotonically decreasing, we find that the first term
is non-positive. Furthermore, due to the assumptions on V and W appeared in (H2), we
obtain

I2 ≤ −c�

∫
�

|χt (η) − ζt (η)|2dη,

for some constant c� > 0 (cf. Proposition 3). Hence, we finally obtain

1

2

d2

dt2
W 2

2 (μt , νt ) +
γ

2

d

dt
W 2

2 (μt , νt ) ≤
∫

�

|vt (η) − wt (η)|2dη − c�W
2
2 (μt , νt ),

which resembles the inequalities seen in Sect. 4.
In the following examples, we only consider pressureless dynamics, i.e., the damped

Euler system (26) without internal pressure. In this case, the system for (χt , vt ) reads

∂tχt (η) = vt (η), (27a)

∂tvt (η) = − (∂x V )(χt (η)) −
∫

�

(∂xW )(χt (η) − χt (η̄)) dη̄ − γ vt (η). (27b)
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6.2. Smooth solutions with repulsive Newtonian potential. We consider the damped
pressureless Euler for (χt , vt ) given by (27) with the explicit potentials V (x) = |x |2/2
andW (x) = − |x |. Notice thatW now forms a repulsive interaction potential. In spatial
dimension one, this interaction potential induces a free energyF onP2(R) that is known
to be 1-convex along generalized geodesics [20]. The stationary solution is known to
be χ∞ = 2η − 1 for the corresponding force F[χt ] = χt − χ∞ =: ζt . In this case, we
consider the dynamics

∂tχt (η) = vt (η), ∂tvt (η) = − F[χt ](η) − γ vt (η), (28)

and only consider smooth solutions of the system, i.e., χt is strictly monotonically
increasing up to sets of zero measure. Furthermore, since

1

2

d

dt

∫
�

|ζt |2dη =
∫

�

ζtvt dη =
∫

�

F[χt ]vt dη = d

dt
(F(χt ) − F(χ∞)),

we deduce that F(χt ) − F(χ∞) is essentially ‖ζt‖2L2(�)
up to a constant shift, which

allows us to onlyworkwith‖ζt‖2L2(�)
. The remaining derivativesmaybe easily computed

to obtain
1

2

d

dt

∫
�

|vt |2dη = −
∫

�

vtζt dη − γ

∫
�

|vt |2dη,

d

dt

∫
�

ζtvt dη =
∫

�

|vt |2dη − γ

∫
�

ζtvt dη −
∫

�

|ζt |2dη.

Now define the functional

G(χt , χ∞) := (β + γ )

∫
�

|ζt |2dη + 2
∫

�

ζtvt dη + β

∫
�

|vt |2dη.

Taking its temporal derivative gives

d

dt
G = − 2

∫
�

|ζt |2dη − 2(βγ − 1)
∫

�

|vt |2dη.

Choosing β = 2/γ and using the fact that (β + γ )β = 2 + β2 > 1, we have

d

dt
G ≤ −(2/q)G �⇒ G(χt , χ∞) ≤ e−(2/q)tG(χ0, χ∞),

for some positive constant q = q(γ ), i.e., G decays to zero at an exponential rate.
Summarizing the above discussions we have the following theorem.

Theorem 6. Let (χ, v)beaglobal smooth solution of system (27)with potentials V (x) =
|x |2/2 and W (x) = − |x |. Suppose the initial data satisfies ‖χ0−χ∞‖L2 +‖v0‖L2 < ∞
with χ∞ = 2η − 1, then we have

lim
t→∞

(
‖χt − χ∞‖L2 + ‖vt‖L2

)
= 0,

exponentially fast. In particular, we obtain

lim
t→∞ W2(μt , μ∞) = 0,

exponentially fast with μt = χt#1�dη and μ∞ = χ∞#1�dη = (1/2)1(−1,1)dx.

Remark 11. The system (28) has been extensively studied in [18] via the characteristics
formulation with a friction coefficient of γ = 1 and is known to either have smooth
solutions or solutions may blow up in finite time, depending on the total mass.
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6.3. Generalized Lagrangian solutions with attractive Newtonian potential. The notion
of sticky solutions of pressureless Euler systems have been considered since the 70’s to
describe δ-shocks that may form in finite time [64]. Since then, numerous works have
gone into the construction of such solutions, thereby extending the notion of a solution
of (27) past the formation of δ-shocks [13,14,16,26,34,57]. Here, we adopt the notion
of generalized Lagrangian solutions for globally sticky dynamics found in [13].

Consider the potentials V (x) = |x |2/2 and W (x) = |x |, which provides global
attraction for the Euler system (27) with the free energy

F(χt ) = 1

2

∫
�

|χt |2dη +
1

2

∫
�×�

|χt (η) − χt (η̄)| dη̄ dη.

Due to sufficiently strong attraction, one expects the formation of δ-shocks in finite time
and the only stable stationary solution of (27) is the Dirac measure μ∞ = δ0 at x = 0.
This corresponds to the stable stationary pseudoinverse χ∞ ≡ 0.

To describe the sticky dynamics, we denote by K the closed convex cone of right-
continuous nondecreasing functions in L2(�), i.e.,

K =
{
χ ∈ L2(�)

∣∣ χ is nondecreasing
}

,

and IK : L2(�) → [0,+∞] be the indicator function of K which is convex and lower
semicontinuous. Hence, its subdifferential ∂ IK(χ) at χ ∈ K is a maximal monotone
operator on L2(�) and it can be characterized as

∂ IK(χ) =
{
ζ ∈ L2(�)

∣∣∣
∫

�

ζ(χ̄ − χ) dη ≤ 0 for all χ̄ ∈ K
}

.

Now define the set

�χ := {η ∈ � | χ is constant in an open neighborhood of η} ,

and the closed subspace

Hχ =
{
ζ ∈ L2(�) | ζ is constant on each interval (a, b) ⊂ �χ

}
,

for any χ ∈ K. The projection Pχ : L2(�) → Hχ is given by Pχ (ζ ) = ζ a.e. in � \�χ

and

Pχ (ζ ) = 1

b − a

∫ b

a
ζ(η) dη in any maximal interval (a, b) ⊂ �χ.

It was shown in [13] that the tangent cone TχK to K at χ ∈ K can be characterized as

TχK =
{
ζ ∈ L2(�) | ζ is nondecreasing in each interval (a, b) ⊂ �χ

}
.

In particular, Pχ (ζ ) ∈ TχK for any ζ ∈ L2(�).
Therefore, a global sticky dynamics for (27) can be formulated as

∂tχt (η) = Pt (vt )(η), ∂tvt (η) = −Pt (F[χt ])(η) − γ vt (η), (29)

where F[χt ](η) = χt (η) + 2η − 1 are the external and interaction forces acting on the
system, and Pt := Pχt is the projection onto the closed subspace Hχt defined above. For
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this particular choice of potentials, there is a unique sticky Lagrangian solution (χt , vt )

of (29) with

χ ∈ Liploc(R
+,K), v ∈ C1(R+, L2(�)),

and initial data (χ0, v0) ∈ K × L2(�).
We now compute the evolution of the energy corresponding to the solution pair

(χt , vt ):

d+

dt

[
F(χt ) +

1

2

∫
�

|vt |2 dη

]
=

∫
�

F[χt ]Pt (vt ) dη

−
∫

�

vtPt (F[χt ]) dη − γ

∫
�

|vt |2 dη.

Notice that the following equalities hold∫
�

Pt (vt )(Pt (F[χt ]) − F[χt ])) dη = 0 =
∫

�

Pt (F[χt ])(Pt (vt ) − vt ) dη.

This consequently yields∫
�

F[χt ]Pt (vt ) − vtPt (F[χt ]) dη =
∫

�

Pt (vt )Pt (F[χt ]) − Pt (F[χt ])Pt (vt ) dη = 0,

and the above equality can be simplified to

d+

dt

[
F(χt ) +

1

2

∫
�

|vt |2 dη

]
= − γ

∫
�

|vt |2 dη,

which gives the same expression as the usual case and also implies the uniform temporal
bounds on F(χt ) and ‖vt‖L2(�). In particular, we have the uniform estimate

supt≥0

(
F(χt ) +

1

2
‖vt‖2L2(�)

)
≤ F(χ0) +

1

2
‖v0‖2L2(�)

=: c0
2

.

Consequently, we conclude that

F(χt ) ≤ 1

2

∫
�

|χt |2dη +
∫

�

|χt | dη ≤ cF‖χt‖L2(�)

with cF = 1 + (
√
c0/2) and this satisfies the required assumption in (H3).

Now taking the temporal derivative of the L2-distance between χt and χ∞ = 0 gives

1

2

d+

dt

∫
�

|χt |2dη =
∫

�

χtPt (vt ) dη =
∫

�

χt (Pt (vt ) − vt ) dη

+
∫

�

χtvt dη =
∫

�

χtvt dη,

where we used the fact that χt ∈ Hχt and Pt (vt ) − vt ∈ H⊥
χt
. Since χt is only locally

Lipschitz continuous in time, we are unable to consider the second temporal derivative.
Instead we compute

d+

dt

∫
�

χtvt dη =
∫

�

Pt (vt )vt dη − γ

∫
�

χtvt dη −
∫

�

χtPt (F[χt ]) dη

≤
∫

�

|vt |2dη − γ

∫
�

χtvt dη −
∫

�

χt F[χt ] dη,
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where we used the nonexpansive property of the projection Pt for all times t ≥ 0 in the
first term. Notice that the last term can be rewritten as∫

�

χt F[χt ] dη =
∫

�

|χt |2 dη +
∫

�

χt (2η − 1) dη =
∫

�

χ2
t dη −

∫
�

∂ηχt (η
2 − η) dη.

Since χt ∈ K and η(η − 1) ≤ 0 for all η ∈ �, we have that
∫

�

∂ηχt (η
2 − η) dη ≤ 0,

and therefore

d+

dt

∫
�

χtvt dη ≤
∫

�

|vt |2dη − γ

∫
�

χtvt dη −
∫

�

|χt |2 dη.

From here, we may proceed as in the previous section to conclude convergence to
equilibrium for the global sticky dynamics towards the unique stationary solution δ0 ∈
P2(R). We can summarize the discussion above in the following result.

Theorem 7. Let (χ, v) be a global Lagrangian solution of system (27) with potentials
V (x) = |x |2/2 andW (x) = |x |. Suppose the initial data satisfies ‖χ0‖L2 +‖v0‖L2 < ∞,
then we have

lim
t→∞

(
‖χt‖L2 + ‖vt‖L2

)
= 0.

In particular, we obtain

lim
t→∞ W2(μt , μ∞) = 0,

with μt = χt#1�dη and μ∞ = δ0.
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