
On a Cartesian cut-cell methodology

for simulating atmospheric ice

accretion on aircraft

Lukas Wutschitz

Department of Physics
University of Cambridge

This dissertation is submitted for the degree of:

Doctor of Philosophy

Selwyn College September 2018





Abstract

Atmospheric in-��ight ice accretion has been a signi��cant operational hazard in aviation for decades.
Super-cooled water droplets impinge on exposed surfaces such as wings and rotor blades. These
droplets may freeze on the surface thereby changing lift characteristics and disturb weight and aerody-
namic balances.

The multiple length scales involved prevent designing dynamically similar ��ows making tra-
ditional aeronautical engineering tools such as wind tunnel experiments not suitable. Therefore,
computational ��uid dynamics (CFD) methods have proved an attractive alternative to study atmo-
spheric icing e�fects. However, most approaches are based on simple incompressible models and
are only suited for small ice heights due to the di���culty of dynamically tracking the ice accretion.
This thesis aims to develop novel mathematical models to capture more relevant phenomena and to
improve the numerical methods to allow dynamic tracking of the air-ice interface.

The initial chapter presents an augmented air and droplet model which tracks droplet tempera-
tures thereby producing more accurate heat ��uxes for the phase transition calculation. Firstly, we
validate our novel model for common ice accretion test cases and ��nd excellent agreement with liter-
ature. The advantage of the augmented system is demonstrated by applying it to an experimental
setup that studies the heat exchange between water droplets and air for various ��ow conditions.
We ��nd excellent agreement between our model and the experiment for all presented cases whereas
constant-temperature approaches match only for short interaction times. Finally, we apply the new
system to study the droplet temperatures around various aerofoil and ��nd signi��cant temperature
di�ferences compared with conventional models.

The following chapter studies the freezing process on the wing geometry. Presently, the most
advanced model is based on lubrication theory, however, linear terms are truncated. We extend the
series expansion to include ��rst order terms and demonstrate that the additional order is necessary to
accurately capture the thin ��lm ��ow on a cylinder. Furthermore, we extend the lubrication-theory-
based approach which was limited to simple geometries. The extended model is valid on arbitrary
wing shapes making it more relevant for engineers studying real-world problems.

The penultimate chapter combines the previous two to give a simulation of the full icing process.
We integrate it with a Cartesian cut-cell method which can cope dynamically with moving interfaces.
The robustness and performance of the cut-cell techniques allow us to simulate ice growth on real-
world geometries. We demonstrate this capability by presenting results of the dynamic ice growth on
a NACA 0012 aerofoil - making this the ��rst such numerical experiment.
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Chapter 1

Introduction

As clouds of water droplets ascend through the atmosphere, they may be cooled to temperatures
signi��cantly lower than freezing (Rees, 1976). Due to the lack of ice nuclei, they remain in their
liquid phase despite being at subzero temperatures. Droplets in this supercooled state can freeze
almost instantly when coming into contact with a nucleation seed. Exposed surfaces of an aircraft
such as pitot tubes or the leading edges of wings may act as nucleation seeds thereby collecting a
signi��cant amount of ice. Under certain conditions, these accretions form pointy horn shapes which
disrupt the air ��ow and change lift and drag characteristics of the aircraft dramatically. This process
traps very few air bubbles giving the ice a translucent appearance and making it almost impossible
to be visually detected by pilots. Undetected ice accretion is a primary environmental hazard in the
aviation industry and has been the subject of many numerical studies (Wright, 2008; Verdin, 2007;
Leese, 2010; Cao and Huang, 2014; Cao et al., 2015; Peng and Xinxin, 2011).

Anti-icing and de-icing procedures have been developed for ice formation prevention and
removal. Anti-icing techniques (i.e. precautionary measures) comprise chemical and thermal pro-
cedures. In the case of the former, a chemical solution is applied on exposed surfaces before take
o�f, which lowers the freezing point of water. The latter heats the surface of the wing thereby
preventing ice from forming. Energy consumption of heating devices is of the order of 100kW
(Myers and Hammond, 1999) which a�fects fuel e���ciency. On the other hand, de-icing procedures
such as de-icing boots and heating systems remove existing ice growth. De-icing boots consist of
an additional rubber skin on the leading edge of the wing. If ice growth is detected, the rubber
temporarily expands thereby breaking o�f the ice. Disadvantages are the additional drag of this
system and the di���culty of equipping small wings with de-icing boots.

Even though advanced countermeasures exist, the following examples show that a better un-
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derstanding of the atmospheric in-��ight icing phenomenon would contribute to aircraft operation
safety. In 1994 pilots of an ATR 72 aircraft lost control after a ridge of ice accreted beyond the
de-icing boots (NTSB (National Transportation Safety Board), 1994). Furthermore, the Bureau
d’Enquêtes et d’Analyses (BEA) concluded that the obstruction of the pitot probes of an Airbus
A330 by ice crystals contributed to the loss of the aircraft on its way from Rio de Janeiro to Paris
(BEA, 2012).

Experimental approaches to investigate aerodynamic problems such as wind tunnel studies are
expensive but have proofed popular since the cost can be reduced by exploiting the scale invariance of
the governing equations. Provided all quantities can be scaled appropriately, an equivalent problem
can be designed which features a smaller length scale and consequently is suitable to be studied
in a smaller wind tunnel. While this is commonly used for external aerodynamics problems such
as studying lift and drag characteristics of aerofoils, such an approach is of limited utility when
studying a droplet-laden ��ow since two independent length scales, the one of the droplets and the
aerofoil, are present. They cannot be scaled simultaneously to give dynamic similarity. This makes
experimental investigation signi��cantly more expensive and the ability to have a predictive and
practical simulation capability for this problem highly desirable.

This PhDproject aims to improve simulations of ice accretion to understand in-��ight icing better
and enhance ��ight safety. To this end, we review existing software and discuss the mathematical
models and the physical assumptions that were made. We ��nd that mesh generation is a bottleneck
in current simulations and we will develop an ice accretion simulation based on a Cartesian cut-cell
method.

1.1 Terminology and contributing physical phenomena

In this section, we de��ne terminology commonly used in icing literature and give a brief introduction
into the physical e�fects that contribute to the ice accretion problem. A comprehensive overview
of the problem and the work carried out before 2000 is given by Gent et al. (2000) and by Lynch
and Khodadoust (2001). In this section, we will follow their work and brie��y summarise their
conclusions.

1.1.1 Ice producing precipitation

In this work, we focus on the classical case of ice accretion by impinging supercooled water droplets.
It should be noted that there are various other hazards related to ice accumulation as pointed out by
Gent et al. (2000) and Lynch and Khodadoust (2001).
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In an everyday life situation, the phenomenon of supercooling is rarely observed. This is due
to the presence of impurities or foreign particles in water which are often referred to as nucleation
seeds or ice nuclei (Mason, 1971). Nucleation seeds initiate the freezing process and hence water
at atmospheric pressure undergoes a phase change to the thermodynamically preferred solid state
at roughly 0 �C. In the absence of a nucleation seed, it is possible to cool water to temperatures
as low as �40 �C and retain a liquid state. In conditions colder than that, water droplets freeze
spontaneously (Mason, 1971). Clouds typically consist of small water droplets with a typical droplet
diameter of only a fewmicrons. The probability of encountering a nucleation seed in such small
amounts of water is low and droplets in clouds often remain in a liquid phase in temperatures as low
as�20 �C. These are the droplet size and temperature ranges typically considered in ice accretion
simulations. More recently the physics of supercooled large droplets (SLDs) has been studied by
Wright and Potapczuk (2004) and Cober et al. (2001). Two categories further comprise supercooled
large droplets.

Freezing drizzle: Freezing drizzle includes the smallest droplets within the SLD domain. Droplet
diameters range from 50µm to 400µm and the water concentration is in the range 0.3gm�3

to 0.4gm�3. The trajectories of droplets of this category tend to be close to ballistic lines and
impinge with hardly any de��ection by the air ��ow. Therefore, the extent of the collection is
considerably larger than classical collection e���ciencies where only droplets with a diameter
of less than 50µm are considered. Moreover, due to the larger volume, spontaneous freezing
is more likely. Hence, freezing drizzle is observed for higher temperatures.

Freezing rain: Clouds of freezing rain consist of considerably larger droplets. Diameters range
up to 5mm (Gent et al., 2000). Freezing rain clouds are only rarely found at low ambient
temperatures as the presence of ice nuclei in the clouds becomes more likely. Typical freezing
rain clouds are found at temperatures in the range from�15 �C to 5 �C. Due to the relatively
big mass of water droplets in these type of cloud, inertial forces dominate over drag forces.
Hence, the droplets trajectory is of a ballistic character.

1.1.2 Liquid water content (LWC)

A crucial parameter in the computation of ice accretion is the liquid water content (LWC) of the
atmosphere. It is de��ned as the mass of liquid water in a unit volume. The LWC of a cloud typically
ranges from 0.1gm�3

� 0.5gm�3 according to Gent et al. (2000).
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Rime ice

T
1, v1,↵1d %

Glaze ice

T
1, v1%

Beak ice

Figure 1.1: Illustration of the di�ferent types of accreting ice shape. In cold conditions, slow ��ight or low water
content rime ice forms. This type of ice accretion has a milky opaque appearance. As the ambient
temperature T

1, the speed v1 or the ambient water content ↵1d increases a liquid water ��lm
appears which subsequently freezes resulting in glaze ice. In even milder conditions or very fast
��ow beak ice forms which is characterised by single horn shapes.

1.1.3 Types of ice shape

In general, three types of ice accretion canbedistinguished in ��ight conditions. They are characterised
by their appearance and shape which are illustrated in ��gure 1.1 as given in Gent et al. (2000):

Rime ice: This type of ice is found in very cold conditions, if the droplet concentration is low or if
the ��ow is slow. The release of kinetic energy on impact is not su���cient to heat the water
droplets above 0 �C in this case. The water freezes almost instantly when it impinges on the
surface. The rapid process often traps air bubbles giving rime ice a milky opaque appearance.
This type of ice accretion tends to be streamlined, however, as the accretion time increases,
less aerodynamic pointed shapes form. (Gent et al., 2000)

Glaze ice: As temperature, the speed of the aircraft or the water concentration increases, the kinetic
energy may become su���cient to heat the droplets above 0 �C and a liquid water ��lm forms
on the impinging surface. The thin ��lm of water moves under the shear stress exerted by the
air ��ow around the surface. Subsequently, the ��lm freezes by adiabatic cooling. This slow
process yields a translucent ice formation.

Beak ice: Beak ice is typically found in conditions of fast air ��ow such as the tip region of a rotor.
The adiabatic expansion of the fast air��ow cools the impinging water droplets. This type
of ice forms pointy horn shapes which disrupt the air ��ow and consequently the source of
cooling and the ice breaks away (Gent et al., 2000).

1.1.4 Outside air temperature

The outside air temperature is the temperature of the undisturbed free stream air and is an essential
factor in an ice accretion scenario for two reasons.
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Firstly, the type of ice shape depends on whether the water droplets freeze instantly or remain
liquid on impingement which depends on the droplet temperature. Su���ciently far away from
the icing body, the droplets are assumed to be in thermal equilibrium with the surrounding air.
Secondly, the colder the water droplets are, the more likely they are to freeze. This e�fect is more
pronounced for larger droplets in which the probability of a nucleation seed is higher. Hence, colder
droplets tend to be smaller.

1.1.5 Airspeed

The airspeed a�fects ice accretion in two ways. Firstly, the collection e���ciency, which is the ��ux of
water onto the icing body, increases as the speed increases. This is due to inertial forces becoming
dominant over drag forces. Secondly, as the airspeed increases, the kinetic energy of the droplets and
the e�fects of convective cooling increase, potentially resulting in a di�ferent type of ice formation
(see ��gure 1.1).

1.1.6 Median volumetric diameter (MVD)

Clouds contain a distribution of droplet sizes. This is an essential factor since drag and inertial forces
depend on the diameter. Moreover, the droplet temperature is related to the droplet size as it is
di���cult to maintain a supercooled state for a signi��cant amount of water. Droplets of a diameter
of the order of mm freeze spontaneously at�20 �C after a short time (Gent et al., 2000). Surface
tension forces act to minimise the surface area and are proportional to the curvature of the surface.
Pan et al. (2018) studied the relationship between theWeber number and the droplet deformation
parameter. TheWeber number is a dimensionless parameter de��ned as the ratio of inertial forces
and surface tension forces. The droplet deformation parameter is the ratio of the greatest diameter
of a deformed droplet over the diameter of a spherical droplet of the same volume. According to Pan
et al. (2018), a maximum deformation parameter of 1.2 implies a critical Weber number of the order
of 1. Assuming atmospheric conditions for water and air, this means that the deformations are small
even for a relative velocity between the air and the droplets on the order of 10ms�1. Therefore,
water droplets are commonly assumed to remain spherical and are modelled as rigid spheres. In
general, the drag law for rigid spheres depends in a non-linear manner on the diameter. Therefore,
we expect signi��cantly varying trajectories as the droplet size changes.

Inertial forces also depend non-linearly on the droplet diameter. Light droplets are swept past
the icing body easily. The collection e���ciency for small droplet diameters vanishes on large parts of
the icing body and only a small region around the stagnation point obtains signi��cant collection.
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On the other hand, large and heavy droplets travel almost unin��uenced by the air ��ow. They follow
an almost ballistic trajectory resulting in a large extent of water accumulation.

Based on these two extreme cases and the fact that the droplet diameter varies signi��cantly in
clouds, we conclude that an accurate model for the droplet distribution is essential.

1.1.7 Gravity

Gravitational e�fects tend to be less important and are often neglected in literature. Gravity comes
into play when modelling the water droplet trajectories where buoyancy and body forces may play a
role for large droplets (Gent et al., 2000). Wright and Potapczuk (2004) quantitatively analyse the
e�fect of gravity on the water droplet trajectories by non-dimensionalising the governing equations.
Even for large droplets, the Froude number, which is the ratio of inertia forces over gravitational
forces, is on the order of 103. They, therefore, conclude that gravitational forces may be neglected.
We follow this argumentation and neglect gravity for the droplet trajectory calculation.

Moreover, gravity also in��uences the water dynamics on the aircraft surface. This is the only
aspect of the ice accretion process where we explicitly model gravitational e�fects.

1.2 Modules of icing simulations

The physical laws that govern the problem of ice accretion consist of two categories characterised by
their length scale. Firstly, the external aerodynamic problem, which comprises the simulation of
the air ��ow, the droplet ��ow and eventually the computation of the collection e���ciency, occurs on
a length scale typically given by the chord length of the aerofoil. Secondly, the ice growth, which
includes the thin ��lm dynamics of the water on the geometry and the freezing process, is expressed
in terms of the ratio of the horizontal to the vertical extent of the water ��lm and is typically orders
of magnitude smaller than the length scale of the external aerodynamic problem. The two issues
are coupled only by a few critical parameters as illustrated in ��gure 1.2. Based on this separation we
divide our discussion into the following topics.

1.2.1 Air flow

The air ��ow computation provides input for two other calculations. Firstly, the droplet ��ow is
governed by the drag which depends on the velocity ��eld of the air ��ow. Secondly, the ice growth and
thin ��lm dynamics depend on air pressure pA, air temperature TA, shear stress ⌧ and heat transfer

6



1.2. Modules of icing simulations

Air and droplet ��ow computation

Water ��lm and ice growth computation

⌧, �, q
Changing
geometry

Figure 1.2: Illustration of the modular structure of ice accretion simulations. The air and droplet ��ow occurs
on a larger length scale, typically the chord length of the icing body, than the water ��lm. Hence,
the full ice accretion process can be divided into two subproblems. Initially, the air and water
droplet ��ow is computed giving parameters which are needed for the ice accretion such as collection
e���ciency�, shear stress ⌧ and heat ��ux Q . Subsequently, the water ��lm and ice extent is updated
resulting in a slightly altered rigid geometry, which in turn changes the air and droplet ��ow.

coe���cient hc on the geometry surface. One of two approaches are commonly pursued to compute
the air ��ow. Gent et al. (2000) termed these: Coupled methods andNavier-Stokes methods.

Coupled methods

Coupled methods make use of the large Reynolds number of the external aerodynamics problem
and model the air as an inviscid ��ow. This approach gives accurate results for global parameters such
as drag coe���cients cD and lift coe���cients cL for streamlined bodies (e.g. aerofoils). The parameters
⌧ and hc, which can only be determined by viscous methods, can be recovered by boundary layer
methods in a subsequent calculation as done byRu�f and Berkowitz (1990). This approach e�fectively
decouples the global air ��ow from the region close to the surface which is occupied by the boundary
layer and allows the air ��ow to be modelled by the Euler equations with the ideal gas equation of
state. One of the advantages of this approach is the low computational cost of solving the Euler
equations as opposed to the viscous Navier-Stokes equations. On the downside, as the ice shape
becomes more complicated, integral methods fail to predict the boundary layer accurately.

Viscous methods

These methods model the air ��ow with the viscous Navier-Stokes equations. In order to recover
quantities such as shear stress, the simulation needs to resolve features smaller than a wall unit
which is a length non-dimensionalised by the shear velocity and kinematic viscosity (Shan et al.,
2005). In practical applications this is infeasible and approximations are used. Most commonly
the Reynolds Averaged Navier-Stokes (RANS) equations with a turbulence model are solved. The
RANS equations are derived from the Navier-Stokes equations by Reynolds decomposing the
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solution. Let u(t , x, y, z) be the solution. The Reynolds decomposition is given by u(t , x, y, z) =
ū(x, y, z)+u

0(t , x, y, z), where ū is the time average and u
0 the ��uctuating part of u . This approach

gives rise to an extra term which is only expressed in terms of u
0. There are various approaches to

model the additional term such as the mixing length model, the Spalart-Allmaras model, the k -"
model and the k -! model (Versteeg andMalalasekera, 2007). These methods are computationally
more expensive than coupled methods but they tend to be more accurate especially for complicated
geometries. RANS methods were employed by Bourgault et al. (2000b) using FENSAP-ICE with a
k -" turbulence model and da Silveira et al. (2003) using a Spallart-Almars turbulence model.

Mesh generation

Both methodologies require a high-quality grid on which the equations are discretised (Gent et al.,
2000). Independent mesh generators create a grid around the icing body and need to be run before
the ��uid solver. While this process can take up a signi��cant part of the simulation time, it is a feasible
approach in conventional external aerodynamics simulations as the geometry is static and the mesh
is generated only once. In ice accretion simulations, however, this approach fails for two reasons.

Firstly, geometries change due to growing ice layer thickness which requires continuous updating
of the mesh. Current generation ice prediction software circumvents this problem by introducing a
user-speci��ed parameter�tremesh. It is assumed that the geometry does not change signi��cantly
in this time interval and hence remesh only every�tremesh. After a geometry update, the air and
droplet solver computes the steady state solution, and the results are used for the next time step.
Verdin (2007); Verdin et al. (2009); Verdin and Charpin (2013) extended this approach by using
a predictor-corrector method. They concluded that the repeated steady-state computation uses
signi��cant computational resources and that a moving boundary approach may lead to a more
e���cient methodology (Verdin, 2007).

Secondly, as the ice grows, the surface shape becomes more complicated. Most grid generators
produce a highly skewed mesh, especially in regions of high surface curvature e.g. in glaze ice
conditions (see ��gure 1.1).

1.2.2 Droplet flow

In this section, we present the two most commonly used approaches to compute the droplet ��ow
and the collection e���ciency of a geometry. Classically, only clouds which consist of droplets of
diameter less than 50µm are studied. This class does not include SLDs. Hence, droplet break-up,
coalescence and ricocheting are not taken into account in the following models. Due to the small
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LWC, it is generally assumed that droplets only interact with the surrounding air and not with
one another. This assumption leads to two notions in the description of droplet ��ow: Lagrangian
droplet tracking and Eulerian droplet �ow.

Lagrangian droplet tracking

In the Lagrangian frame, droplets are tracked individually solving a governing equation for every
single droplet. The forcing term in the equation of motion is given by the drag law DL, which is
given by the aerodynamic drag of rigid spheres as the droplets are assumed not to deform. This gives
the equation of motion:

m
d2 x
d t 2
(t ) =DL , (1.1)

where m is the mass of one water droplet and is a function of the droplet diameter, x is the position
of the droplet parameterised by t , and DL is the drag law for a rigid sphere. The drag vanishes in the
case of velocity equilibrium which is satis��ed if the drag force depends only on the relative velocity
of the droplets in the air ��ow. Two water droplets which were released in the vicinity of each other
but in��nitely far away from the aerofoil are commonly referred to by representative droplets. As we
track those droplets, they enclose an area called a stream tube between their trajectories. Since the
quantity of water within the stream tube is conserved, we can compute the LWC at the time of
impingement using the ratio of the distances between two representative droplets in��nitely far away
and at impingement. The non-dimensionalised collection e���ciency �̂ is given by

�̂=
�s
1

�simp
, (1.2)

where �s
1

is the distance between two representative droplets in the far ��eld, and �simp the
distance between the droplets at the time of impingement.

Eulerian droplet flow

The Eulerian approach averages the water droplets over a control volume and models them as a
continuum. This idea is analogous to the description of the air ��ow, which makes it easy to solve
in the same framework. Due to the non-interaction assumption, a pressure-like quantity vanishes.
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Therefore, the governing equations are
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where ⇢ is the density of water and v the velocity. These equations, however, are weakly hyperbolic
and the eigenvectors of the Jacobian do not span the whole solution space. For example, �-shocks
are a valid solution to some initial conditions, therefore making the equations di���cult to solve
numerically. However, as pointed out by Pelanti and LeVeque (2006), these numerically challenging
solutions do not appear in practical situations due to the relaxation e�fect of the coupling with the
air ��ow. A much more detailed discussion of the droplet ��ow can be found inWutschitz (2014).

The equivalence of the Eulerian and the Lagrangian approach can easily be shown by expand-
ing equation (1.4) and substituting equation (1.1). Without loss of generality, the expressions are
considered in a Cartesian frame.
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The scaling factor ⇢/m converts the drag term of a single droplet in the Lagrangian picture to the
drag per unit volume required in the Eulerian picture.

1.2.3 Ice growth

Following the air and droplet ��ow simulation, we turn to the processes occurring on the icing body.
The kinetic energy released on impact, convective cooling and other energy transfer mechanisms add
up to an energy balance determining whether the impinging water droplet freezes or remains liquid.
This process is essential for an accurate description of the ice shape. The majority of ice accretion
simulation uses all or a subset of the following heat transfer processes which depend mainly on the
water temperature Tw, the air temperature Ta and droplet temperature Td:

Evaporation/Sublimation: Evaporation and sublimation of the water and ice, respectively, extracts
heat. Typically, a linear approximation of this process is su���cient (Poots and Skelton, 1992;
Myers and Hammond, 1999; Lowe, 1976). Consequently, a single evaporation coe���cient
governs the energy ��ux (Chilton and Colburn, 1934; Myers and Hammond, 1999).

Convective cooling: Convective cooling by the air ��ow is the main contributor to the formation of
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glaze ice as it is the most dominant heat exchange mechanism. The heat transfer coe���cient hc

is a crucial parameter in this process and is obtained from the boundary layer model.

Droplet cooling: As the water droplets impinge on the ��lm, they are assumed to reach temperature
equilibrium. The energy required to heat them is extracted from the system. This process
is dependent on the temperature of the impinging droplets Td. However, it is commonly
replaced by the free stream temperature T

1
since it is assumed that the temperature of the

droplets does not change.

Latent heat: Latent heat is released in a phase transition. In our case energy is released as the liquid
water ��lm freezes.

Kinetic energy from water: Upon impingement the kinetic energy is converted into heat and con-
tributing to the energy balance.

All these contributions sum to an energy balance yielding a di�ferential equation for the ice height ⇣ .
A de��nition and more detailed discussion of the energy balance and the individual terms will be
presented in section 4.7.

The Messinger model

The ��rst attempt to describe the ice growth process dates back to the pioneering work of Messinger
(1953). Many icing accretion simulation suites, including LEWICE and CANICE, are based on this
model (Özgen and CanIbek, 2009; Wright, 2008; Morency et al., 1999). The approach of Messinger
utilises control volumes and keeps a mass balance. The mass of liquid water in a control volume
changes either by

1. impingement,

2. in��ux from a control volume upstream,

3. freezing,

4. out��ux back to a control volume downstream.

The algorithm starts with the control volume at the stagnation point. Since contribution 2 vanishes,
the only source of water is droplet impingement. The amount of liquid water is determined by
the energy balance described earlier and is assumed to ��ow into the control volume downstream
during the next time step. The ��ux of water is also often referred to by water runback. While this
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approach is successful for the prediction of rime ice Gent et al. (2000) concluded that the Messinger
model is not su���cient for a realistic simulation of the water ��lm and that a more sophisticated
description is required. This is due to the unstable nature of a thin water ��lm which frequently
exhibits features that a control volume approach cannot capture such as ��nger formation. Myers
and Hammond (1999); Myers et al. (2002a,b) developed a model based on lubrication theory and a
dynamic boundary condition between the ice and the water — the Stefan condition.

The Stefan approach

There are two notable developments which extend the Messinger control volume approach. Firstly,
Bourgault et al. (2000a) derived a set of governing equations based on the shallow water system
called Shallow-Water Icing Model (SWIM). This set of equations is derived from the inviscid Euler
equations under the assumption that variations of the solution in the direction perpendicular to the
substrate are negligible. Myers and Hammond (1999) derived a set of partial di�ferential equations
which govern the thin ��lm ��ow of water by reducing the Navier Stokes equations using lubrication
theory. Since the latter approach includes surface tension terms and pressure gradients, phenomena
such as ��nger formation can be described (Schwartz, 1989). However, Myers et al. (2002a) neglect
inertia terms which are modelled in SWIM. These terms are commonly neglected in relatively slow
��ows such as gravity-driven coating applications but whether this assumption holds for aircraft icing
is debatable.

1.2.4 Time stepping

The growing ice layer changes the air ��ow. This needs to be taken into account by recomputing the
air ��ow and updating air ��ow and droplet parameters. Updating the air ��ow solution for a slightly
di�ferent geometry, however, means remeshing the domain. This is computationally expensive and
infeasible if done frequently. Early simulationswere limited to a study of only small accretions, where
the ice layer remains thin and does not alter the geometry signi��cantly. Recent advancements in
computing technologymade remeshing possible. However, adapting the grid is still computationally
expensive and cannot be done frequently, resulting in a discontinuous time evolution of the geometry
(Bourgault et al., 2000b). Recently, Leese (2010) proposed an overlapping grid approach where only
the region of the grid which covers the ice growth needs to be remeshed. This approach worked
well for simple cases such as cylinders but it is di���cult to extend to more complicated shapes such as
multi-component aerofoils.
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1.3 Previous work

In this section, we review the major current generation icing codes and explain which models they
use for the individual modules discussed above.

LEWICE: Developed within the Glenn Research Center, formerly the NASA Lewis Research Cen-
ter, in 1983, LEWICE is the most widely used ice accretion prediction software. Initially,
incompressible panel methods and simple droplet tracking and ice growth models were
employed, however, LEWICE was extended in many ways and is now one of the most com-
prehensive packages (Wright, 1995, 2008; Ru�f and Berkowitz, 1990; Wright and Rutkowski,
1999; Potapczuk et al., 1993; Wright and Potapczuk, 2004). Extensions include: an improved
air ��ow solver using a RANS approach with an algebraic eddy viscosity model developed
by Potapczuk (1989); Potapczuk et al. (1993), and the ability to model super large droplet
dynamics byWright and Potapczuk (2004).

ONERA: The software of O�ce National d’Etudes et de Recherches Aérospatiales (ONERA) is
known as theONERA icing code and is used by Airbus (Bartels et al., 2015) among others.
Similarly to the e�forts by the Glenn Research Center, the ONERA code started with elemen-
tary models. It comprises an inviscid Euler model for the air ��ow, a Lagrangian method for
the collection e���ciency and a classical runback model based onMessinger’s approach.

CANICE: Developed atÉcole PolytechniqueMontreal byorder ofBombardierAerospace (Paraschivoiu
and Saeed, 2001), CANICE uses a simple and e���cient panel methods with the Karman-Tsien
compressibility correction, a Lagrangian droplet approach, andMessinger’s model to deter-
mine runback (Saeed et al., 2001).

FENSAP-ICE: Developed as a commercial package by Newmerical Technologies, it comprises a
RANS solver with a one or two-equation turbulence model for the air ��ow (Beaugendre
et al., 2003), a Eulerian droplet solver (Bourgault et al., 2000b) and an ice growth module
based on the shallow water equations (Bourgault et al., 2000a). Newmerical Technologies
was acquired by ANSYS in 2005 which is now providing FENSAP-ICE.

ICECREMO3: Developedby a collaborative researchpartnership atCran��eldUniversity, ICECREMO
uses Lagrangian droplet tracking on inputs from external aerodynamics solvers. The phase
transition is computed using the thin ��lm approach byMyers et al. (2002a).
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Package Air solver Boundary layer method Droplet solver Water dynamics

LEWICE Panel + compr Integral Lagrangian Messinger
ONERA Euler Mixing length Lagrangian Messinger
CANICE Panel + compr Integral Lagrangian Messinger
FENSAP-ICE RANS RANS Eulerian SWIM
ICECREMO3 RANS RANS Lagrangian Thin ��lm

Table 1.1: Overview of the models used by current generation icing codes

1.4 Conclusions of literature review

In this chapter, we have motivated the need for a robust and accurate methodology to predict ice
accretion in in-��ight conditions. Section 1.1 gives a brief description of the physical phenomena
involved and highlights the challenges concerning numerical prediction.

Subsequently, we have introduced the components of ice accretion simulation packages and
presented commonmodelling choices. A recurring issue is the failure of mesh generation routines
to cope with the complicated geometries arising from the ice layer. The computational mesh is
commonly updated infrequently (Verdin et al., 2009; Cao and Huang, 2014), or only simple icing
bodies are studied (Leese, 2010). The collection e���ciency is computed using Lagrangian or Eulerian
approaches, but in both cases the droplets are assumed to only interact with the air according to the
rigid sphere drag law. There have been extensions to conventional methodologies to account for
SLDs, but most of them are of empirical nature. Recently, a promising novel approach based on
quasi-molecular modelling has been proposed (Abdollahi et al., 2016). However at the moment, it
seems to be too computationally expensive to be integrated into full ice accretion simulations.

Section 1.2.3 introduced the commonly used models for computation of the ice extent. Most
implementations are still based on the approach by Messinger. Recently, more comprehensive
models have been proposed based on the shallowwater equations and thin ��lm theory. Both of these
methodologies, however, make simplifying assumptions which are not yet well studied. Further
investigation is needed to determine the suitability of these models for the integration of full ice
accretion simulations.

1.5 Thesis outline

Chapter 2 addresses the issue of the mesh generation bottleneck commonly found in in-��ight ice
accretion simulations. We present a methodology to compute air and water droplet ��ow based on a
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Cartesian cut-cell routine. This novel approach allows us to study complex geometries while still
providing fast mesh generation. The accuracy of the scheme is assessed by computing the air ��ow
over several aerofoils. Subsequently, the scheme is integrated with an Eulerian droplet solver. Since
this phase poses a challenge for solvers, we give a detailed analysis of the numerical methodology. In
particular, the non-negativity preservation of the scheme is shown analytically. Finally, we validate
the two-phase system by computing collection e���ciencies around a cylinder, a sphere and an aerofoil.
The meshing capability is demonstrated by simulating a showcase study of air and droplet ��ow over
a realistic automotive body.

The second part of chapter 2 extends the model for the air and droplet ��ow giving a novel
approach in the context of in-��ight ice accretion simulations. Although the droplets are stillmodelled
as rigid spheres, we include heat exchange terms in the governing equations. We present validation
cases and assess the performance of our novel model by comparing it and conventional systems with
experimental data. We ��nd that the results of our novel approach agree signi��cantly better with
experimental data than conventional models. Finally, we present results for a multi-element aerofoil
in in-��ight conditions and observe a signi��cant increase in droplet impingement temperatures of up
to 4K.

Chapter 3 provides details about the implementation of the coupling between the air and
droplet ��ow routines, and the thin ��lm solver of chapter 4. Interpolation routines are introduced
and are applied to the transfer of data from the Cartesian cut-cell mesh to the mapped surface grid.
Subsequently, the integral boundary layermethod is described and results are qualitatively compared
with computational data from literature.

The introduction of chapter 4 gives a review of surface ice accretion models. We conclude that
none of the reviewed approaches stands out as the best candidate. The thin ��lm methodology by
Myers et al. (2002a) promises the most accurate results, however, further investigation is required
into inertia terms and the order of truncation of the perturbation expansion. A model which does
not assume an internal equilibrium was proposed by Rothmayer et al. (2002), however, it is not yet
suitable to be used in an integrated ice accretion prediction.

The second part of chapter 4 generalises the thin ��lm model to a more general class of surface
parameterisations and extends the perturbation expansion to consistently include ��rst order terms.
A test case studying a gravity-driven thin ��ow around a cylinder is used to assess the performance of
the extended scheme. We observe signi��cantly more accurate results using the generalised model and
conclude that ��rst order terms play a pivotal part in the dynamics of the thin ��lm. Finally, the heat
��ux computation at the free surface is extended to account for droplet temperatures made available
by the improvements presented in chapter 2.
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Finally, chapter 5 combines the methodologies introduced in chapter 2 – 4 to give a full ice
accretion system. The performance of the ��nal system is assessed by considering established ice
accretion benchmark test cases. Ultimately, the methodology is extended to continuously moving
boundaries.

1.6 Conventions and notation

Throughout this thesis, we try to keep variable names and conventions as consistent as possible.
Some of the conventions appear repeatedly and are used in most chapters.

Einstein summation convention

The Einstein summation convention is used throughout this thesis. Whenever the same index
of a vector or higher rank tensor appears in covariant and contravariant form in the same term, a
summation over this index is implied. Unless otherwise stated, the summation ranges over 1, . . . ,N

for Latin indices, where N is the number of global dimensions, and over 1, . . . ,N � 1 for Greek
indices.

Labelling of quantities

Due to the many phases involved in this problem, some quantities exist for multiple phases. In
general, we reserve upright lower case labels to denote individual phases. ·a refers to air phase
quantities, ·d to droplet variables, ·w to liquid water quantities, and ·i ice variables.

Moreover, · denote quantities on the substrate, ·̄ on the ice-water interface, and ·̃ at the air-water
interface.

States that are assumed to be in��nitely far away, i.e. free stream quantities, carry a ·
1

subscript.
Finally, non-dimensionalised variables are labelled by ·̂.
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Chapter 2

Modelling of water droplet and air flow

The simulation of air and water droplet ��ow around an icing body is an important initial step
towards a complete numerical description of the icing phenomenon. The next step in the process is
the calculation of the collection e���ciency�, which is the ��ux of water onto the geometry and it
describes where and howmuch water impinges onto the icing body. The accurate computation of
temperatures in this process is particularly important as it is an essential quantity in the determination
whether the supercooled water droplets remain liquid or freeze on impact.

2.1 Introduction

Both industry leading icing simulation packages such as LEWICE (Wright, 2008) and FENSAP-ICE
(Bourgault et al., 2000b) and more recent academic research by Jung andMyong (2013) Kim et al.
(2013) and Capizzano and Iuliano (2014) treat the air and the water droplets as independent systems
and the only coupling arises from drag forces which are exerted onto the droplets as they ��ow
through the air. Thereby, keeping the water droplet temperature constant throughout the process.
However, since the droplet temperature upon impingement is a crucial quantity for the process
of freezing, accounting for droplet temperature variation is likely to improve the accuracy of an
ice accretion simulation. To this end, we develop a methodology based on the model by Miura
and Glass (1988), Saito (2002), and Pelanti and LeVeque (2006) which is able to di�ferentiate the
temperature of the air and water droplet phases.

Lagrangian approaches as in Morency et al. (1999) and Al-Khalil et al. (1997), and Eulerian
approaches as developed by Jung andMyong (2013), Bourgault et al. (2000b), and Capizzano and
Iuliano (2014) have been employed to solve the droplet ��ow equations. The equations governing the
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droplet ��ow in an Eulerian frame are called the pressureless Euler equation and a lot of theoretical
research has been done on their mathematical structure. A rigorous and comprehensive analysis
was discussed in Bouchut (1994) and Sheng and Zhang (1999). The analytical solution for these
equations for the Riemann problem can contain vacuum states and numerical methods need to
deal with it robustly. Numerical problems manifesting as negative densities occurring next to steep
gradients or behind shading geometries were reported by LeVeque (2004), and Jung andMyong
(2013). We will address this issue by showing that our numerical method, provided that the common
CFL condition is met, is non-negativity preserving.

An integral part of the calculation is the representation of the icing body in discrete space, i.e.
the mesh generation around the aerodynamic body. Mesh generation approaches include boundary
conforming grids (da Silveira andMaliska, 2001; Al-Khalil et al., 1997;Morency et al., 1999; Bourgault
et al., 2000b; Kim et al., 2013; Jung andMyong, 2013) and unstructuredmeshes (Batina, 1990; Abgrall,
1994).

Cartesian cut-cell techniques have gained popularity (Klein et al., 2009; Gokhale et al., 2018;
Berger and Aftosmis, 2012; Colella et al., 2006) due to the relative ease with which good quality
meshes are generated. These techniques promise low computational cost and straightforward
parallelisation even for very complex geometries. Properties like that make the cut-cell approach a
promising candidate for icing simulations in which the unpredictable geometry movement poses
a particular challenge to mesh generation algorithms. Recently an immersed boundary method
which is also based on a Cartesian mesh and shares many of the favourable properties with cut-cell
methods has been applied to water droplet ��ow by Capizzano and Iuliano (2014).

Using the cut-cell methodology, the mesh away from the solid body remains rectangular, while
cells of arbitrary shape and size are generated at the intersection of the solid body with the regular
Cartesian mesh. Various numerical methodologies have been developed for the solution of the ��uid
��ow equations at these irregular cells (Klein et al., 2009; Gokhale et al., 2018; Aftosmis et al., 2000;
Hartmann et al., 2008) but the solution of the droplet ��ow equations, and the implementation of
their boundary conditions has yet to be addressed. Key quantities for the icing process are extracted
at the solid boundary which is discretised by the irregular cut-cells. An assessment of the quality of
the solution of our proposed formulation is an essential part of this chapter.

2.1.1 Outline of this chapter

The remainder of this chapter is structured as follows: In section 2.2 the set of equations is introduced
which governs collection e���ciency and allows tracking of droplet temperatures. The employed
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model was used to study collection e���ciencies in the author’s Masters thesis (Wutschitz, 2014). For
this reason, we only give a brief summary of the equations. However, substantial improvements were
made to the numerical methods and solvers compared to the previous work and only novel results
are presented in this chapter. An improved cut-cell method is used which is brie��y summarised
in section 2.3. This section also contains a discussion addressing the non-negativity preservation
property of the method and introduces a modi��ed ��ux stabilisation for the droplet phase. The
proposed methodology is validated by comparing against experimental data and other numerical
simulations in section 2.4. Finally, in section 2.5.2 a for ice accretion relevant case study is presented
highlighting the capabilities of this formulation.

2.2 Mathematical models

The governing equations are based on the conservation of mass, momentum and energy of the
air and the droplets. The droplets are sparse in the domain hence interaction between one with
one another is neglected. The diameter of supercooled water droplets found in icing situation are
typically of the order of 10µm. Due to the high curvature of the air-water interface it is assumed
that surface tension forces keep the droplets spherical. Hence, we model them as rigid spheres with
constant microscopic density ⇢d. The particulate phase is coupled with the carrier phase by heat and
momentum exchange. The interaction between the droplets and the air is described in section 2.2.2
and depends non-linearly on the droplet diameter. Typically, a distribution of droplet diameters is
found in icing situations. In order to represent varying sizes, we divide the distribution into S bins.
A representative diameter d

s
is associated with every group and has its own set of equations1.

1Throughout this article the index ·
s
is used to label a droplet quantity with diameter d

s
. For the sake of brevity

equations are not repeated for di�ferent droplet diameters.
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2.2.1 Governing equations

Based on the assumptions presented in the previous subsection Saito (2002) proposed the following
governing equations:
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where ⇢ is the density, v the velocity, p the pressure, E the total energy per unit volume, D
s
the

momentum exchange term for droplets with diameter d
s
and Q

s
the heat exchange term. The

heat and the momentum exchange functions only depend on the relative velocities�v
s
= v

s
� va

and temperatures �T
s
= T

s
� Ta. The subscript ·a denotes the air phase and the index ·

s
the

droplet phase with droplet diameter d
s
where s = 1, . . . , S . ↵ is the volume fraction occupied by

the indicated phase. Consistency requires

↵a+
X

s

↵
s
= 1 . (2.2)

For every phase, the total energy E is related to speci��c internal energy e and temperature T by

E = ⇢
Å1

2
v2+ e

ã
, e = cvT , (2.3)

where cv is the heat capacity at constant volume and assumed to remain constant. The set of
governing equations (2.1) can be decomposed into a system of conservation laws for the gas and the
droplet phase:

@
t
ua+ri

f i

a (ua) = Sa(ua, u
s
) , (2.4a)

@
t
u

s
+r

i
f i

d (us
) = S

s
(ua, u

s
) , (2.4b)

20



2.2. Mathematical models

where u are the state vectors, f the ��ux functions and S the source terms and are given by
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The homogeneous parts of the phases are independent of each other. The interaction between the
phases is explicitly modelled by source terms which are integrated by means of operator splitting.
This decomposition allows us to treat the homogeneous portion e�fectively as a single-phase ��ow. In
the remainder of this section the individual components of the governing equations are discussed.

2.2.2 Coupling terms

The source terms S model the coupling between the droplet and the carrier phases. Since

Sa+
X

s

S
s
= 0 , (2.6)

total mass, momentum and energy are conserved. Two means of interaction are modelled: heat
exchange and momentum exchange.

Droplet drag law

Aerodynamic drag governs the momentum exchange between the droplets and the carrier phase
and is given by

D
s
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s
, (2.7)

where CD the drag coe���cient. The drag Ds respects the natural limits. It vanishes in mechanical
equilibrium of the two phases i.e. �v

s
= 0 and is symmetric about the origin. The Reynolds

number Re is de��ned as the ratio of inertial forces to viscous forces. For an air ��ow around a particle
of diameter d

s
, Re

s
is given by
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k�v

s
kd

s
⇢a

µa
, (2.8)
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whereµa is the dynamic viscosity of air. Throughout this work we assume thatµa is constant. Since
the droplet diameter are small the forces are dominated by surface tension which suggests we can
assume that the droplet surface is approximately minimal. Hence, the drag coe���cient CD of a rigid
sphere is used. An empirical relation for the drag coe���cient of a rigid sphere in a viscous ��uid with
a no-slip boundary condition is given by

CD(Re) =

8
<
:

24
Re

�
1+ 0.15 Re0.687� Re< 1300

0.4 Re� 1300
. (2.9)

This expression is only valid for approximately Re < 105. Beyond this threshold a transition to
turbulent ��ow occurs. However, Leese (2010) argued that even for large droplets (on the order of
d = 100µm) and fast ��ows (on the order of k�vk= 100ms�1) the Reynolds number does not
exceed 105. For even larger droplets the minimal surface assumption breaks down and other e�fects
such as droplet break-up and splashing need to be modelled which are beyond the scope of this
work.

Heat transfer

The heat transfer function is given by

Q
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whereNu
s
is theNusselt number and ka the thermal conductivity of air. Similarly to the droplet drag

law in the previous section, the heat transfer function is odd and vanishes in thermal equilibrium.
The energy exchange is expressed in terms of the Nusselt number which is de��ned by the ratio of
convective heat transfer and conductive heat transfer and is given by

Nu
s
=

h d
s

ka
, (2.11)

where h is the convective heat transfer coe���cient with dimensions of power over area. Knudsen
and Katz (1958) reviewed empirical relations for the Nusselt number for the forced heat convection
of spheres. An over a wide range of Reynolds numbers applicable relation is given by
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where Pr is the Prandtl number which is de��ned as the ratio of viscous di�fusion and thermal
di�fusion and is given by

Pr=
cpaµa

ka
, (2.13)

where cpa is the speci��c heat capacity of air at constant pressure and assumed to be constant.

2.2.3 Homogeneous equations

Having discussed the coupling terms, we now turn to the homogeneous part of the equations. The
air is modelled as an ideal gas. Hence, the closure relation is given by

pa = ea(�a� 1)⇢a , (2.14)

where �a is the ratio of speci��c heats of the gaseous phase and assumed to be constant.

Droplet flow

The governing equations for the droplet ��ow as they are given in the multi-phase model (2.1) are
the Eulerian equivalent to particle tracking and are commonly referred to as the pressureless Euler
equations. In one-dimensional quasi-linear form they read
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The Jacobian of the ��ux function only has one distinct eigenvalues v and lacks a set of eigenvectors
that spans the full solutions space. Therefore, the system is weakly hyperbolic and the standard
theory of obtaining wave solutions does no longer apply. However, a measure valued solution
based on a generalised Rankine Hugoniot condition can be formulated. A derivation using this
approach in rigorous detail is given by Sheng and Zhang (1999). In conclusion, the degeneracy of the
eigenvalues allows vacuum states and delta waves as solutions and makes the system di���cult to solve
robustly in an Eulerian frame. Appropriate numerical methods are required which we introduce in
the next section.
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2.3 Numerical methods

The conserved nature of the homogeneous governing equations suggests a ��nite volume scheme.
Throughout this thesis, we solve these equations using the high-resolution Monotonic Upwind
Scheme for Conservation Laws (MUSCL)Hancock ��uxmethodwith an exact Riemann solver. This
method adaptively chooses the order of reconstruction, thereby suppressing spurious oscillations
of second order methods around discontinuities while reducing the error by using a second order
reconstruction in regions of a smooth solution. Methods of higher order than two require stencil
sizes of more than ��ve cells which is incompatible with the employed cut-cell methods and is
topic of ongoing research. Riemann problem based methods are generally more accurate, albeit,
computationallymore expensive. Very e���cientRiemann solvers exist for the ideal gas Euler equations
and for the droplet phase even a closed form solution exists. Therefore, we decided not to use centred
methods and instead rely on Riemann problem based ��ux methods. Here we only introduce the
novel aspects of the stabilisation methodology required by the cut-cell space discretisation and the
solution strategy for the coupling terms. More details about the implementation of Riemann solvers
and its application for the ideal gas and pressureless Euler equations can be found in Wutschitz
(2014); Wutschitz and Nikiforakis (2016); Toro (2009).

2.3.1 Non-negativity preservation

Droplet concentration may vanish in regions of the computational domain e.g. when the ��ow
is shaded by the solid geometry. This behaviour poses a di���culty to Eulerian solvers since they
have to deal robustly with vacuum states and arbitrarily small droplet concentrations. Numerical
problems arising from vacuum states manifesting as negative densities were reported by LeVeque
(2004) and Jung andMyong (2013). LeVeque corrected this shortcoming of Eulerian methods by
checking for negative densities and replacing them with a ��xed value of 10�20 after every time step.
This approach violates conservation of mass, albeit, to negligible orders for practical applications.
Jung andMyong (2013) proposed a modi��cation to the governing equations. They introduced a
perturbation which renders the system strictly hyperbolic and resembles the shallowwater equations
for which positivity preserving solvers exist. Subsequently, the perturbationwas corrected in a source
routine. Unfortunately, no claims about the positivity preservation properties of the source solver
were made.

The use of an appropriate method eliminates the requirement of perturbing the original system.
To this end, we show that the Godunov method with an exact Riemann solver is non-negativity
preserving. This result can be used to devise a non-negativity preserving high resolution method.

24



2.3. Numerical methods

Perthame and Shu (1996) construct a non-negativity preserving high order method provided a
non-negativity preserving ��rst order scheme exists.

The non-negativity of the density can be shown by extending the analysis by Einfeldt et al. (1991).
We use the exact solution to the Riemann problem for the pressureless Euler equations derived by
Bouchut (1994). He solves the equations by interpreting the mass m as a measure. The update
formula for the Godunov method for a computational cellC then becomes

⇢n+1 =
1
|C |

m
n+1(C ) , (2.16)

where the measure is de��ned as

m
n+1(C ) :=
Z

C

⇢(t n+1, x)d x , (2.17)

where ⇢ is the solution sampled at t
n+1 to the Riemann problems at the interfaces of the piecewise

constant data at t
n . The density ⇢ is non-negative ⇢n+1

� 0 which implies that the Godunov
method is non-negativity preserving.

2.3.2 Boundary conditions

The choice of boundary condition is crucial for accurate steady state solutions in a transient frame-
work. We will discuss the boundary conditions for the domain edges and the icing body in the next
two sections.

Computational domain boundary conditions

The free ��ow variables in��nitely far away are denoted by the superscript ·1. Since the homogeneous
system can be decomposed into two subsystems, we can discuss the boundary conditions indepen-
dently for each phase. The air phase is typically in a subsonic state whereas the droplet phase is always
supersonic. In subsonic conditions characteristics travel up and down stream and therefore informa-
tion leaves the domain at the in��ow boundary. In order to represent this behaviour numerically, we
need to extrapolate values from the domain. One solution of the characteristic equations for the air
phase is that entropy is constant along non-linear waves (LeVeque, 2002). Therefore, the entropy
is an obvious choice of a variable to specify at the in��ow boundary. For the remaining quantities
we follow the work by Jameson et al. (1981) and specify momentum at the in��ow boundary and
pressure at the out��ow boundary. The other air phase variables are extrapolated from the domain.
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The droplet phase is always supersonic, therefore, all state variables are speci��ed at in��ow
boundaries and extrapolated from the domain at out��ow boundaries. At in��ow boundaries, the
droplet density is de��ned by the LWC and the remaining state variables are obtained by assuming
velocity and temperature equilibria between the phases.

Semi-reflective boundary condition for collection efficiencies

Similarly to the domain boundaries, we can consider each phase independently at the ��uid-solid
interface. A no-penetration condition is imposed for the air ��ow, which is given by

va · n̂= 0 , (2.18)

where n̂ is the outward pointing unit normal vector to the surface.
In order to represent the impingement of droplets, they must be able to leave the computational

domain, which suggests transmissive conditions at the ��uid-solid interface. However, transmissive
conditions also allow unphysical high particle concentration to enter the domain from the geometry.
Therefore, we need to apply a ��x to prevent the droplet concentration rising. We achieve that by
distinguishing between two cases and applying di�ferent conditions. If v

s
· n̂ < 0, characteristics

leave the domain and transmissive boundary conditions are applied. In this case, all droplet phase
quantities are extrapolated from the computational domain to the ghost cells. On the other hand, if
v

s
·n̂� 0, characteristics travel into the domain andweneed to de��ne the ghost state tomaintainwell-

posedness. This is done by imposing a vacuum state which prevents the droplet concentration from
rising. Mathematically, this is equivalent to re��ective boundary conditions. Re��ective boundary
conditions combined with the condition of characteristics entering the domain give a vacuum state
as a solution to the boundary Riemann problem (see (Wutschitz and Nikiforakis, 2016; Sheng and
Zhang, 1999) for more details about the Riemann problem solutions). This type of boundary
condition was used by da Silveira et al. (2003), Kim et al. (2013) andWutschitz (2014) to compute
the non-dimensional collection e���ciency �̃ by
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2.3.3 Cut-cell method

The cut-cell approach employed in this work is based on a Cartesian mesh which can be generated
e���ciently. This approach, however, gives rise to cut-cells that contain both solid and ��uid at the
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boundary of the geometry which need special treatment when updating their values. Klein, Bates,
and Nikiforakis (2009) circumvented the problem by introducing a stabilised ��ux which extends
the domain of in��uence of the small cell to its neighbours. For the sake of brevity, we will refer to a
��ux which is stabilised using this method as KBN ��ux. The stabilisation is based on the shape of
the cut-cell. In particular, volume and face fractions are required to de��ne the KBN ��ux and the
cell updates. In this work we employ an approach that de��nes the cut-cell geometry parameters in
terms of a signed distance function (SDF). For performance reasons, we approximate the geometry
by a polygon. Highly optimised signed distance algorithms exist (Roosing et al., 2018; Mauch, 2003).
Details about the polygonisation of the parameterised surface are given in appendix A. Furthermore,
implementation details for the cut-cell geometry computation from the SDF are given in Barton
et al. (2011) and Gokhale et al. (2018).

Gokhale et al. (2018) extended the KBN approach by taking into account local wave speeds.
Their Localised Proportional Flux Stabilisation (LPFS) approach relaxes the stabilisation criterion if
the local wave speed allows a larger update. Detailed comparisons of the two methods for dry air
��ows over aerofoils were carried out by Gokhale et al. (2018). They found that the LPFS method
performs signi��cantly better near stagnation points. Since capturing the stagnation point ��ow
accurately is essential for ice accretion simulation, we base our implementation on the LPFSmethod.
The stabilised ��ux F LPFS is given by an area and wave speed weighted linear combination of the
conventional ��ux and the ��ux obtained at the domain boundary. Figure 2.1 depicts a typical cut-
cell situation, where a regular ��uid cellC

i
is situated next to a cut-cellC

i+1 which is bordering a
boundary ghost cellC

i+2. In this case the LPFS ��ux is given by

F LPFS
i+ 1

2
=
⇣
1� (1� �̂

i+1)
2
⌘

F
i+ 1

2
+ (1� �̂

i+1)
2F

i+ 3
2

. (2.20)

The ratio of the global to the local stable time step of cellC
i
is denoted by �̂
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and is given by
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where max |�
i
| is the maximumwave speed of cellC

i
. Consequently, the ��nite volume update

scheme for a cut-cell becomes
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Figure 2.1: Cut-cell geometry

This method is consistent with the update scheme of a regular cell since equation (2.20) recovers
the regular ��ux F

i+ 1
2
as ↵

i+1 ! 1 and F
i+ 3

2
as ↵

i+1 ! 0. The boundary ��ux F
i+ 3

2
is obtained

by solving the Riemann problem of the cut-cellC
i+1 and the ghost cellCi+2 with the Godunov

method. The ghost cell state is obtained by the boundary condition. In multiple dimensions it is
important to keep this state constant throughout the global time step and not to apply the boundary
condition after a one-dimensional sweep. Otherwise unphysical directionalities may be introduced
or conservation may be lost.

In the remainder of this section we focus on the implications of using the LPFS stabilisation to
solve the dusty gas model. Details about the general LPFS implementation are omitted and can be
found in Gokhale et al. (2018).

Non-negativity preservation in the presence of cut-cells

The boundary ��ux F
i+ 3

2
is obtained by solving a boundary Riemann problem and for most cut-cell

applications the boundary condition is a re��ective wall. In such a case, the advective ��ux vanishes
and the analysis from section 2.3.1 holds true for the stabilised update from equation (2.22) rendering
the cut-cell update non-negativity preserving. However, the non-negativity preservation argument
from section 2.3.1 does not generalise to a semi-re��ective boundary condition on an irregular grid.
The following example demonstrates this problem.

Consider a setup as illustrated in ��gure 2.1 where a regular cell is next to a cut-cell which is to the
left of the boundary. For the sake of brevity, we only consider the droplet phase. The ghost cell state
is obtained by using transmissive boundary conditions which extrapolate all state variables from the
computational domain to the ghost cell. Moreover, we assume the initial conditions are chosen
such that they are represented by ��gure 2.2 i.e. v

i�1 < v
i
< 0< v

i+1.

28



2.3. Numerical methods

v
i�1 v

i
v

i
v

i+1 v
i+1

x
i�

1
2

x
i+ 1

2
x

i+ 3
2

t

x

Figure 2.2: A wave solution for the Riemann problem of the pressureless Euler equations. A cut-cell is
bordering a regular cell and the ghost state is extrapolated using a transmissive boundary condition.

In this case, the update formula of density for a cut-cell gives
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Given a CFL condition of CCFL  1/2, the density is guaranteed to remain non-negative.

However, the situation for the neighbouring cell is di�ferent. The update formula for density
for the cell next to the cut-cell becomes
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(2.24)

Compared to the update of a regular cell we have gained a term which arises from the extension of
in�uence of the cut-cell. This term depends only on quantities of cellC

i+1. We can choose them
freely and they will not a�fect the way the update for cellC

i
is computed as long as v

i+1 > 0. The
ratio �̂

i+1 depends only on v
i+1, hence, we can choose ⇢

i+1 su���ciently large such that the ��ux
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Chapter 2. Modelling of water droplet and air ��ow

contribution from the cut-cellC
i+1 is large enough to produce a negative density in the updated

state.

This problem can be recti��ed by exploiting the structure of the wave solution of the Riemann
problem for the pressureless Euler equations. The sampled ��ux at the interface x

i+ 3
2
is either u

i+1

for outgoing droplets or uvac for incoming. We consider ��rst the case of outgoing waves. Since the
pressureless ��ow is always supersonic no information travels upstream and therefore no stabilisation
is required. Hence, we can set �̂= 1 and recover non-negativity preservation. By de��nition of the
semi-re��ective boundary condition, incoming characteristics are always vacuum states. Plugging
a vacuum state into equation (2.24), we can see that the last term vanishes and non-negativity
preservation is maintained.

In summary, we can recover non-negativity preservation of the stabilised pressureless ��ux for
a semi-re��ective boundary condition by altering the stabilisation parameter �̂ for outgoing waves
without sacri��cing stability. This method shows greatly increased robustness over the approach in
Wutschitz (2014).

2.3.4 Source terms

The source and homogeneous parts of the system (2.1) are solved subsequently using an operator
splitting approach proposed by Strang (1968). Given a time step�t , the splitting method initially
advances the source problem by half the time step�t/2, followed by the homogeneous problem by
a full time step�t , and ��nally the source problem by another half time step�t/2.

The source problem takes the form of an ordinary di�ferential equation (ODE) given by

d u
d t
= SQ+ SD , (2.25)

and consists of two non-linear terms SQ, which represents the heat coupling, and SD which denotes
the drag coupling term. The non-linear terms are given by
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0
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2.3. Numerical methods

The source problem is advanced by ��rst solving the drag coupling and subsequently the heat coupling
ODE. This sequence can be thought of as another application of an operator splitting approach.

Since the governing equations are a system of ODEs the stability restriction of an explicit
numerical solver does not depend on the cell size. This can have a problematic e�fect when solving
the equations on a grid with adaptive mesh re��nement (AMR) since di�ferent re��nement levels are
advanced at di�ferent time steps. Indeed, we have found that larger time steps arising from coarse
base grids violate the stability restrictions of most explicit ODE solvers. However, analytic solutions
of the ODEs are available thereby completely removing the need for a numerical solver.

Drag coupling

The drag coupling ODE consists of a momentum source term and an energy update. However, it is
su���cient to ��nd a solution for the momentum component since @

t
e

s
= 0 which means that the

energy update only re��ects the change in kinetic energy. Under the assumption that the Reynolds
number remains constant throughout the time step an analytic solution for themomentumequation
was derived by Pelanti and LeVeque (2006), which reads:
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where the superscript ·0 labels initial values and the following substitutions were made for the
harmonic sum of the densities and the coe���cients of the drag force (2.7)
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Heat coupling

Similarly, Pelanti and LeVeque (2006) derived an analytical solution for the heat coupling ODE
which is given by
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Chapter 2. Modelling of water droplet and air ��ow

2.3.5 Adaptive mesh refinement

Ahierarchical adaptivemesh re��nement (H-AMR)methodology, where patches of higher resolution
exist above coarser levels, is used in this work. Restriction operators then project the high-resolution
solution onto the lower levels. This allows capture of the solution in high accuracy in regions of
interest and increases e���ciency in the remaining part of the domain. This approach was originally
presented by Berger and Colella (1989) and Bell et al. (1994).

2.4 Validation

In this section, we present test cases to validate our implementation of the cut-cell algorithm and the
air andwater dropletRiemann solver. Firstly, the solver is validated by considering a one-dimensional
shock tube test. The results obtained are compared against data published by Saito (2002) andPelanti
andLeVeque (2006)who use these equations tomodel volcanic eruptions. Following this, the ��owof
air and water droplets over a NACA 0012 aerofoil is considered. The numerically obtained collection
e���ciency is compared to numerical results by Al-Khalil et al. (1997) who used the LEWICE software
suite and by Morency et al. (1999) who employed the CANICE package. More comprehensive
validation studies of our implementation of the reduced Eulerian droplet ��ow model (without
temperature tracking) and the cut-cell method for external aerodynamic problems were presented
byWutschitz and Nikiforakis (2016).

2.4.1 Validation of air and droplet coupling

The implementation of the analytic source term solvers is validated using a numerical shock tube
experiment. The problem was initially described by Saito (2002) and results for this test were also
published by Pelanti and LeVeque (2006). The initial condition consists of a Riemann problem.
A high pressure and high density ideal gas section is separated from a particle laden gas at a resting
reference state with a reference velocity vref of

p
pref/⇢ref. The particles are n mechanical and

thermal equilibrium with the carrier phase. A physically negligible small droplet concentration
is introduced in the driver section for numerical robustness reasons. The initial conditions with
respect to a reference state are given in table 2.1.

We chose the carrier phase to be air with the reference state being at atmospheric conditions.
The particles represent crown glass with a density ⇢d = 2500kgm�3 and a droplet diameter of
d = 10µm. All of the results are presented in a normalised form relative to the reference state. A
characteristic length� is givenby 4

3
⇢d
⇢ref

d and a characteristic time⌧ by �
uref

. Also, thenon-dimensional
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2.4. Validation

driver section driven section

macroscopic pressure ↵a p/pref 10 1
macroscopic air density ↵a⇢a/⇢ref 10 1

macroscopic particle density ↵d⇢d/⇢ref 1/10000 1
air velocity va/vref 0 0

particle velocity vd/vref 0 0
air temperature Ta/Tref 1 1

particle temperature Td/Tref 1 1

Table 2.1: Initial conditions for Saito’s shock tube experiment for the dusty gas model

heat capacities of the particles and the gas are assumed to be equal and are given by 1
��1 . Saito (2002)

employs a temperature dependent viscosity relation and heat transfer coe���cient. In order to compare
our implementation to his data we use the same expressions for this test case. The results presented
in the rest of the chapter were obtained using a constant viscosity and heat transfer coe���cient. The
physical domain [0,100�] is discretised using 1000 computational cells. The membrane is located
at 40� and separates the driver section on the left hand side from the driven section on the right
hand side.
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Figure 2.3: Saito’s test for the full particle and gas model at t = 30⌧

The results of the numerical experiment are illustrated in ��gure 2.3. The graphs compare density,
velocity, pressure and temperature of a pure ideal gas with a ��uid containing particles. In the absence
of dust particles, the Riemann problem for the pure gas can be solved exactly and the solution is
plotted. The dusty gas solution was obtained using the MUSCL Hancock ��ux method with an
exact Riemann solver. The results are taken after the initial condition has been advanced by 30⌧.

The driver section transfers heat and momentum to the particles in the driven section. Con-
sequently, the maximum velocity and temperatures are smaller compared to the pure gas case.
However, the pressure is higher since the particles hinder the relaxation process. Pelanti and LeVeque
(2006) observed slight oscillations in the temperature quantity which they attributed to the second
order reconstruction of the ��ux method. We ��nd similar oscillations around the contact wave.
Those oscillations are not present in conserved quantities. Overall, our results agree very well with
the data published by Saito (2002) and Pelanti and LeVeque (2006). Therefore, we consider the
implementation of the analytic solver of the source problem to be correct.
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2.4.2 Validation of collection efficiency boundary condition

One of the reasons for using the LPFS cut-cell method byGokhale et al. (2018) over the KBNmethod
(Klein et al., 2009) is the improved performance near stagnation points. Detailed validation of the
methodwas carried out byGokhale et al. (2018). Thenumerical resultswere compared to experiments
by Amick (1950) for dry air ��ows over aerofoils. We consider this validation comprehensive for our
applications and do not repeat dry air ��ow validation.

However, the numerical performance of the LPFS method in the presence of water droplets
is still to be assessed. We are mainly interested in the modi��cation to the ��ux stabilisation for the
droplet phase for computing collection e���ciencies. To this end, we compare the results of our
numerical experiments to data from literature.

Morency et al. (1999) has studied the collection e���ciency of a NACA 0012 aerofoil in typical
icing conditions. They use the CANICE software which employs a Lagrangian approach to solve
the droplet equations. A ��ow of Mach number 0.14 around an aerofoil of chord length 0.9144m
was considered. The free stream temperature was set to 265.55K and the free stream pressure to
94540Pa. Morency et al. (1999) models the droplet distribution with a Log-normal distribution.
The underlying Gaussian has parameters µ = 0 and � = 0.119 about MVD = 20µm. The
discretisation of the model is given in table 2.2. The water droplet concentration of the free stream
is 0.78gm�3

d
s
/MVD

Bin s Weight Log-normal Langmuir D

1 0.05 0.792 0.31
2 0.10 0.859 0.52
3 0.20 0.923 0.71
4 0.30 1.000 1.00
5 0.20 1.083 1.37
6 0.10 1.164 1.74
7 0.05 1.262 2.22

Table 2.2: Discretisation of the model for the droplet diameter distribution. Two commonly used models are
the Langmuir D distribution which is based on a � -distribution (Langmuir and Suits, 1961) and a
Log-normal distribution.
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Figure 2.4: Non-dimensionalised collection e���ciency �̂ for a NACA 0012 aerofoil over the surface distance
from the stagnation point. Two di�ferent models for the droplet diameter are used and both agree
very well with results from literature.

The results are illustrated in ��gure 2.4a. The agreement around the peak collection is excellent.
However, the extent of the droplet impingement is slightly larger for our results. Nevertheless,
given that the results were obtained using two signi��cantly di�ferent methodologies we consider the
agreement to be satisfactorily.

The second test uses a Langmuir D distribution (Langmuir and Suits, 1961) of a median value
diameter (MVD) of 20µm to model the droplet diameters. The discretisation of distribution is
given in table 2.2 The collection e���ciency for this case has been numerically studied by Al-Khalil
et al. (1997) using the LEWICE software suite which employs a Lagrangian method to calculate
�. The results of our numerical experiments of the NACA 0012 aerofoil are illustrated in ��gure
2.4b. Contrary to the previous test case, the two simulations match for the extent of water droplet
impingement, whereas, the peak collection is slightly higher in our simulation. Overall, we still
consider the solution to show good agreement.

Both plots also illustrate the correct physical behaviour of the semi-re��ective boundary condition.
If characteristics enter the domain from the icing body (i.e. v

s
· n̂ > 0), the re��ective condition

creates a vacuum state which can be seen as a vanishing collection e���ciency in those regions.

In summary, we conclude that the modi��cation for the ��ux stabilisation of the droplet phase is
able to predict accurate collection e���ciencies of two-dimensional aerofoil geometries. None of the
simulations showed non-physical states such as negative densities and handled the test cases robustly.

36



2.4. Validation

Three-dimensional droplet flow over a sphere

The third test case demonstrates the method’s capability to model three-dimensional ��ow. As
mentioned earlier, one of the advantages of describing the droplet phase in the Eulerian frame is
the easy extension to three-dimensional problems. The air ��ow is modelled by the inviscid Euler
equations. The initial conditions are irrotational and due to Kelvin’s circulation theorem rotational
��ow as found in boundary layers cannot be modelled.

(a) Illustration of the simulation setup for the air and
droplet ��ow around a sphere. The slice in the xy-
plane shows the water concentration and the x z-
plane the mesh. Only the two ��nest AMR levels
are shown. The re��nement criteria is based on the
droplet concentration.
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(b) Non-dimensionalised collection e���ciency �̂ for a
sphere. The horizontal axis s denotes the surface
distance from the stagnation point in a slice perpen-
dicular to (0,�1,1) and intercepting the origin of
the sphere.

Figure 2.5: Flow of air and droplets around a sphere.

This setup replicates the validation test by Bourgault et al. (2000b). A sphere of diameter
0.1504m in a ��ow of Mach number 0.22 and a Reynolds number of 785,000 is considered. A
droplet phase of a single diameter of 18.6µm is introduced. AMR is used to re��ne regions of higher
droplet concentration and around the geometry.

The results are shown in ��gure 2.5. The data obtained by the cut-cell implementation agrees
very well with published collection e���ciency results. Both the peak catch as well as the extent of
droplet impingement are captured accurately.
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Figure 2.6: This illustration compares water droplet temperatures of the conventional pressureless model, our
new augmentedmodel and experimental results. Water droplets are released and their temperature
is measured after they travelled for 100cm. The horizontal axis denotes the temperature of the
droplets when they are released and the vertical axis the temperature after they interacted with the
ambient air. If the water droplet temperature is close to the ambient air temperature both models
give accurate results, however, as the water droplet and air temperature diverge heat exchange
needs to be taken into account. At larger temperature di�ferences, only the methodology that
models energy transfer agrees with experimental results.
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2.4.3 Validation of heat exchange modelling

The heat exchange terms are validated by comparing the numerical results to experiments done by
Li et al. (2015). The experimental setup is as follows. Water droplets of a diameter of 450µm are
generated using a piezoelectric device. The water is sourced from a tank which is kept at a lower
temperature Tt than the ambient air. The water droplets are released with an initial velocity of
2.01ms�1. The water droplet temperature T is measured at a distance of 100cm from the source.
The air temperature Ta is kept constant at 293.15K.

Li et al. carried out the experiment at various water tank temperatures Tt between 284.15K
and 291.15K and the results are shown in as blue error bars in ��gure 2.6. We have reconstructed
this setup by considering a one-dimensional simulation. The domain size is 200cm divided into
201 cells to make the coordinate 100cm a cell centre. The standard physical parameters were used
which are denoted in table 2.3

Quantity Symbol Value

Dynamic air viscosity µa 1.725⇥ 10�5 Pa
Thermal air conductivity ka 2.428⇥ 10�2 Wm�1 K

Droplet heat capacity cd 4192 Jkg�1

Table 2.3: Values for physical constants for the air and water droplet simulations.

At the left hand side, a subsonic-air-supersonic-droplet boundary condition is imposed which
consists of atmospheric conditions with a temperature of Ta and vanishing velocity for the air phase.
The droplet phase velocity is set to 2.01ms�1 and the temperature toTt. A high-resolutionMUSCL
Hancock ��ux method with a van Leer type limiter and an exact Riemann solver was used. The
simulation was run until a steady state was reached. The result of this simulation is illustrated in
��gure 2.6 as orange data points.

In general, we observe excellent agreement between the experimental data and results obtained
using ourmethodologywhich takes heat transfer into account. We have also plotted the conventional
model (without heat exchange) as green symbols. As the droplets are near temperature equilibrium
with the air phase both the model with and without heat exchange gives accurate answers, however,
as the temperature di�ference increases only the our model captures temperatures accurately. We
therefore conclude that the augmented pressureless model with heat exchange is able to give accurate
results over a wider range of situations.
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2.5 Case studies

Following the successful validation of the numerical method and veri��cation of the mathematical
model we turn to the study of the temperature of the droplet phase and collection e���ciencies. In
this section, we present three case studies which demonstrate the capability of recovering droplet
temperatures and the robustness of the cut-cell mesh generation.

2.5.1 Droplet temperature dependence on free-stream Mach number and angle of attack

As mentioned earlier we are not aware of an icing simulation that describes the droplet phase with a
model other than the pressureless equations which implies that the system of droplets remains at its
initial temperature. This, however, is only true in the case of single phase particulate ��ow where the
only sources of temperature changes are compressibility e�fects which are particularly prominent at
the stagnation point. In icing conditions two aspects of the ��ow a�fect the scale of the heat exchange.
Firstly, the maximum temperature of the carrier phase and secondly the extent of the region of high
air temperature. The former contribution is expressed in terms of the Mach number of the ��ow. In
general, the temperature of a resting ideal gas, which has gotten to that state by an adiabatic change,
is called the total temperature Ttot. At a stagnation point, all of the kinetic energy of the gas has
transformed into internal energy and we observe a higher gas temperature. The explicit function for
the total air temperature (Anderson, 2011) is given by

Ttot = T
1

Å
1+
� � 1

2
Ma2
ã

. (2.31)

Secondly, the extent of high air temperature depends on the shape of the solid geometry. A stagnation
point of low surface curvature causes a greater de��ection of streamlines and consequently a greater
extent of decelerated ��ow. This gives the droplet phase more time to interact with the air phase and
results in higher droplet temperatures. In the context of ice accretion prediction this is especially
prevalent during take o�fs and landings. In these stages of the ��ight high angle of attack ��ows are
common where the stagnation point moves from the leading edge of the aerofoil towards a ��atter
part of the wing. Hence, we expect the maximum droplet temperature to increase with the angle of
attack.
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(c) Droplet temperatures at stagnation points for vary-
ing angles of attack andMach number of 0.25
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(d) Droplet temperatures at stagnation points for vary-
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Figure 2.7: Surface temperatures of air and impinging water droplets at the stagnation point. The top two
sub��gures compare the maximum air temperature observed in the simulation to the analytical pre-
diction. Whereas the illustrations at the bottom depict the temperature of the water droplets. The
results for the dispersed phase demonstrate the e�fects of the heat exchange term. A temperature
increase is observed if heat exchange terms are considered. On the other hand, the conventional
pressureless or isothermal model produce constant droplet temperatures.

In order to demonstrate this behaviour, we study the air and droplet ��ow with a free stream
pressure of 94540Pa and a free stream temperature of 265.55K around a NACA 0012 aerofoil.
Figure 2.7 depicts the outcome of the simulations. Sub��gures 2.7a and 2.7c show the results for the
air and droplet temperatures and the stagnation point for varying angle of attacks and a constant
Mach number of 0.25. The sub��gures on the right hand side (2.7b and 2.7d) present the outcome of
the simulation for varying Mach numbers at zero angle of attack.

The air phase stagnation point temperatures (��gure 2.7a and b) are known analytically (see
equation (2.31)). The theoretical predictions are plotted alongside the numerical results of the

41



Chapter 2. Modelling of water droplet and air ��ow

stagnation point temperature and excellent agreement is observed.
Contrary to the air phase we expect the maximum droplet temperature to increase with both the

angle of attack and theMach number of the ��ow. Indeed, as shown in ��gure 2.7c and d an increase in
droplet temperature is observed in both cases. The results are compared to commonly used models
for water droplets without heat exchange. At an angle of attack of 4� a for icing application relevant
temperature increase of more than 1K is observed. Similarly, the droplet temperature also depends
on the Mach number. Figure 2.7d illustrates this relation for a constant angle of attack of 0�

2.5.2 GA-W-1 aerofoil with Fowler flap system

In order to demonstrate the e�fect of heat exchange between droplets and air in a more applied
scenario we consider the ��ow around a multi-element aerofoil. The free stream Mach number
of the ��ow is 0.3, the free stream temperature is 270K and the free stream pressure is 94540Pa.
The aerofoil is placed at an angle of attack 10�, the ��ap is extended by an angle of 30�. A detailed
description of the geometries is given byWentz and Seetharam (1974). We introduce a water droplet
phase of 16µm diameter with a LWC of 1gm�3.

0.002
h

kg
m3

i

0

(a) Liquid water content (b) Air temperature

279K

255K

(c) Droplet temperature with heat
coupling as proposed in thiswork

(d) Droplet temperature without
heat coupling as used by previous
models

Figure 2.8: Illustration of temperature coupling e�fects of water droplet ��ow around a GA-W-1 aerofoil with
extended Fowler ��ap system. The black circle indicates the position of the stagnation point.

The results of this simulation are presented in ��gure 2.8. Sub��gure (a) illustrates the liquid
water content around the multi-element aerofoil. It can be seen how the geometry shields the region
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downstream from the water droplets. Sub��gure (b) shows the air temperature ��eld. A maximum
temperature of 274.9K is observed at the stagnation points matching theoretical predictions of
274.8K using equation (2.31). Sub��gures (c) and (d) compare the e�fect of the temperature tracking.
It should be noted that even though mathematically a temperature can be assigned to regions of
almost vanishing droplet content such as downstream of the geometry the value does not carry
physical meaning. On the left hand side, the results with activated heat exchange terms are shown.
A temperature increase of 4K is found at the stagnation point of the main element of the aerofoil.
On the right hand side, the results using the conventional system which omits heat exchange term
are shown.

(a) Air streamlines. (b) Droplet streamlines. Additionally, the LWC is illus-
trated as pseudocolour boundary of the aerofoil.

Figure 2.9: Illustration of streamlines of air and droplet phases around a GA-W-1 aerofoil with extended
Fowler ��ap system. The black circle indicates the position of the stagnation point.

The streamlines of both phases are illustrated in ��gure 2.9. Sub��gure (a) shows the streamlines
of the air ��ow. Due to the high angle of attack, the stagnation point, which is indicated by the
black circle, has moved from the leading edge to the underside of the aerofoil. This causes a high
curvature of the streamlines around the leading edge. Sub��gure (b) illustrates the trajectories of the
water droplets (or streamlines). The inertia of the droplets prevents them from following the air
streamlines closely in regions of high curvature. This is particularly visible around the leading edge
where a signi��cant area of vanishing droplet concentration is formed.

2.5.3 DrivAer model

Lastly, we demonstrate the capability of this approach of dealing with complex geometries. This
approach was developed with the application of ice accretion in mind which requires robust and
autonomous mesh generation. However, this model is transferable to other ��elds. An example is
presented in ��gure 2.10 from the automotive industry. The car model was designed by the Technical
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University Munich (2018) with the motivation of providing a more realistic example to study
automotive ��ows and is referred to as theDrivAermodel. It was designed to replace more simplistic
automotive bodies such as the Ahmed body and the SAEmodel. In our case, it doubles as a complex
real world example of an aerodynamic body which poses challenges to the mesh generation method.
The relevant geometrical cut-cell parameters are extracted from a STL ��le of the car. The high level
of detail exhibited by the door handles, wing mirrors and rims pose a challenge to conventional
mesh generation algorithms. Figure 2.10 shows the collection e���ciency of the DrivAer model. To
the best of our knowledge no experimental or computational results of collection e���ciencies for the
DrivAer model are available in literature. Therefore, we want to stress that this test case primarily
demonstrates the meshing capability and not to compute a physically accurate solution. However,
the results obtained look qualitatively plausible with high collections around exposed surfaces such
as wing mirrors, bumpers and wind shields.

Figure 2.10: DrivAer model
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2.6 Conclusion

We have presented two novel improvements for the simulation of water droplet ��ow in the context
in-��ight ice accretion.

Firstly, we have extended the mathematical model of the two-phase ��ow to facilitate for heat-
exchange between the droplet and the carrier phase. The model was validated against experimental
results and found to be accurate over a broader range of ��ow conditions compared to conventional
formulations. Subsequently, the new set of equations was applied to test cases relevant for atmo-
spheric icing. The results showed a signi��cant droplet temperature di�ference of up to 2K when
comparing the new and conventional models.

Secondly, we have implemented the solver in a Cartesian cut-cell framework based on the LPFS
method. We have devised a boundary treatment that guarantees non-negative droplet phase states
while maintaining stability of the air phase. The approach is validated against experiment and other
icing codes. The results show comparable accuracy while allowing for the study of more complex
geometries.
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Chapter 3

Surface models

In this chapter we, introduce the mathematical models and numerical techniques that are used to
link the air and water droplet ��ow around the icing body with the water ��lm dynamics and phase
transition model. Two aspects are important when linking the two simulations, ��rstly, how to
extract the ��ow data from the air and droplet solver, and, secondly, how to convert the data to an
appropriate format for the thin ��lm model.

The process of extracting surface states from a Cartesian cut-cell mesh requires is not as trivial
as for a boundary following mesh. Associating the ��nite volume cut-cell state with a point on the
surface introduces an implicit dependency on the projection of the gradient onto the surface normal.
We rectify this issue by using a linear least squares gradient reconstruction in order to compensate
for the dependency.

The inviscid description of the air ��ow lacks a physical model for quantities which are governed
by the ��ow within the boundary layer. These include surface friction and heat transfer which are
important for the thin ��lm dynamics We discuss the modelling of these variables by means of an
integral boundary layer approach.

Finally, the mathematical models and numerical techniques are validated by examining surface
data of a ��ow over a NACA 0012 aerofoil in icing conditions. The test is based on a NATO/RTO
Ice Accretion Simulation Evaluation Test core case described by Kind (2001).

3.1 Extraction of external flow states

In order to compute the boundary layer, the external ��ow states need to be extracted at the surface
of the rigid body. The aim is to obtain data in the form of pairs (s

i
,�

i
)where s

i
denotes the surface
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coordinate and �
i
the ��ow state at this coordinate. Without loss of generality, we assume that

� is scalar since all of the following operations generalise to a vector quantity by applying them
component wise. In the case of a conventional boundary following mesh, the pairs are easily found
by using the cell centre states in the ��rst layer of the computational mesh as shown in ��gure 3.1.

�...

�
i�1

�
i

�
i+1

�...

(a) t = 0

�

s

(b) t = 0

Figure 3.1: Illustration of surface data extraction for boundary following computational meshes. Using the
��ow states� in the ��rst layer of cells gives physically smooth data in the surface coordinate s .

In the case of a Cartesian cut-cell mesh, however, this is no longer possible. Performing the naïve
extraction leads to a non-physically high variation in the data as illustrated in ��gure 3.2. This is due to
the varying distance between the surface and the extraction point. If the gradient of the solution has
a signi��cant component normal to the surface then the extracted data will depend to ��rst order on
the probing distance and potentially cause spurious oscillations. In order to avoid the dependency

�...

�
i�1

�
i

�
i+1
�...

(a) t = 0

�

s

(b) t = 0

Figure 3.2: Illustration of a naïve surface data extraction for cut-cell meshes. Sampling the cell states of the
cut-cell implicitly extracts data at varying distances to the surface. A signi��cant component of the
gradient perpendicular to the surface can cause spurious oscillations in the extracted data.
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�...

�
i�1

�
i

�
i+1

�...

(a) Illustration of determining the extraction points. The inter-
face centroids � are extended into the normal direction by a
constant distance to give the extraction point •.

(b) Illustration of the computation of the inter-
polation of the ��ow states associated with a
surface point. The symbolN denotes the cell
centroid of the central cell andM the cell cen-
troid of the neighbouring cells.

Figure 3.3: Illustrationof surface data extraction for aCartesian cut-cellmeshusing a constant distance between
extraction position and rigid body surface. This approach is analogous to boundary following
grids.

on the distance between the sampling point and the rigid body the surface data has to be extracted
using a ��xed spacing. The correct sampling points are illustrated in ��gure 3.3. The extraction distance
is chosen to be 1

2

p
�x ·n, where�x is the cell size of a regular cell. Consequently, the extraction

point x• for a cell with outward pointing normal n and interface centroid x� is given by

x• = x�+n
1
2

p
�x ·n . (3.1)

In general, the extraction point x• does not coincide with a cell centroid and the ��ow state has to
be interpolated. We use a ��rst order Taylor expansion about the cell centroid approach which is
illustrated in ��gure 3.3b. The ��rst order terms are reconstructed using a least squares approach. Let
us assume that the extrapolation point x• lies within cellC with cell centroid xN. Note that in
general x� is not in the same cell as x•. LetN (C ) be the neighbourhood ofC which is de��ned to
be the set of cells that share a face withC . Then, the following ��rst order approximation can be
constructed for every cell inN

�(xM
n
) =�(xN)+ (r�)(xN) · (xM

n
� xN) n 2N , (3.2)
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where xM
n
is the cell centroid of a cell n 2 N . Let us assume1 that {xM

n
� xN|n 2 N } generates

the domain. The set of equations (3.2) gives either an overdetermined or a unique system with the
unknown (r�)(xN) which is solved in a least squares sense. Having obtained the gradient, the
extraction state is calculated by

�• =�N+ (r�)N · (x•� xN) . (3.3)

In summary, using the described routine we can associate a surface state�• with every cut-cell in the
domain. Although this approach can be used to extract the whole external ��ow state only a subset is
relevant for the boundary layer computation and the water ��lm model. In order to save memory
only the following components are extracted:

uext =

0
BBBBBBBBBBBB@

⇢a

ṽa

pa

TaP
s

1
2⇢s

v2
sP

s
⇢

s
ṽ

sP
s
e

s

1
CCCCCCCCCCCCA

, (3.4)

where ⇢ denotes densities, v velocities, p pressures, T temperatures and e internal energies. The
subscript ·a labels the air phase and ·s the droplet phase associated with the droplet diameter d

s
.

Vector components appended by ·̃ indicate that they are taken in the free surface frame i.e. the
components are transformed to give tangential and normal components.

The other element of the data pair (s
i
,�

i
), the surface coordinate s

i
, is computed by ��nding

the coordinate which minimises the distance between x� and the substrate. Consequently, for every
cut-cell the following optimisation is solved

s = inf
s2U

d (x�, x(s )) , (3.5)

where U is the coordinate space and x the surface parameterisation. Details about the de��nition of
these quantities are given in appendix A.

Finally, we need to map the data pairs (s
i
,�

i
)which exist for every cut-cell to the surface mesh

1This may not be the case for concave regions with a large curvature compared to the cell size. However, we have not
found this assumption to be restrictive.
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onwhich the water and ice dynamic equations are solved. This is done by a straightforward piecewise
cubic spline interpolation. The derivatives of the endpoints are determined by evaluating a ��nite
di�ference approximation of the cut-cell data.

3.2 Boundary layer model

The inviscid methodology for the air ��ow requires an additional model to retrieve heat and shear
stress transfer onto the ice ��lm. These quantities are governed by the thermal and momentum
boundary layer. Integral boundary layer methods have proven to be robust and e���cient and
are commonly used within ice accretion software e.g. LEWICE (Ru�f and Berkowitz, 1990) and
CANICE (Paraschivoiu and Saeed, 2001). More recently, research has been done on improving
integral boundary layer models. Radenac et al. (2018) derived a model based on the Aupoix-Grigson-
Colebrook (AGC) method and Blanchard et al. (2017) devised a method capable of modelling
three-dimensional ��ow.

A comprehensive review of the available methods is beyond the scope of this thesis. Since we
want to highlight improvements in the modelling of the droplet ��ow and the thin ��lm dynamics,
we implement a widely used method based on the Pohlhausen approximation. This allows us to
compare our results against a wide selection of data from literature.

The employed boundary layer model does not feedback to the air ��ow or the droplet ��ow and
we therefore restrict the following discussion to the air quantities only.

3.2.1 Pohlhausen method

Following the works by Ru�f and Berkowitz (1990) and Leese (2010), we employ the Pohlhausen
approximation to recover the velocity pro��le in the laminar boundary layer which is given by

v(� , ⌘̂)
v1(�)

= 2⌘̂� 2⌘̂3+ ⌘̂4+
⇤
6
⌘̂(1� ⌘̂)3 . (3.6)

Let ⌘̂ := ⌘/� , where ⌘ is the distance in the normal direction from the icing surface and � is the
boundary layer thickness. The symbol � is the surface distance from the stagnation point which
is determined by search for the root of the tangential velocity. The Greek letter ⇤ denotes the
dimensionless Pohlhausen parameter which can be thought of as the ratio of pressure to viscous
forces and is de��ned by

⇤=
�2

⌫
d v
1(�)
d�

. (3.7)
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The boundary layer thickness � is approximated by � ⇡ 8.5✓ according to Ru�f and Berkowitz
(1990) and for the momentum thickness ✓ the Thwaites quadrature approximation given byWhite
and Cor��eld (2006) is used

✓2
⇡

0.45⌫
v1(�)

Z �
0

v
1(s )d s . (3.8)

Plugging equation (3.6) into the de��nition of the shear stress and evaluating the derivative at the
surface gives

⌧ :=µ
d v

d⌘

�����
⌘=0

=µ
Å

2+
⇤
6

ã
v
1

�
. (3.9)

The heat transfer coe���cient hc is directly related to the conduction thickness of the thermal boundary
layer (White and Cor��eld, 2006). A simple approximation was developed by Smith and Spalding.
Details about the approximation are given in White and Cor��eld (2006), and Spalding and Pun
(1962). For a Prandtl number Pr of approximately 0.72 the approximation is given by

h = 0.296ka

✓
⌫a (v
1(�))�2.88
Z �

0
(v1(s ))�1.88 d s

◆
�

1
2

. (3.10)

In summary, equation (3.9) and (3.10) are used to compute the missing state variables required by
the thin ��lm dynamics model.

3.2.2 Transition to turbulence

So far, we have only considered a laminar boundary layer. However, in icing condition surface
roughness plays an important role and can trip the ��ow producing a turbulent state. Kerho and
Bragg (1997) experimentally investigated the di�ference in transition location for a smooth and rough
aerofoil. They studied aNACA0012 andmeasured the transition point at variousReynolds numbers.
For clean aerofoils, laminar boundary layers were found well past 30% of the chord length whereas
rough surfaces induced a transition much earlier. Ice growth occurs in the vicinity of the leading
edge. We therefore only consider roughness induced transitions in this work.

Criteria to determine the point of a roughness induced transition to a turbulent boundary
layer were reported by von Doenho�f and Horton (1958). They performed experiments on a NACA
65-series aerofoil to determine how sand-grain type roughness a�fects the position of the turbulent
transition and proposed a criteria based on the projection Reynolds number Re

k
which is given by

Re
k

:=
v(� , ks)ks

⌫
, (3.11)
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where ks is the sand-grain roughness height of the ice surface. von Doenho�f and Horton (1958)
found that if Re

k
 600 the sand-grain roughness does not cause any disturbances to the laminar

��ow. For values larger than that turbulent spots appear.

If this is the case, then it turns out that the skin friction coe���cient cf is independent of viscosity
according to Kays and Crawford (1980). This suggests that the pressure drag on the roughness
elements is the leading e�fect as described by Ru�f and Berkowitz (1990). The skin friction coe���cient
can then be approximated in terms of only the turbulent boundary layer thickness ✓t using a mixing
length approach. Under the assumption of a constant free-stream velocity, the approximation is
given by

cf

2
=

0
@ 0.41

log
Ä 864✓t

ks
+ 2.568
ä
1
A

2

. (3.12)

In order to calculate the boundary layer thickness of a point in the turbulent section the thickness
of the laminar boundary layer of the transition point �tr is required.

�tr = inf{� |Re
k
(�)> 600} . (3.13)

Once, the transition point is determined the turbulent boundary layer thickness ✓t is given by
evaluating the following integral

✓t = ✓(�tr)+
Ç

0.0156⌫0.25

(v1)4.11

Z �
�tr

(v1)3.86 d s

å0.8

. (3.14)

The shear stress is given in terms of the skin friction coe���cient:

⌧t =
⇢ (v1)2

2
cf . (3.15)

Similarly to themomentum boundary layer, Kays and Crawford (1980) model the thermal boundary
layer using a mixing length approach. Additionally to the constant free-stream velocity assumption
of the momentum boundary layer, Kays and Crawford (1980) assume that the momentum and
thermal boundary layer are of the same thickness which is valid only in turbulent regimes. Under
these constraints, the heat transfer coe���cient for a fully rough surface is given by

ht = ⇢v
1

cp
cf Sa

k

2Prt Sa
k
+
p

2cf
, (3.16)
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where cp is the speci��c heat of air, Sa
k
the roughness Stanton number and Prt the turbulent Prandtl

number. Experimental data for air in icing conditions suggests usingPr
t
⇡ 0.9 (Ru�f and Berkowitz,

1990) and an empirical relation for the roughness Stanton number is given by

Sa
k
= 1.16
✓

v⌧ks

⌫

◆
�0.2

, (3.17)

where v⌧ is the shear velocity which is given by

v⌧ =
vut⌧t

⇢
= v
1

vut cf

2
. (3.18)

3.3 Surface roughness

We have seen in the previous section that the transition to a turbulent boundary layer depends on
the surface roughness. Most ice accretion software use an empirical relation to determine the value
of k

s
.
The original LEWICE code de��nes an expression dependent on LWC the free stream tempera-

ture and the free stream velocity. However, numerical experiments carried out by Shin et al. (1991)
suggest replacing the dependency on the velocity by the MVD. The improved roughness height
relation is given by

k
s
= 0.6839 kLWC k

T
kMVD kbase c , (3.19)

where c is the chord length and kbase is the baseline roughness assumed to be 0.00117. The remaining
quantities modi��er take into account the e�fect of the variables indicated by subscripts.

kLWC = 0.5714+ 245.7↵d⇢d+ 1257100↵2
d⇢

2
d , (3.20)

where ↵d⇢d is the free stream LWC.

k
T
= 0.047T � 11.27 , (3.21)

where T is the free stream equilibrium temperature.

kMVD = sup{0, inf{1,1.666� 33300dMVD}} , (3.22)

where dMVD is the median of the droplet diameter distribution.
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A di�ferent approach was presented as an improvement to LEWICE byWright et al. (1997). The
global roughness height is replaced by an expression taking into account the local state as described
by Gent et al. (2000). More recently, Fortin et al. (2006) developed a roughness model based on the
freezing process of the water ��lm.

However, we employ the most widely used approach which is based on single global rough-
ness height. Implementing the most popular method helps highlighting di�ferences between the
performance of the other improvements proposed in this work and existing methodologies. A
comprehensive study and comparison of all roughness models is beyond the scope of this work,
however, improving the boundary layer model constitutes an interesting and valuable direction of
future research.
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t

Advance air and
droplet ��ow

Advance air and
droplet ��ow

Advance air and
droplet ��ow

Extract surface
state and ��nd

surface coordinate

Extract surface
state and ��nd

surface coordinate

Extract surface
state and ��nd

surface coordinate

CPU0 CPU1 CPU
N�1. . .

Gather data on root CPU

Interpolate data onto surface grid

Determine stagnation points

Compute stagnation point surface distances

Compute laminar boundary layer quantities

Determine turbulent transition locations

Compute turbulent boundary layer quanitities

Figure 3.4: Flowchart of boundary layer computation. After the air and droplet ��ow is computed, the surface
data is extracted in parallel. The data is gathered on the root CPU where the interpolation and
boundary layer computation take place in serial.

56



3.4. Implementation

3.4 Implementation

The extraction of surface states and boundary layer model routines presented in this chapter act
as the link between two standalone frameworks: the air and droplet ��ow solver, and the thin ��lm
dynamics. For the sake of clarity, we present the implementation details of the approach to link the
two codes. A ��owchart of the implementation is illustrated in ��gure 3.4. Most importantly, the air
and droplet simulation is built on the patch based Adaptive Mesh Re��nement (AMR) approach by
Bell et al. (1994). Every patch has a layer of ghost cells which allows the solvers to act on every patch
without any information from neighbouring patches.

Every CPU has a list of local patches for which the updates need to be computed. After every
advance routine, the presence of cut-cells is checked and the surface states are extracted and stored
in a local bu�fer. After all patches are advanced the local bu�fers containing the surface states are
gathered on the root process, interpolated and the remaining boundary layer quantities computed.

3.5 Validation

The purpose of this test is to validate the surface state extraction method described in section 3.1 and
the integral boundary layer method introduced in section 3.2.1. In this section we study the air and
droplet ��ow for typical icing conditions and a relevant geometry.

A similar approach was presented by Myers et al. (2002a) where they presented the surface
results for pressure, collection e���ciency, shear stress and heat transfer coe���cient for a NACA 0012
geometry. Unfortunately, the initial and boundary conditions of the setup were not fully reported.
We, therefore, cannot present a direct comparison with the results by Myers et al. (2002a), however,
we expect the ��ow exhibit the same features and a qualitative comparison is possible. We use the
core test case 4 from the NATO/RTO icing workshop by Kind (2001). A ��ow with a free stream
velocity of 77.2ms�1 a free stream temperature of 270.5K and a free stream pressure of 99.6kPa
over a NACA 0012 is considered. Water droplets with a diameter of 18µm and a liquid content of
0.32gm�3 were introduced. The representation of the geometry is described in appendix A.

The initial conditions and the geometry are symmetric about the axis along the chord. We,
therefore, expect an odd solution for tangential components of vector quantities and a solution
which is even for scalar quantities. Due to these symmetries, it su���ces to compute the boundary
layers on either the upper or lower half of the aerofoil and extend the solution using the even (or
odd) property from above. However, we decide to calculate the boundary layer on both sides of the
aerofoil since the computation is inexpensive andwe can assess the symmetry preservation properties
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of our implementation of the numerical method. In order to compare our data with the results
byMyers et al. (2002a) we disable the turbulent transition and treat the whole boundary layer as
laminar.
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Figure 3.5: Validation test for surface extraction routine and boundary layer model. The surface data are
extracted using the interpolation methodology described above. The quantities hc and ⌧ are
computed using the integral boundary layer model. The models are applied to the NATO C4 test
case.

The results are illustrated in ��gure 3.5. The ��rst sub��gure shows the collection e���ciency which
was validated in chapter 2. The other sub��gures illustrate the surface shear stress, surface air pressure
and surface heat transfer coe���cient. We observe close qualitative agreement to the results by Myers
et al. (2002a) for all quantities. Moreover, all solutions exhibit the expected symmetries.
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Chapter 4

Modelling thin water film freezing

A crucial stage of an atmospheric ice accretion simulation is the prediction of water runback and ice
growth. In rime ice conditions, only a simple conservation of mass equation is required. All of the
impinging water droplets freeze immediately and stick to the surface. In milder conditions, i.e. if a
liquid phase is present, the runback water becomes a signi��cant part of the process. The water ��lm
dynamics may exhibit complex features such as ��nger formation and capillary ridges. Moreover, if
SLDs are present, phenomena such as droplet splashing and rebounding complicate the problem
even further. This chapter presents a novel framework of how to model the freezing of thin water
��lm on a curved surface.

4.1 Introduction

We begin the chapter by introducing approaches which are most commonly used in ice accretion
simulations. Following the discussion of the literature, we brie��y summarise caveats and assumptions
that went into the reviewed models and propose generalisations, extensions, and improvements.

4.1.1 Previous approaches

There are three methodologies commonly used in ice accretion simulations.

The control volume approach of Messinger

The ��rstwidely used attempt of simulating atmospheric ice accretiondates back toworkbyMessinger
(1953). His approach is still the most commonly used model and employed ice accretions simulations
such as TRAJICE2, LEWICE and CANICE (Kind, 2001). We only present a summary, more detail
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about his approach can be found inMessinger (1953) and Gent et al. (2000). The underlying idea
is to track the water layer along the geometry surface. The process starts at the stagnation point
where the only source of water is the droplet ��ux from the air. A mass ratio N

f
of ice and water is

computed using a thermodynamic balance. All of the liquid phase is subsequently pushed back into
the next control volume and the energy balance is computed again.

One of the primary caveats of the control volume approach is that the runback water only
depends on the thermodynamic balance. Physical forces such as shear stress exerted by the air��ow,
pressure gradients in the air��ow and surface tension are not taken into account. Bourgault et al.
(2000a) addressed these shortcomings by developing a shallow-water icing model.

The shallow-water icing model (SWIM)

Bourgault et al. (2000a) replaced the control volume approach with a continuummodel of the water
��lm. Since the water ��lm remains thin, they assume that the velocity pro��le is linear in the substrate
normal direction. A no-slip boundary condition and a continuity of shear stress constraint at the free
surface close the system. These simpli��cations allow the analytic integration of the perpendicular
conservation of momentum equation resulting in a system of two partial di�ferential equations
(PDEs). This approach extends the Messinger model in two essential ways. Firstly, air shear is
included in the model basing the calculation of runback water on physical forces. Secondly, inertia
e�fects of the ��lm are included producing explicit time derivatives in the equations and allowing the
capturing of mass ��uxes within the ��lm. Rothmayer and Tsao (2000) have found these e�fects to be
an essential modelling component for thicker ��lms.

The model has two inherent limitations. Firstly, Rothmayer and Tsao (2000) found that thicker
��lms aremainly driven by air pressure gradients. However, the onlymodelled driving force in SWIM
is shear stress making this model less suitable for thicker ��lms. Secondly, the model’s depth averaging
approach cannot capture mode decay rates and equilibrium ��lm heights simultaneously. This is an
inherent but frequently overlooked issue in depth averaging methods as demonstrated by Roberts
(2015, p. 299).

Stefan approach by Myers et al.

Myers and Hammond (1999) andMyers et al. (2002a,b) developed a system which is based on ideas
similar to SWIM namely to model the runback water by physical forces. Instead of using a shallow
water approach their model is based on lubrication theory. The inclusion of shear stress as a driving
force as well as surface tension and air pressure gradients makes it physically more accurate than
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SWIM. The set of governing equations splits into a subset for rime ice and glaze ice. In rime ice
conditions the model is given by

⇢i@t
⇣ =�⇢d↵dvd · n̄+O ("

2,Pe) , (4.1)

where⇢i is the ice density,↵d is the droplet volume fraction,⇢d is themicroscopic droplet density, and
vd is the droplet velocity. The symbol ⇣ denotes the ice height, n̄ the ice normal, " the geometrical
scaling factor and Pe the Peclet number, de��ned in section 4.2. In glaze ice conditions the governing
equations are:

@ ⇠
@ t
+r ·
✓
� (rp �Bo g )

⇠ 3

3
+⌧
⇠ 2
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◆
=�

⇢i

⇢w

@ ⇣
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�↵d⇢dvd · ñ+O (","

2 Re) , (4.2a)

p = pa�� H̃ +O ("2) , (4.2b)

St
@ ⇣
@ t
=

1
⇣
�

kw

ki

E(0)� E(1)

1+ E(1)⇣
+O ("2,Pe) , (4.2c)

where p denotes the water pressure, g gravity, ⌧ the shear stress at the air-water surface, ⇢w the
water density, and kw and ki the thermal conductivity of water and ice respectively. The remaining
quantities are introduced in more detail in section 4.2. We list their names for completion here:
⇠ denotes the water height, H̃ the free surface curvature, Bo the Bond number, Re the Reynolds
number, St the Stefan number. The factors E(0) and E(1) depend on the heat exchange at the free
surface and are de��ned byMyers et al. (2002b).

Expressing the heat ��uxes in this form implies an a���ne dependency onT �Ta. This assumption
is insu���cient if more information about the droplet temperatures is available as another dependency
on T �Td is required.

Another caveat is the neglecting of internal forces. The ��lm is assumed to be in equilibrium and
the time derivative only enters through the dynamic surface. This makes the model less accurate
for fast ��ows where inertial forces become essential as shown in literature (Oron and Banko�f, 1997;
Roberts and Li, 2006; Sivapuratharasu et al., 2016; Rothmayer and Tsao, 2000).

Myers et al. (2002b) neglect several linear terms of " in equation (4.2a). These expressions arise
from the curvilinear coordinate system and are absent for thin ��lms on a ��at plate. Myers et al.
(2002b) argues that the order " of curvilinear terms is comparable to "2 Re of inertia terms and
therefore also negligible. However, as research by Rothmayer and Tsao (2000) has shown, inertia
terms are signi��cant rendering neglecting O (") problematic.

Moreover, system (4.1)-(4.2c) was derived under the assumption that the surface is parameterised
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Chapter 4. Modelling thin water ��lm freezing

in principal directions. Although such a representation always exists, it may not be known for
complex surfaces arising from real-world wing geometries with slats and ��aps.

Other related work

More recently primarily theoretical research has been directed towards coupling between the air
boundary layer, roughness and the thin ��lm ��ow. Rothmayer and Tsao (2000) and Rothmayer
et al. (2002) studied interfacial waves on thin liquid ��lms. They found that the lubrication theory
model holds as long as the ��lm remains thin and that the primary driving force is air shear. As the
��lm grows, however, the air shear stress is replaced by air pressure gradients as the dominant driver.
Moreover, inertia e�fects, i.e. mass ��uxes within the ��lm, become signi��cant. Moore et al. (2017) and
Nelson et al. (1995) studied the ice formation in a Blasius boundary layer. These coupled methods
are beyond the scope of this work but comprise an exciting direction for future extensions of a full
ice accretion software.

4.1.2 Conclusions of literature review

In summary, there are two regimes for thin ��lm ��ow. Thin ��lms are driven by air shear and are well
approximated by lubrication theory. Films thicker than a critical depth are governed by interfacial
waves driven by air pressure gradients. In order to capture this behaviour, the interaction between
the water and the air needs to be modelled. A lubrication theory approach does not su���ce. Models
that capture these phenomena are not mature enough to be used in a full ice accretion simulation
and are therefore beyond the scope of this work. We will, however, keep the shortcomings in mind
and point to possibilities of future work where the application of a coupled model is advisable.

4.1.3 Outline of this chapter

The remainder of this chapter is based on the thin ��lm approach byMyers et al. (2002b). We address
the shortcomings of the model byMyers presented in section 4.1.1. Section 4.2.1 de��nes essential
symbols, notations and conventions of this chapter. In section 4.2 we generalise the derivation
of the governing equations to arbitrarily parameterised surfaces. We also extend the discussion to
coherently include all linear terms in ". Subsequently, the model and implementation are validated.
The e�fects of the linear terms are demonstrated by studying the drop formation on the underside of
a cylinder In section 4.7 the Stefan problem is extended to incorporate dependencies on the droplet
temperature to make use of the novel improvements introduced in chapter 2.
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4.2. The generalisation for arbitrarily parameterised surfaces

4.2 The generalisation for arbitrarily parameterised surfaces

In this section, we derive the thin ��lm limit of the Navier Stokes equations on an arbitrary smoothly
curved surface. The derivation of this kind of equation for a ��at substrate, which can be expressed
in Cartesian coordinates, can be found in many elementary ��uid dynamic textbooks, e.g. Batchelor
G. K. (2000).

The general approach is as follows: The governing equations are expressed in a Cartesian
coordinate system with the orthonormal basis {e

x
,e

y
,e

z
}. The xy-plane describes the substrate

and a parameter " is introduced to scale the perpendicular component. Hence, a point in space
x 2R3 can be written as:

x = xe
x
+ ye

y
+ "ze

z
. (4.3)

A suitable choice of " scales the perpendicular component such that it matches the order of the
tangential components. This is e�fectively the ratio of the height over the extent of the ��lm. The
assumptions that the ��lm remains thin implies that " is small allowing the power series expansion
of the governing equations in terms of order ". Truncating second and higher order terms, we
analytically integrate the series over the normal component giving a single partial di�ferential equation
governing the height of the ��lm.

In order to generalise this approach to curved substrates, we follow the sameunderlying approach
as in the ��at plate derivation. The main di�ference is that the governing equations are expressed
in terms of tangential coordinates which determine the position on the substrate and a scaled
perpendicular coordinate which describes the distance to the surface.

Roy et al. (2002) studied gravity-driven ��ows on surfaces parameterised in principal directions.
Thi�feault and Kamhawi (2006) generalised the system to arbitrary parameterisation. Myers et al.
(2002a) included shear stress at the free surface and air pressure gradients. However, they also
restricted the surface representation to a diagonal second fundamental form. In what follows, we
present a lubrication theory approach to shear stress driven thin ��lm ��ow. We consistently include
linear terms and lift the restriction to a principal parameterisation. To the best of our knowledge, a
derivation of this level of generality is the ��rst in the literature.

4.2.1 Surfaces, manifolds and notation

The problem consists of four domains: the substrate, the ice layer, the water layer and the sur-
rounding air as illustrated in ��gure 4.1. These domains are separated by three interfaces which are
mathematically represented by manifolds.
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Air

Water

Ice

Substrate

Figure 4.1: Illustration of the problem to be modelled to predict the extent of the ice layer. Supercooled water
droplets impinge onto the surface which is at subzero temperature. Some of the water freezes
forming an ice layer on top of the substrate and some of the water will remain liquid forming a
water layer.

Cartesian coordinate system

The Euclidean spaceR3 with the natural basis {e1,e2,e3} equipped with the dot product h·|·i acts
as an embedding space. This space induces a metric and fundamental forms and is suited to de��ne
other relevant geometrical concepts such as curvature.

Substrate

At the base of our considerations is the substratewhichwe de��ne in the followingmanner. LetM be
a parametric surface given by the parameterisation x :R2

◆ U !R3 with (s1, s
2) 7! x(s1, s

2). The
substrate consists of all the points in the image of the parameterisation x(U ). This is a generalisation
over the approach ofMyers et al. (2002a) andRoy et al. (2002)which requires the parameterisation to
be in principal directions. Even though there always exists a parameterisation in principal directions
for complicated surfaces, it might be hard to ��nd, or it might produce in a poor surface mesh.

We use the parameterisation which induces many useful concepts. Primarily, a basis of the
tangent spaceTM given by {xµ}where xµ = @µx and the ��rst fundamental form of the substrate
a which is de��ned by:

aµ⌫ = hxµ|x ⌫i , (4.4)

where the indicesµ, ⌫ 2 {1,2}. In general, we adopt the convention that Latin indices range over
(1,2,3) and indicate quantities that live in the three-dimensional space whereas Greek indices range
only over (1,2) and are associated with quantities that are de��ned on a submanifold such as the
substrate. Furthermore, quantities that live on the substrate are labelled by ·. Another essential
quantity of the substrate is the normal ��eld n which is de��ned by

(i) knk= 1 ,
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4.2. The generalisation for arbitrarily parameterised surfaces

(ii) hn|xµi= 0 ,

(iii) n is outward pointing.

The second fundamental form of the substrate b is de��ned by

bµ⌫ = hxµ⌫ |ni , (4.5)

where xµ⌫ = @µ@⌫ x . These are essential geometrical quantities and straightforwardly computed
when given a parameterisation.

Substrate coordinate system

Based on themanifoldM introduced in the previous section a three-dimensional coordinate system
is constructed. We de��ne this coordinate system such that the surface normal maps to a single
coordinate, thereby reducing the e�fective dimensionality. This is done analogously to the thin ��lm
derivation on a ��at substrate (see equation (4.3)). Components one and two of the position vector
describe the position on the substrate and the third coordinate measures the distance perpendicular
to the substrate. The parameterisation is given by:

x(s1, s
2,⌘) = x(s1, s

2)+ "⌘n(s1, s
2) , (4.6)

where " is a small constant which scales the normal coordinate to be of the same order of magnitude
as the position on the substrate. The induced metric g of this coordinate system is given by:

g
i j
= hx

i
|x

j
i . (4.7)

The notion of a metric g is identical to that of a ��rst fundamental form a. We use the convention of
calling it g or metric in three-dimensional space and a or ��rst fundamental form on a surface. The
non-vanishing elements of g are:

g↵� = a↵�� 2"⌘b↵�+ "
2⌘2

b↵� b
�
�

,

g33 = "
2 ,

(4.8)

where we have used the Einstein summation convention which implies a summation if an index
appears twice in an expression— once as subscript and once as superscript. For example, equation
(4.8) is summed over � . Indices are lowered by using the metric g

i j
or where appropriate the ��rst
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fundamental form aµ⌫ . Indices are raised by using the inverse metric g
i j . The tensor g

i j
is block

diagonal, therefore, it is su���cient to ��nd the inverse of the top left block. Terms of the order "2 are
neglected as customary. In order to ��nd the inverse of the submatrix, we consider the following
lemma. Let Abe an invertible matrix, B a square matrix and kBA

�1
k< 1 then

(A�B)�1 =
1X

k=0

A
�1 �

BA
�1�k , (4.9)

which can be shown by considering:

lim
n!1

(A�B)
nX

k=0

A
�1 �

BA
�1�k = lim

n!1

nX
k=0

AA
�1 �

BA
�1�k
�

nX
k=0

BA
�1 �

BA
�1�k

= lim
n!1

nX
k=0

�
I �BA

�1� �
BA
�1�k =

=
�
I �BA

�1� lim
n!1

nX
k=0

�
BA
�1�k .

(4.10)

The in��nite sum in the last expression is a Neumann series which concludes the proof of this
lemma. The form of the submatrix g↵� in (4.8) can be recovered by setting A = a and B =
2"⌘b � "2⌘2

a
�1

b . We do not give a proof for convergence, but it is a reasonable assumption since
kBA
�1
k= O ("). Hence, the inverse up to the order "2 is given by:

�
a� 2"⌘b + "2⌘2

a
�1

b
��1 =

1X
k=0

a
�1 ⇥�2"⌘b � "2⌘2

a
�1

b
�

a
�1⇤k

= a
�1+ 2"⌘a

�1
b a
�1+O ("2) .

(4.11)

Giving for the non-vanishing components of the inverse metric

g
↵� = a

↵�+ 2"⌘b
↵�+O ("2) ,

g
33 = "�2 .

(4.12)

In a non-Cartesian space, the covariant derivative1 has to also take into account the change of the
embedding which can be expressed in terms of the Christo�fel symbols � k

i j
. The Christo�fel symbols

1Since we use an embedding into Euclidean space, we use covariant derivative, a���ne connection and Levi-Civita
connection interchangeably.
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of the second kind in coordinate form are de��ned in terms of the metric by

� i

j k
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g
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Ä
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g
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� @

m
g

j k

ä
. (4.13)

The non-vanishing elements of relevant order are

� 3
µ⌫ = �

3
⌫µ = "

�1
bµ⌫ � ⌘cµ⌫ ,

� �3µ = �
�
µ3 =�"b

�
µ+O ("

2) ,

� �µ⌫ = �
�
⌫µ = �

�
µ⌫ +O (") ,

(4.14)

where c is the third fundamental form and � are the substrate Christo�fel symbols which are com-
puted using the substrate ��rst fundamental form

� �µ⌫ =
1
2

a
��
Ä
@µa�⌫ + @⌫aµ� � @�aµ⌫

ä
. (4.15)

Ice-water interface

Themanifold representing the ice-water interfaceM is obtained by using the parameterisation (4.6).
The normal coordinate ⌘ is replaced by a function ⇣ : R+⇥U ! R+ which is time-dependent
and governs the height of the ice layer scaled by ". The quantities are illustrated in ��gure 4.2. The
parameterisation of the ice-water manifold is given by:

x̄(t , s
µ) = x(sµ,⇣ (t , s

µ)) = x(sµ)+ "⇣ (t , s
µ)n(sµ) . (4.16)

" ⇣ (t , s
µ)

" ⇠ (t , s
µ)

Figure 4.2: Illustration of the quantisation of the ice and water layer. The functions ⇣ and ⇠ which describe
the ice height and water height in the direction normal to the substrate i.e. along n scaled by ".
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Water-air interface

The manifold representing the free surface M̃ is obtained setting ⌘= (⇣ + ⇠ )(t , s
µ) in equation

(4.6) where ⇠ :R+⇥U !R+ represents the height of the water ��lm scaled by a constant " (see
��gure 4.2). Consequently, the manifold parameterisation is given by

x̃ = x(sµ, (⇣ + ⇠ )(t , s
µ)) = x(sµ)+ " (⇣ + ⇠ )(t , s

µ)n(sµ) , (4.17)

Similarly to the previous surfaces, quantities on this manifold are denoted by ·̃.

We construct the normal to the free surface ñ using a Gram-Schmidt approach. We choose n as
the starting vector which is linearly independent of the free surface tangent space under the thin
��lm assumption. The normal is then given by

ñ= n� "a↵�@↵(⇣ + ⇠ )x�+O ("
2) . (4.18)

The proof is straightforward by, ��rstly, checking hñ|x̃µi= 0 and, secondly, that the expression is
normalised. Plugging in expressions (4.18) and (4.17) we ��nd that the only non-orthogonal terms
are:

hñ|x̃µi= "(⇣ + ⇠ )µ� "a
↵�(⇣ + ⇠ )↵hx�|xµi+O ("

2) = O ("2) . (4.19)

Hence, ñ 2 (T M̃ )?. Since n 2 (TM )? the norm up to second order can be expressed as

kñk=
���n� "a↵�(⇣ + ⇠ )↵x�

���=
Ä
1+ k"a↵�(⇣ + ⇠ )↵x�k

2
ä 1

2 = 1+O ("2) , (4.20)

and we ��nd that the expression is normalised.

Let us now turn to the computation of the second fundamental form at the free surface b̃ which
is given by

b̃↵� = hx̃↵�|ñi . (4.21)

Plugging in the expression for x̃↵� gives

b̃↵� = hx↵�|ñi+"(⇣ +⇠ )hn↵�|ñi+"(⇣ +⇠ )↵hn�|ñi+"(⇣ +⇠ )�hn↵|ñi+"(⇣ +⇠ )↵�hn|ñi .
(4.22)
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Further substitution of equation (4.18) gives

b̃↵� = hx↵�|ni+ "(⇣ + ⇠ )hn↵�|ni+ "(⇣ + ⇠ )↵hn�|ni+ "(⇣ + ⇠ )�hn↵|ni+

+ "(⇣ + ⇠ )↵�hn|ni� "a
�� (⇣ + ⇠ )� hx↵�|x�i+O ("

2) .
(4.23)

According to theWeingarten equations hn↵|ni=�b
�
↵ hx�|ni= 0 and a number of terms vanish

giving

b̃↵� = b↵�+ "(⇣ + ⇠ )hn↵�|ni+ "(⇣ + ⇠ )↵�� "a
�� (⇣ + ⇠ )� hx↵�|x�i+O ("

2) . (4.24)

Plugging in the de��nition of the Christo�fel symbols of the second kind by Frankel (2011, p. 229) we
can express the derivative of (⇣ + ⇠ ) as the covariant derivativer↵

b̃↵� = b↵�� "(⇣ + ⇠ )h@↵b
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�

x� |ni+ "(⇣ + ⇠ )↵�� "(⇣ + ⇠ )� �
�
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= b↵�+ "(⇣ + ⇠ )b
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�
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�
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+O ("2) =

= b↵�+ "(⇣ + ⇠ )b
�
↵b ��+ "r↵(⇣ + ⇠ )�+O ("

2) .
(4.25)

The second fundamental form of the free surface b̃ is an essential factor in the dynamics of the thin
��lm. It encodes information about the curvature of the air-water interface which according to the
Young-Laplace equation exerts a pressure onto the water ��lm proportional to the surface tension.

4.2.2 Dimensional analysis of the Navier Stokes equations

In this section, we express the governing equations in terms of the substrate coordinate system given
in (4.6). The introduction of the aspect ratio " earlier allows the quanti��cation of the thinness of
the problem.

After determining the metric of the conveniently constructed coordinate system x , we can
rewrite the di�ferential operators of the Navier-Stokes equations. Recall the incompressible steady
Navier-Stokes equation.

r · u = 0 , (4.26a)

(u ·r)u =� 1
⇢
rp + ⌫r2u . (4.26b)

69



Chapter 4. Modelling thin water ��lm freezing

We will later see that many of terms contain "�2. We preemptively multiply by "2 to keep the
smallest order to be "0. Written in terms of the coordinate basis {x

i
}we obtain
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j
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i =�
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i j
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g
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The next step separates the thin direction from the tangential ones. Two di�ferential operators
appear in the equation: the vector Laplacian and the convective operator.

The vector Laplacian is de��ned in an analogous way to the scalar Laplacian as the divergence of
the gradient. Applying it to a vector ��eld u gives
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The convective operator of a vector ��eld u is given by:

u
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j
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k� i

j k
. (4.29)

For clarity, we discuss the di�ferential operators in tangential and perpendicular directions separately.

Tangential equation

Theµ component of the convective operator of u takes the form
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(4.30)

The ��rst term of the vector Laplacian given in equation (4.28) takes the expanded form
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(4.31)
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the second term:

"2� i

mi
g

m j
Ä
@

j
u

k + u
l � k

j l

ä
= "2� i

mi

Ä
g

m�@�u
k + g

m�
u

l � k

�l
+ g

m3@3u
k + g

m�
u

l � k

3l

ä

= "2� i

mi

Ä
g

m3@3u
k + g

m3
u
�� k

3�+ g
m3

u
3� k

33

ä
+O ("2) =

= "2� ↵3↵
Ä
"�2@3u

k + "�2
u
�� k

3�

ä
+O ("2) =

=�"3
b
↵
↵

Ä
"�2@3u

k
� "�1

u
�

b
k

�

ä
+O ("2) =

=�"b
↵
↵@3u

k +O ("2) ,
(4.32)

and the third term:
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(4.33)

The spatial quantities are already non-dimensionalised by the introduction of the parameter " in
the previous section. Consequently, the extent of the ��lm is of order 1 and the height of the ��lm is
of order ". Non-geometrical terms still carry a dimensional scale. In order to assess the scaling of
these terms, the remaining quantities are scaled as follows.

u
i = U û

i , p = P p̂ , (4.34)

where ·̂ denotes non-dimensional quantities and capital letters the scale. As it is the convention, we
drop the ·̂ notation from now on. The tangential momentum equations read
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Multiplying by ⌫�1
U
�1, plugging in the results from equations (4.31)— (4.33), and collecting terms

of order "2 gives

0=�
P"2

⇢⌫U
g
µ⌫@⌫ p + @ 2

3 u
µ
� 2"b

µ
⌫ @3u

⌫
� "b

⌫
⌫@3u

µ+O ("2) . (4.36)

We assume that shear stress exerted by the air ��ow and the pressure gradients are the dominating
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forces which gives

U =
⌧"
µ

, P =
⇢⌫U
"2

, (4.37)

where ⌧ is the shear stress exerted by the air ��ow and µ is the dynamic viscosity. Thus, the ��nal
equation is given by:
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Perpendicular equation
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Using the scaling factor P from equation (4.37) and expanding the metric terms in the pressure
gradient we ��nd the pressure terms to be of order O ("�4). Multiplying by "4 gives
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We now examine the remaining terms up to relevant order:
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The third component of the ��rst term of the vector Laplacian in equation (4.28) gives
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(4.42)
The expansion of the second term of the vector Laplacian given in the previous section for the
tangential momentum equation as given in (4.32) still holds for the perpendicular component.
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Finally, the third term:
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Plugging in the vector Laplacian in the coordinate frame x
i
, we obtain.

0= @3 p +O ("2) . (4.45)

4.2.3 Continuity equation

Under the incompressibility assumption, the continuity equation becomes merely a divergence-free
constraint on the velocity ��eld.
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In order to simplify this equation, we need to compute
p

det g where g is the covariant form of
the metric. Let us start by noting that the characteristic polynomial p

A
of a matrix A2M

n⇥n can
be written in terms of its trace and determinant according to Vieta’s formulas

p
A
(�) = (��)n + (��)n�1 trA+ c

n�2�
n�2
· · ·+ c1�+ detA , (4.47)

where c1, . . . , c
n�2 are other unspeci��ed coe���cients dependent on A. Using this relation, we can

express the determinant of a perturbed identity matrix by

det(I � "A) = (�")n p
A
("�1) = 1� " trA+O ("2) . (4.48)

Applying this relation to simplify the determinant of the metric gives

p
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∆
deta (1� "⌘H )+O ("3) . (4.49)

The determinant of the metric g depends on the perpendicular ⌘ component in a simple linear
fashion allowing us to integrate equation (4.46) analytically over the ��lm. For clarity, we discuss
the tangential and normal terms in expression (4.46) individually. On the one hand, evaluating the
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integral of the tangential components over the interval [⇣ ,⇣ + ⇠ ] gives
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↵@↵(⇣ + ⇠ )+
p
| ḡ |ū
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Let Q
↵ :=
R ⇣+⇠
⇣ (1� "H⌘)u↵ d⌘ which can be interpreted as the mass ��ux. This substitution

allows us to rewrite the expression in terms of the covariant derivative on the substrater
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On the other hand, the perpendicular component integrated over the ��lm reads
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which ��nally gives
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The expressions on the left-hand side are subject to the boundary conditions which we discuss in
the next section.

4.2.4 Boundary conditions

The boundary conditions close the system and incorporate the interaction between the ice layer
and the air ��ow. Firstly, we discuss the boundary conditions imposed on the tangential momentum
equation, and subsequently, we address the normal direction.
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Tangential momentum equation

Two boundary conditions are imposed: a no-slip constraint at the ice-water surface and a continuity
of surface stress at the free surface. The no-slip condition at the interface represented byM is given
by

0= hū|x̄↵i . (4.54)

Plugging in the basis vectors, we can simplify the previous expression to give
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Multiplying by ā
↵� yields

0= ū
� +O ("2) . (4.56)

A continuity of surface stress constraint is imposed at the free surface. This condition transfers
stress from the air ��ow to the water ��lm and causes the pushing of the water ��lm downstream. We
follow the work byMyers et al. (2002b) and ignore momentum transfer from the droplet phase to
the ��lm. Williams et al. (2012) investigated the e�fect of momentum transfer across the interface for a
constant impact angle and cylindrical symmetry but does not consider more general scenarios. Since
we focus on more complex geometries, we proceed with the assumptions of Myers et al. (2002b).
The boundary condition in coordinate-free form then reads
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ä
= ⌧̃
Ä
x̃µ⌦ ñ
ä

, (4.57)

where ⌧a is the deviatoric stress tensor of the air and ⌧̃ is the deviatoric stress tensor of the water
at the interface. In general, the deviatoric stress tensor is de��ned as the symmetric gradient of the
velocity ��eld:

⌧
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u

j
+r

j
u
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ä
, (4.58)

whereµ is the dynamic viscosity.

We now compute the tangential shear stress component of ⌧̃ in coordinate form. Similarly to
equation (4.27), we will ��nd a common factor of "�1 in the normal component. Therefore, we
multiply preemptively by " in order to obtain a leading order of "0. The shear stress tangential to
the free surface M̃ in the water ��lm is then:

⌧̃
i j
(d x

i
⌦ d x

j ) (x̃↵⌦ "ñ) . (4.59)
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In order to compute the shear stress in coordinate form the vectors ñ and x̃↵ are required in the
substrate coordinate system (4.6).

"ñ= "n+O ("2) = x3+O ("
2) , (4.60)

x̃µ = xµ+ (⇣ + ⇠ )µx3 . (4.61)

Applying the dual basis elements of T M̃ and the covector of the normal ñ to the basis vectors of
the substrate coordinate system (4.6) gives
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These factors can nowbe used to express the shear stress tangent to thewater-air interface in substrate
coordinates. Plugging equation (4.62) into (4.59) gives:
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Therefore, the only relevant components of the deviatoric stress tensor are
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(4.65)

Plugging expressions (4.64) and (4.65) into equation (4.63) we obtain
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Finally, using expression (4.66) on both sides of equation (4.57) gives a simpli��ed form of the
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continuity of surface stress condition which is given by

@3u
µ = g

µ⌫⌧a⌫3+O ("
2) . (4.67)

Perpendicular momentum equation

The surface tension of the free surface exerts a pressure into the thin ��lm which is governed by the
Young-Laplace equation (Frankel, 2011)

�p =�2� H̃ , (4.68)

where � is the surface tension and H̃ the mean curvature at the free surface. The mean curvature is
de��ned as the trace of the second fundamental form b̃ . Taking the trace of equation (4.25) gives
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This result is one of the signi��cant di�ferences of this derivation compared to a thin ��lm on a ��at
surface. The ��rst two terms take into account the curvature of the substrate. Therefore, it is possible
that the ��lm evolution is driven by surface tension even though the ��lm height is constant. A result
like this is not possible with the ��at substrate equations.

Finally, we arrive at the normal stress boundary condition at the free surface:

p̃ = pa� 2� H̃ . (4.70)

Continuity equation

Mass is conserved across ��uid interfaces. Considering two ��uids A and B separated by an interface I

the continuity of mass constraint becomes

⇢
A
hnI|vA

� vIi= ⇢B
hnI|vB

� vIi , (4.71)

wherenI is the normal of the interface, vI the velocity of the interface,⇢ the density andv thematerial
velocity. This boundary condition is applied at both the ice-water and the water-air boundaries. The
ice-water interface velocity is @

t
x̄ which simpli��es to

@
t
x̄ = "n@

t
⇣ . (4.72)
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Due to the no-slip condition given in equation (4.56), the tangential components of the water
velocity vanish and the continuity of mass equation becomes

ū
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⇣ +O ("2) . (4.73)

At the free surface M̃ , the continuity of mass condition is given by
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where ↵d⇢d is the liquid water content in the air and va is the velocity of the water droplets in the
air phase. Rearranged to solve for ũ

3 the equation reads.
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Plugging the boundary conditions (4.73) and (4.75) into the continuity of mass equation (4.53)
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(4.76)

This is the ��nal governing equation for the water ��lm which is used for the remainder of this chapter.
Finally, we need to ��nd expressions for the ��uxes Q

↵, which is discussed in the next section.

4.2.5 Integration of the governing equations

We can integrate the momentum equations analytically thereby reducing the governing set to one
equation. Under the thin ��lm assumption, the solution is well approximated by a linear expansion
in ":

u
µ = u

µ
(0) + " u

µ
(1) +O ("

2) , (4.77a)

p = p(0) + " p(1) +O ("
2) . (4.77b)

We can plug these expansions into the governing equations (4.38) and (4.45) and apply the bound-
ary conditions (4.56), (4.67) and (4.70). Collecting terms of varying order in " and listing them
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individually simpli��es the derivation.

Terms of order "0

Firstly, let us consider terms of constant order in ". The di�ferential equations are given by:

@ 2
3 u
µ
(0) = a

µ⌫@⌫ p(0) , (4.78a)

@3 p(0) = 0 , (4.78b)

(4.78c)

subject to the following boundary conditions:

p̃(0) = pa��H , (4.79a)

@3 ũ
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µ⌫⌧aµ3 , (4.79b)

ū
µ
(0) = 0 . (4.79c)

Note that equations (4.79b) and (4.79c) imply a shear stress singularity as ⇠ ! 0. This is a possible
scenario in icing applications and needs to be addressed, e.g. in cold conditions when rime ice is
building up. Diez et al. (2001) have found that the introduction of a precursor ��lm gives good
numerical results and is based on experimental evidence (Hansen and Toong, 1971; Ludviksson and
Lightfoot, 1968). We also implement the precursor framework to avoid the shear stress singularity.

Under the precursor assumption ⇠ > 0, we can integrate the governing equations. The constant
order solution is given by:

u
µ
(0) = g

µ⌫⌧a⌫3(⌘� ⇣ )� a
µ⌫ (@⌫ p(0))

(⇣ + ⇠ )(⌘� ⇣ )�

⌘2
� ⇣ 2

2

�
, (4.80a)

p(0) = pa��H . (4.80b)

Terms of order "1

The linear order equations are given by
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subject to the boundary conditions:
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Integrating the equations gives
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Mass fluxes

Using the approximations from the previous section, we can rewrite the mass ��uxes giving
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(4.84)

Equation (4.76) and (4.84) combine to give a fourth order non-linear PDE which governs the water
��ow. Three aspects di�ferentiate this model from others published in the literature. Firstly, no
assumption is made about the parameterisation of the substrate. Secondly, O (") terms are fully
included and, lastly, the equations allow the existence of another layer which is de��ned by ⇣ such as
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an ice layer.
Our system reduces naturally to theMyers et al. (2002a) model by assuming b to be diagonal

and truncating O (") terms. Moreover, we can recover the governing equations of Thi�feault and
Kamhawi (2006) by setting ⇣ = 0 and ⌧ = 0.

4.2.6 Summary of the physical processes in the water film

Before we turn to the numerical solution of the governing equations, we brie��y summarise and give
some physical intuition for the previous derivation.

One of the foundational assumptions was that the ��lm remains thin. In other words, we neglect
second and higher orders of " i.e. the ratio of the ��lm height over the ��lm extent. Moreover,
we assumed that inertial forces are negligible or that Re"2 remains small. These assumptions are
common in the ice accretion literature (Myers et al., 2002a; Bourgault et al., 2000a).

The boundary conditions between the water and the ice, and the water and surrounding air
drive the dynamics of the ��lm. The motion of the ice-water interface is assumed to be known. In
section 4.7, we will derive a governing di�ferential equation for the interface dynamics based on the
Stefan approach.

We impose a continuity of stress condition onto the water-air interface. This introduces three
driving forces: surface tension, air pressure gradients and air shear stress. The air shear stress is the
main driving factor when the ��lm is very thin as its contribution scales with the square of the ��lm
height whereas all other forces scale with the cube (see equation (4.84)). The surface tension and
air pressure gradient forces arise from to the continuity of normal stress. The forces due to surface
tension are proportional to the mean curvature of the water-air interface. Contrary to ��ows on a
��at plate where the curvature is approximated by the second derivative, it is important to also take
into account the curvature of the underlying substrate. The combined mean curvature is given in
equation (4.69).

These assumptions and boundary conditions make it is possible to integrate the expanded
Navier-Stokes equations over the ��lm height to give a signi��cantly simpli��ed governing equation
for the dynamic of the water ��lm.

4.3 Numerical methods for the water film

The PDE for glaze ice, discussed in the previous section, exhibits features such as non-linearities and
high order derivatives which pose challenges to numerical solvers.
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Each term contributes to the governing equations in a di�ferent way. We decompose the ��ux
into two parts: an explicit Qexp and implicit part Q imp. The explicit part contains all terms with
no derivative of ⇠ or ⇣ and the implicit ��ux is made up of the remainder. Consequently, the explicit
and implicit portions of the ��uxes are given by
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(4.85)
The terms of the ��ux containing ⌧ model the shear stress. The quadratic dependency on the state
variable ⇠ resembles the ��ux of the inviscid Bateman-Burgers equation and is capable of introducing
discontinuities into the solution. Terms containing p arise from the surface tension forces and have
derivates in them. These expressions add signi��cant sti�fness to the problem and require implicit
solvers. We use a splitting methodology to employ the most suitable solver for the individual ��uxes:
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Source portion:
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4.3.1 Explicit portion

The explicit portion is solved using a high-resolution method. Contrary to air and droplet ��ow, the
Riemann problem for the explicit portion of the ��ux is not solved e���ciently. Therefore, we fall back
to centredmethods. In this work, we use the Slope Limited Centred ��uxmethod(SLIC) as presented
in Toro (2009) with a superbee-type slope limiter. The superbee-type slope limiter favours a higher
order of reconstruction which gives higher accuracy at the cost potentially spurious oscillation.
We have not found any signi��cant oscillations which stem from the ��ux method and therefore
employ the higher accuracy superbee limiter. This part of the splitting step tends to dominate the
time step restriction. But we have not found the explicit nature of this scheme to be restrictive to
computational performance for icing applications.
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4.3. Numerical methods for the water ��lm

4.3.2 Implicit portion

The implicit portion contains derivatives up to fourth order and non-linearities making this a
challenge to solve numerically. Myers et al. (2002b) published results solving this system explicitly.
However, they found that the time step restriction imposed by the high derivatives is too severe
and concluded that an implicit methodology is better-suited (Myers et al., 2002a). Due to the
non-linear terms, the discretisation cannot be reduced to a system of linear equations. Myers et al.
(2002a) circumvent this restriction by only treating the linear terms implicitly and approximate the
non-linear quantities at t +�t by their value at t . We follow their strategy and employ an implicit
methodology. However, we also discretise non-linear terms implicitly.

For the time discretisation, a Crank Nicolson scheme is used, which reads

⇠ n+1
� ⇠ n

�t
+

1
2

⇣
r ·Q imp

���n + r ·Q imp

���n+1⌘
= 0 . (4.87)

The spatial discretisation of the fourth order derivative requires a comparatively large 5-point
stencil in 1D. The computer algebra system SymPy developed by Meurer et al. (2017) is used to
aid the error prone implementations of high order ��nite di�ference approximations. The software
can automatically convert symbolic expressions containing partial derivatives into ��nite di�ference
representations. This method of lines approach requires ��nding the root of equation (4.87) for every
grid cell where the spatial di�ferences depend on the neighbouring cells. The Trust-Region Method
for Non-linear Equations is one of themost widely used and practical root ��ndingmethods (Nocedal
andWright, 1999, p. 299). An approximate root is found using theDogleg method (Nocedal and
Wright, 1999, p. 300). Subsequently, the solution is checked against the actual problem and the
trust region is adjusted based on the quality of the approximation. This process is done iteratively
until the root is found. The method is based on the Newton-Raphson method and requires the
Jacobian of the system. Due to the fourth derivative, the spatial discretisation requires a relatively
wide stencil making the derivation of the Jacobian cumbersome and error-prone. SymPy is used
again to compute the Jacobian automatically.

We accept an approximation if the absolute residual (left hand side of equation (4.87)) is less
than 10�20 or the relative residual less than 100" where " is machine precision. We have found
that the root ��nder converges within a few iterations. Given a time step from the explicit solver, an
acceptable approximation to the root is typically found in less than 10 iterations.
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Chapter 4. Modelling thin water ��lm freezing

4.4 Validation tests for the water film

This section presents various tests to assess the correct implementation of the numerical solvers
which were introduced in section 4.3. Myers et al. (2002b) devised validation cases relevant to aircraft
ice accretion. We start by studying the water ��ow only. The setup is illustrated in ��gure 4.3. The ��rst
test assesses the capability of resolving capillary ridges under shear stress and the second introduces
gravity as a competing driving force.

Air
Droplets

'

Figure 4.3: Illustration of the setup of the ��at plate validation case. The incoming droplet distribution is bell
shaped. Air ��ow parallel to the ��at exerts a shear stress onto the water ��lm. The plate is inclined
by an angle ' and gravity acts downwards.

Variable Symbol Value
Surface tension of water-air interface � 0.727 Pa

Density of water ⇢w 1000 kgm�3

Density of ice ⇢i 898 kgm�3

Dynamic viscosity of water µw 1 mPas
Latent heat Lf 334.4 kJkg�1

Thermal conductivity of water kw 0.571 Wm�1 K�1

Thermal conductivity of ice ki 2.18 Wm�1 K�1

Speci��c heat capacity of water cw 4192 Jkg�1 K�1

Magnitude of gravitational acceleration kgk 10 ms�2

Table 4.1: Physical constants used for the validation of the thin water ��lm and ice solver.

The values of the physical parameters that were used in the simulation are tabulated in 4.1. In
all of the test cases, the water droplet distribution on the surface follows a Gaussian pro��le centred
around the origin given by

⇢dhvd|ni=�0 exp(��x
2) , (4.88)
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4.4. Validation tests for the water ��lm

where�0 = 5⇥ 10�2 kgm�2 s�1 and �= 460m�2. A precursor ��lm of height 5µm is introduced
to avoid a shear stress singularity at the beginning of the simulation.

Flat plate

The ��rst test case simulates impinging droplets on a ��at plate driven by free surface shear. A constant
stress of ⌧ = 0.5Pa is introduced. Balancing the surface tension and shear stress forces, this type
of ��ow typically features a capillary ridge (Kataoka and Troian, 1997). The equations are spatially
discretised on a computational grid of 700 cells.
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Figure 4.4: The water height is plotted over the spatial extent of the ��lm for T = 15s. After initial growth
of the ��lm a quasi-steady state is reached. The shear stress ��ux increases with ⇠ 2 balancing the
incoming water droplets when the equilibrium height is reached. A capillary ridge is formed at
the contact line as expected for this type of ��ow.

The results of this test are illustrated in ��gure 4.4. Initially, water accumulates on the surface
and the ��lm height increases producing a Gaussian pro��le. As ⇠ grows the shear stress ��ux increases
as well pushing the ��lm to the right. Eventually, the shear stress ��ux and the water droplets ��ux
balance and an equilibrium height is attained. The shear stress ��ux is a Burger-like ��ux introducing
a discontinuity at the contact line which is countered by the surface tension forces producing a
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Chapter 4. Modelling thin water ��lm freezing

capillary ridge. The bulk height, as well as the ridge height, agrees well with the validation results by
Myers et al. (2002b).

Inclined flat plate

The second test case introduces gravity as a competing driving force to the shear stress. The derivation
of the thin ��lm model from section 4.2 did not include gravity terms since an expression for the
gravity ��ux was already found by Thi�feault and Kamhawi (2006). The gravity ��ux is given by

Q
µ
g =

⇠ 3

3
�
(1� "H⇠ )gµ� "b

µ
⌫ g
⌫⇠ + "g3a

µ⌫@⌫⇠
�

, (4.89)

where g is the gravity vector and not to be confused with the metric. The ��at plate is inclined at
an angle of 20°. The same grid spacing as in the previous test case is used giving a computational
domain of 600 cells.
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Figure 4.5: A thin water ��lm driven by surface shear stress and gravity on an inclined ��at plate. A ��ux of
incoming water droplets initially increases the ��lm height. The shear stress ��ux pushes the ��lm
along the positive coordinate direction as the ��ux grows with ⇠ 2. After the ��lm grows even further
the e�fects of gravity are visible which pulls the ��lm into the opposite direction. Eventually, an
equilibrium is reached resulting in a quasi-steady state.
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Figure 4.5 presents the results of this test case. A quasi-steady state, similar to the previous
simulation, is reached. This time the shear stress is pushing the ��lm along the positive substrate
direction and gravity is forcing in the opposite direction. Again, we observe good overall qualitative
agreement with the results published byMyers et al. (2002a).

4.5 Importance of O (") terms

In this section, we study the importance of ��rst-order terms of the thin ��lm approximation. Myers
et al. (2002a) neglected some of the linear terms and only retained "-terms appearing in the free
surface curvature expression. In section 4.2, we have generalised the thin ��lm model of Myers et al.
(2002a) to consistently include terms of order ". We present a test case demonstrating the advantages
of retaining linear terms in the thin ��lm approximation.

Evans et al. (2004) studied the coating ��ow of a rotating cylinder. As part of their study, they
presented results for a water drop forming on the underside of a static horizontal cylinder. The
existence of an analytic expression for the water height makes this an ideal test case to demonstrate
the contribution of ��rst-order terms. We continue by introducing the case of a non-rotating cylinder
as illustrated in ��gure 4.6.

(a) t = 0 (b) t !1

Figure 4.6: Illustration of a test case for assessing the importance of O (") terms. A cylinder is coated by a
water ��lm of uniform height. The cross section of the cylinder is illustrated by a grey circle and
the free surface of the water ��lm by a blue solid line. Initially, gravity forces pull down the water
��lm forming a drop thereby increasing the curvature of the free surface. Eventually, the surface
tension forces are balanced with gravity and an equilibrium is reached. An analytical expression
for the maximum height of the equilibrium ��lm can be derived as done by Evans et al. (2004).

In equilibrium, the water column is supported by the pressure arising from the surface tension
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Chapter 4. Modelling thin water ��lm freezing

at every point. Based on this observation, Evans et al. (2004) derived an ODE which describes the
��lm surface. The problem is non-dimensionalised by a characteristic length lc based on the capillary
length which is de��ned by:

lc =
vut �
⇢w g

. (4.90)

Given a cylinder of a radius R= 10lc and an initial uniform water ��lm height h0 = 0.002109R, we
expect for the maximumwater ��lm height hmax = lc/2.

We set up a numerical experiment to compare the Myers model (see (4.2c)) and our set of
equations given in (4.84). The computational domain consists of 400 cells along the cylinder surface
as in Evans et al. (2004). Periodic boundary conditions are speci��ed at the domain edges. The
simulation is run to a dimensional time of T = 2000s and the physical parameters given in table
4.1 were used. Due to the long simulation time and small length scale the time step of the splitting
strategy, as introduced in (4.86) and used in the rest of this work, severely limits the computational
performance. Moreover, since the solution to this problem does not contain discontinuities a shock-
capturing high-resolution method is not required. We, therefore, combine the explicit and implicit
��ux into a single expression and solve it implicitly for this test case. This allows us to advance the
solution at much larger time steps, improving computational performance signi��cantly.

The results are illustrated in ��gure 4.7. Our newmodel produces data in excellent agreement
with the analytical results. On the other hand, the Myers model underpredicts the equilibrium
surface curvature. This results in a maximum height lower than the analytical value. Since we do
not track the contact line explicitly (Diez et al., 2001), we cannot directly compare the wetted surface
areas. However, the area of noticeable ��lm height is signi��cantly larger in the Myers model than
the analytical solution and our model. The runtime of both models is comparable. Based on these
results, we conclude that our novel set of equations models a broader range of conditions while not
noticeably increasing run time.

4.6 Flow on a two-dimensional plate

Finally, a two-dimensional showcase is presented. It is a two-dimensional extension of the ��rst
test case considered in section 4.4. Water impinges following a Gaussian pro��le. A constant free
surface shear stress pushes the water downstream. Due to the unstable nature of this kind of ��ow the
results are not expected to be the same as in the one-dimensional case. Global properties of these
instabilities such as average ��nger width and velocity could also be used to validate the model and
the numerical implementation. However, we have not performed such validation and it remains an
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Figure 4.7: Results for the test case for assessing the importance of O (") terms. A close up of the underside
of the cylinder is shown. The cylinder cross-section is the solid grey region. The free water surface
for the Myers model which truncates O (") term is plotted in blue. The orange line represents
the results obtained with our set of equations which truncates O ("2). The green line shows the
analytic solution. The analytic maximum height is plotted as a dotted horizontal line.

item of future work. This experiment illustrates the advantages of a thin ��lm approach that includes
surface tension terms. The results are illustrated in ��gure 4.8. Phenomena such as ��nger formation
can be captured which is not possible with SWIM.
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(a) t = 0 s (b) t = 3 s

(c) t = 6 s (d) t = 9 s

(e) t = 12 s (f) t = 15 s

Figure 4.8: Two-dimensional thin water ��lm on a ��at plate
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4.7 Generalisation for independent droplet temperatures

Following the study of the water ��lm, we turn to the discussion of the ice layer. A time evolution
equation describing the ice growth can be formulated by considering conservation of energy across
the ice-water interface, i.e. a Stefan condition. This approach has been widely used to describe
the free surface of a phase transition (Leppäranta, 1993; Kim et al., 2006; Hu and Argyropoulos,
1996; Danilyuk, 1985) and was also applied to atmospheric ice accretion byMyers and Hammond
(1999) and Myers et al. (2002a,b). A Stefan condition states that the energy which is required to
move the interface (i.e. the latent heat) is supplied by heat ��uxes from either phase of the interface.
Application of the Stefan condition to the ice-water interface gives

h�⇢iHi@t
x̄ �⇢wHw(vw� @t

x̄)|n̄i= hkirTi� kwrTw|n̄i , (4.91)

where k is the thermal conductivity2 andH enthalpy3. TheStefan condition establishes a relationship
between the time evolution of the water-ice interface @

t
x̄ and the temperatures in both phases Ti

and Tw. This equation can be signi��cantly simpli��ed by applying the thin ��lm assumption (i.e.
"⌧ 1). Using conservation of mass across the interface (see equation (4.73)) and the de��nition of
the interface normal n̄ the expression reads in substrate coordinate form

"2⇢i(Hw�Hi)@t
⇣ = ki@3Ti� kw@3Tw� "

2
a
↵�⇣�(ki@�Ti� kw@�Tw)+O ("

3) . (4.92)

We keep "2 terms if other non-geometrical scaling factors appear. Terms containing "2 and higher
orders are only truncated if " is the only scaling factor. We, therefore, retain the @

t
⇣ term and

truncate the tangential derivate terms giving

St @
t
⇣ = @3Ti�

kw

ki
@3Tw+O ("

2) , (4.93)

where we have introduced the Stefan number St which is de��ned by

St= "2⇢i(Hw�Hi)
ki

. (4.94)

The heat ��uxes on the right-hand side of equation (4.93) are determined by considering temperature
di�fusion. The Peclet number Pe is typically between 10�4 and 10�2 (Myers et al., 2002a) and is

2Note that the upright subscript ·i denotes ice quantities whereas a slanted subscript ·i denotes a summation index
3The enthalpy is not to be confused with the mean curvature which is used earlier in this chapter
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neglected. The thin ��lm heat di�fusion equation simpli��es to

@ 2
3 Tw = O ("

2,Pe) , @ 2
3 Ti = O ("

2,Pe) , (4.95)

subject to boundary conditions. The model for the temperature in the ice layer Ti is closed by
Dirichlet boundary conditions on either side of the layer which are given by

T̄w = T̄i = Tf , T i = Ts , (4.96)

where Tf is the freezing Temperature assumed to be 273.15K, and Ts is the substrate temperature.
The temperature in the water layer Tw requires an additional condition since the water temperature
at the free surface T̃w is unknown. The system can be closed by imposing a Neumann condition
describing the heat exchange with the surroundings. The boundary condition is given by

@3T̃w =Q(T̃w) , (4.97)

where Q is the heat ��ux at the free surface. So far, the derivation of the time evolution equation
for the ice layer in this section has followed the work byMyers and Hammond (1999). In order to
integrate the extra information about the droplet temperatures from chapter 2 an extension of the
Myers system is required.

4.7.1 Heat exchange at the free surface

The secondboundary condition accounts for the heat exchangeQ with the surroundings. Numerous
heat exchange mechanisms have been suggested in literature (Verdin, 2007). Icing packages have
included di�fering subsets. A typical choice is to include kinetic energy of the droplets, droplet
cooling, convective heat exchange, aerodynamic heating and evaporation (Poots, 1996) giving

Q =Qk�Qd�Qc+Qa�Qe , (4.98)

where the individual terms on the right-hand side are de��ned as follows:

Kinetic energy: The amount of energy released as the droplets impinge. The expression reads

Qk = ⇢dhvd|ñi
kvdk

2

2
. (4.99)

Droplet cooling: The energy required to heat the supercooled droplets to ��lm temperature is given
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by
Qd = ⇢dcwhvd|ñi(T̃w�Td) . (4.100)

Convective heat exchange: The energy transferred by convection to the surrounding air ��ow reads

Qc = hc(T̃w�Ta) . (4.101)

Aerodynamic heating: The heat created by skin friction is given by

Qa =
r hckvak

2

2cpa
, (4.102)

where r denotes the local recovery factor as given byMyers and Hammond (1999).

Evaporation: Heat loss due to evaporation is given by

Qe = �e(e(T )� e(Ta)) , (4.103)

where e is the saturation vapour pressure and � is the evaporation coe���cient. Empirical data
is available for the temperature dependency of the saturation water pressure (Smi, 1918). A
commonly used approximation in atmospheric icing applications (Myers and Hammond,
1999; Poots and Skelton, 1992) empirically ��ts a sixth order polynomial (Lowe, 1976). The
linear approximation is su���cient for a small temperature range. The vapour pressure is given
by

e(T ) = e(0) + e(1)(T �T0)+O (T̃w�T0)
2 . (4.104)

The heat exchange term can be written as a constant factor and a temperature di�ference in
accordance with the other terms. The ��nal expression is given by

Qe = �ee(1)(T �Ta)+O (T �T0)
2 , (4.105)

where e(1) is the derivative of e evaluated at a, for icing purposes, appropriate temperature T0.

Consequently, the Neumann boundary condition can be written as

@3T̃w =�a(0) + a(1)(T̃w�Ta)+ a(2)(T̃w�Td) , (4.106)
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where

a(0) =
r hckvak

2

2cpakw
+⇢dhvd|ñi

kvdk
2

2kw
,

a(1) =
hc+�ee(1)

kw
,

a(2) = ⇢dhvd|ñi
cw

kw
.

(4.107)

Integrating equation (4.95) with boundary conditions (4.96) and (4.106) gives

Tw = Tf+
a(0)� a(1)(Tf�Ta)� a(2)(Tf�Td)

1+ (a(1) + a(2))⇠
(⌘� ⇣ ) . (4.108)

The solution to the di�ferential equation for the temperature in the ice layer is simpler since two
Dirichlet boundary conditions are imposed. The solution is given by:

Ti = Ts+
⌘
⇣
(Tf�Ts) . (4.109)

For the special case of Td = T
1

we recover the solution byMyers et al. (2002b).

Free boundary problem

The Stefan problem (4.93) describes themotion of the ice-water interface. Plugging in the expressions
for ice temperature (4.109) and water temperature (4.108), we obtain a di�ferential equation for the
ice height ⇣ given by

@ ⇣
@ t
=

a(3)

⇣
�

a(4)

1+ (a(1) + a(2))⇠
, (4.110)

where we have introduced new substitutions to aid conciseness:

a(3) =
ki(Tf�Ts)
⇢iL

,

a(4) =
kw

Ä
a(0)� a(1)(Tf�Ta)� a(2)(Tf�Td)

ä

⇢iL
.

(4.111)

The symbolL denotes the latent heatwhich is de��ned byL=Hw�Hi. This result is a generalisation
of the approach initially presented by Myers and Hammond (1999) since it also includes the droplet
temperatures.
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4.7.2 Numerical methods for the ice layer

The ice layer is governed by a simple ODE and is integrated with a 4th order Runge Kutta scheme.
However, special care needs to be taken at the transition between rime and glaze ice.

Rime-glaze ice transition

The update (4.86c) of the splitting routine (4.86) includes the ice and water layer growth due to
incoming droplets and the exchange between the phases. So far, we have not discussed the situation
where the substrate temperature Ts is very low or the heat ��ux onto the surface is too small to heat
the supercooled droplets above the freezing temperature Tf. In this case, no water ��lm is present
and the rime ice equations are used. Instead of determining at what point the transition between
rime and glaze icing occurs Myers et al. (2002a) make use of the presence of the precursor ��lm. The
precursor ��lm is introduced to avoid the shear stress singularity if ⇠ = 0. A small ��lm height ⇠p

(typically on the order of 1µm) is introduced everywhere in the domain.

If the solution to equations (4.86c) and (4.110) yields ⇠ < ⇠p then mass is transferred to the ice
phase. In this case, the state is reset and the rime ice update, given by

@
t
⇣ =�

⇢w

⇢i
vd ·n , (4.112)

is used. The update is linear and therefore solved exactly with a simple Euler forward method.

At the transition between rime to glaze ice, this approach violates conservation of mass. We
apply the water ��ux to the ice phase in rime regions if the neighbouring cell is a glaze ice cell.

4.7.3 Summary of the physical processes in the ice layer

In section 4.2, we derived the governing partial di�ferential equation for the water ��lm assuming
that the motion of the ice-water interface is known. In this section, we have derived a time-evolution
equation for the ice layer height (see equation (4.112)).

It is based on the Stefan free boundary problem and requires the knowledge of the heat ��uxes
on both sides of the interface. The energy balance typically consists of kinetic energy, cooling of the
droplets, convective heat exchange, aerodynamic heating and evaporation. Moreover, heat advection
is neglected in the derivation which is reasonable given a typical Peclet number Pe of less than 10�2.
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4.8 Icing of a flat plate

We present a validation test for the full ice accretion model including the phase transition to an ice
layer. The setup of the problem is similar to the once considered in section 4.4. A Gaussian water
droplet distribution (4.88) impinges on an inclined ��at plate. In this test case, the substrate is at a
temperature ofTs = 272Kwhich causes the water to freeze. The free stream air and droplet ��ow are
in equilibrium and no heat exchange between the phases is assumed. The free stream temperature is
set to Ta = Td = 270.5K. The remaining physical constants are tabulated in 4.1. The ��at plate is
discretised on a mesh of 700 cells.
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Figure 4.9: Ice and water ��lm on an inclined ��at plate after 60s. The di�ferent shape of the capillary ridge,
compared with previous results, is due to the underlying ice layer which alters the curvature of the
��lm.

The numerical solution is illustrated in ��gure 4.9 after an ice accretion time of 60s. Due to the
thin ice layer and subzero substrate temperature the water droplets impinge and freeze immediately.
As the accretion grows, the ice acts as an insulator and the surface temperature reaches 273.15K
where liquid water appears. Similarly to the test cases from the water ��lm section, gravity and
shear stress forces dominate the water dynamics. Except for regions of steep gradients where surface
tension forces cause a capillary ridge. The surface tension forces are proportional to the curvature of
the free surface. Since the water ��lm exists on top of the ice layer, the curvature of the ice contributes
to the surface tension forces at the free surface. This manifests in a double capillary ridge and could
not be captured with a model that assumes surface curvature to be negligible. Overall, we observe
an excellent qualitative agreement with the results published byMyers et al. (2002b).

Finally, we study the e�fects of independent droplet temperatures on the ice shape. To this
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end, we use a high droplet temperature increase of 4K over the free stream temperature, i.e.�T =
Td�Ta = 4K. In an ice accretion situation, this increase is due to the heat exchange with the air ��ow
as the air temperature rises near stagnation points (see chapter 2). Otherwise, the setup is identical
to the previous test case.

The results are presented in ��gure 4.10. The illustration compares the ice shape for�T = 0K
and�T = 4K. We observe a larger area of ice growth when the droplet temperature is increased.
This is due to higher internal energy of thewarmer dropletswhich causes awater ��lm to appear earlier.
The ��ux of the water layer grows with the ��lm height. Therefore, the preferred state corresponds to
minimal water height.
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Figure 4.10: Ice and water ��lm on an inclined ��at plate after 60s for di�ferent droplet temperatures. The
higher droplet temperature has an e�fect on the resulting ice shape. The area of the ice growth is
larger since water appears earlier due to added energy by the heat capacity of the droplets.

4.9 Conclusions

Following a literature review, we have concluded that a lubrication theory based methodology ��ts
best with our framework while promising accurate results, albeit, the model might fail for thicker
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��lms. Systems that model the whole spectrum constitute an interesting direction for future research
but are deemed not mature enough to be used in a full ice accretion simulation at this point.

We extended the lubrication theory approach to a more general class of surfaces and also im-
proved the order of the series approximation. Thenewmodelwas validated against existingnumerical
results where available. The e�fects of the improvements were demonstrated by comparing our
novel model and systems from the literature with analytical results. We observe excellent agreement
between our model and the exact solution.

Subsequently, the phase transition calculation was extended to account for independent droplet
temperatures. A showcase study using a typical droplet temperature deviation of 4K produced a
signi��cantly di�ferent ice shape.
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Chapter 5

The full in-flight ice accretion simulation

with a continuously deforming interface

In the ��nal chapter, we present results for the full in-��ight ice accretion software. Following the
introduction of the modules for the air and droplet ��ow in chapter 2, boundary layer model in
chapter 3, and the thin ��lm dynamics in chapter 4, we combine them to give a novel methodology
to study atmospheric ice accretion on aircraft.

5.1 Introduction

We begin the chapter by validating our code using a static rigid body interface against results from
literature. In this case, the air and droplet ��ow is only computed once and the solution is assumed to
remain valid throughout the ice accretion process. Many di�ferent simulation suites have been devel-
oped over the last decades and in the year 2000, the research branch of the National Atlantic Treaty
Organization (NATO) the Research Technology Organization (RTO) sponsored an international
task group to determine the state of the art of numerical ice accretion prediction. They published a
series of test cases (Kind, 2001) which we use as benchmarks to assess the numerical performance of
our methodology.

Section 5.2 presents results for two of the most di���cult test cases and we ��nd good agreement
between our prediction and literature. Most ice accretion software takes into account the e�fect of the
growing ice layer on the air ��ow by updating the shape of the rigid body. This is a computationally
expensive operation for boundary following approaches and, hence, only done infrequently. Our
Cartesian mesh based methodology is able to produce a mesh much faster making it possible to
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continuously update the rigid body as it evolves. The implementation of this approach is described
in section 5.3. Having validated the moving boundary approach in section 5.3.4, we present results
of a showcase study of a NACA 0012 aerofoil in section 5.4. Comparisons are drawn with static
methods and we ��nd that changes in the curvature of the interface have a signi��cant e�fect on the air
temperature and, consequently, on the ice shape.

5.2 RTO/NATO validation test cases for static meshes

A signi��cant number of leading companies, research institutions and national agencies in aeronautics
and astronautics such as NASA, Boeing, Airbus, Fokker and British Aerospace participated in the
RTOworkshop. Robustness and accuracy were identi��ed to be the main subjects of assessment. 18
core (C1 - C18) and 13 optional (O1 - O13) test cases were de��ned. Participants could submit results
for each test case, however, the experimental data was only published afterwards. The test cases
were mainly glaze ice or mix-icing types which are the most di���cult ones to predict. Kind (2001)
published a ��nal report where the submissions were assessed using the following grades given in
order of performance

1. Poor/Unsafe,

2. Poor/Safe,

3. Poor,

4. Fair/Safe,

5. Fair/Good,

6. Fair,

7. Good/Fair and

8. Good.

Kind (2001) also noted that the consistency of ice shapes from experimental results needs to be
investigated. Nevertheless, the results from this workshop constitute ideal validation data for a novel
full ice accretion simulation.

We compare our ��ndings against the submissions from established packages such as results
from Gent et al. (2000) using TRAJICE2, Wright (2000) using LEWICE2.0, Paraschivoiu et al.
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(2000) using CANICE and Simon (2000) using the ONERA software. Unfortunately, not every
participant has submitted results for every test case. Furthermore, a signi��cant number of test cases
concern phenomena which are beyond the scope of our models such as SLD icing and ice accretion
of helicopter rotor blades.

We selected the di���cult cases C4 where all software ranked poor, and O5 where all except one
achieved poor agreement.

5.2.1 Core data case 4

The core test case 4 (C4) is a ��ow over a NACA 0012 aerofoil with a chord length of 0.45m. A
free stream pressure of 99.6kPa, a free stream temperature of 270.2K and a free stream velocity
of 77.2ms�1 was speci��ed. A water droplet phase with a liquid water content of 0.44gkg�1 was
introduced. The droplets were modelled using a Langmuir D distribution with a median volumetric
diameter of 18µm. The extent of the ice and water layers are recorded after T = 300s. The AMR
method was setup to give approximately 500 cells along the chord. The ice accretion is illustrated in
��gure 5.1. Our results are compared to data from experiments, TRAJICE2 and ONERA. CANICE
submitted also resulted but they are almost identical to the ONERA software and therefore omitted
in the plot.

In summary, none of the simulations can predict the experimental ice shape accurately. Although
the ice extent is well captured by Gent (2000), the stagnation point thickness and the overall ice mass
are signi��cantly underpredicted. The numerical experiments by Simon (2000) overestimate the
water runback notably. The stagnation point ice thickness is underpredicted as well as the ice mass.
Our results perform similarly to existing icing codes. The stagnation point thickness is slightly more
accurate but the overall shape and ice mass still show signi��cant deviation from experiments. The
general trend of overestimating runback points to an issue with the representation of the driving
forces in the thin ��lm. In particular, a more accurate modelling of the boundary layer transition
could improve results. It is also worth reemphasizing that our ice growth model is based on the
assumption of thin accretions. The thickness ratio " of the ice shape in ��gure 5.1 is 0.058 and is on the
large end for the thin ��lm assumption. Aspect ratios of the order 10�3 are exceeded after accretion
times of 60s. They remain of the order 10�2 for accretion times on the order of minutes. This also
highlights the advantage of a truncation order of O ("2) as we proposed in the previous chapter.
Truncation orders of O ("), as it was done previously, may introduce signi��cant approximation
errors for long accretion times.
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Figure 5.1: Comparison of numerical predictions and experimental results for the ice accretion for the NATO
C4 test. The leading edge of a NACA 0012 is plotted in solid black. The experimentally obtained
ice shape is shown in blue. Results from ONERA and TRAJICE2 are compared to our data.
Paraschivoiu et al. (2000) using CANICE also submitted results for this test case but they are very
similar to the predictions fromONERA.

5.2.2 Optional data case 5

The second validation study is the O5 case from the RTOworkshop. A ��ow over a small cylinder
with a diameter of 6.4cm was considered. Similar ��ow conditions to the previous test are used.
A free stream pressure of 99.6kPa, a free stream temperature of 270.2K, a free stream velocity of
77.2ms�1 and a liquid water content of 0.44gkg�1 was speci��ed. The droplet diameters follow
the one parameter Langmuir D distribution with a median of 18µm.

Similarly to the previous case, this test is considered to be di���cult to predict accurately. In
the ��nal report by Kind (2001), only TRAJICE2 achieved a fair rating the remaining submissions
were graded poor or worse. The results are presented in ��gure 5.2. The predictions by ONERA
show signi��cant overprediction of water runback and underprediction of the stagnation point ice
thickness. The submissions by TRAJICE2 perform better. The stagnation point thickness is only
slightly smaller than experimental data and the ice extent, as well as the total mass, is underestimated.
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Our results show a signi��cantly improved stagnation point thickness and also the total ice mass and
the ice extent a better captured. Given the passing grade of fair for the results by Gent (2000) we
consider our prediction to be at least as good.
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Figure 5.2: Comparison of numerical predictions and experimental results for the ice accretion for the NATO
O5 test. The leading edge of a cylinder is plotted in solid black. The experimentally obtained ice
shape is shown in blue. Results fromONERA and TRAJICE2 are compared to our data.

5.3 Extension for continuously deforming bodies

So far, we have only presented results for static meshes. The air and droplet solution was computed
once and assumed to be valid throughout the ice accretion process. This is, in general, an injudicious
assumption since the growing ice can have signi��cant e�fects on the air ��ow.

Almost all of the icing software has the ability to incorporate the changing geometry into the
process. Themost popular approach is to let the user specify a remeshing time step. This approach is
used byTRAJICE2, CANICE andLEWICE2.0 (Kind, 2001). Typically, approximately 10 remeshing
steps are performed.

Mingione and Brandi (1998) developed a less user dependent approach based on physical quan-
tities for the MULTIICE software. The methodology is essentially a predictor-corrector approach.
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Dima and Brandi (2000) presented the results using the predictor-corrector multi-stepping at the
RTOworkshop. The predictor-corrector approach was later also implemented for ICECREMO
by Verdin (2007) in his PhD thesis. Verdin et al. (2009) and Verdin and Charpin (2013) published
comprehensive validation results. After every remesh operation, the air and droplet solver is run to
steady state. Verdin (2007) concludes that this is a prohibitively expensive procedure for frequent
remeshing.

Leese (2010) proposed a methodology based on a continuously deforming mesh. The imple-
mentation is based on the overlapping grid library Overture developed by Henshaw (2002). Leese
(2010) was able to compute a continuously evolving ice accretion, albeit, only for a cylinder or simple
rime ice conditions. More challenging test cases such as glaze ice on an aerofoil, e.g. the RTO test
case C4, cause a distorted boundary following mesh which resulted in robustness issues.

This work is based on a Cartesian cut-cell approach which is able to compute the ��ow around
complex geometries. It is therefore ideally suited to cope with the challenging geometries arising
from ice growth.

5.3.1 Boundary treatment for deforming bodies

This section introduces the approach of extending the LPFS method presented in section 2.3.3 to a
moving boundary. Bennett et al. (2018) extended the KBN cut-cell method to moving rigid bodies.
Their approach extends a general split ��ux stabilisation cut-cell methodology to rigid bodies and
is therefore also applicable to the LPFS method. Bennett et al. (2018) validated their approach for
an oscillating NACA 0012 aerofoil against experimental results which is a relevant test case for our
application.

The moving boundary methodology requires two input parameters. Firstly, the signed distance
��eld at the current time step and, secondly, the velocity of the interface. The signed distance ��eld is
computed using the Characteristic Scan Conversion (CSC) algorithm by Roosing et al. (2018) for
the polygonised geometry. The CSC algorithm is explained in more detail in appendix A. The
polygon approximating the iced substrate is de��ned to be the union of the substrate polygon and
the sequence of vertices which de��ne the free surface. The substrate polygon is de��ned in section
A.1.1.

The signed distance ��eld at the next time step is approximated by advecting the 0-level set using
the current interface velocity which is given by @

t
x̃ .
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5.3.2 Summary of modules and algorithms of the full continuous ice accretion software

A high-level overview of the software employed during this project is illustrated in ��gures 5.3 and 5.4.
The initial setup which comprises the computing of the interfaces and applying of the initial

conditions is done in parallel. A load balancer redistributes patches across all processors to optimise
parallel performance. An explicit time marching method is used for the air and droplet ��owwhich is
conditionally stable. Therefore, a stable global time step has to be found which depends on the cell
size and the wave speeds. The stable global time step is found by reducing the local time step over all
the data patches of the whole domain. If ��ner AMR levels exist, the update routine is repeated for
all ��ner levels. After all levels have been advanced to the same time, the surface data around the icing
body is extracted as described in section 3.1.

From the extracted surface data, the remaining boundary layer quantities are computed using the
boundary layer model which is then fed to the ice accretion solver. We have decided not to parallelise
the ice and water computation. The main computational cost of the water dynamics computation
arises from ��nding the root of equation (4.87) which requires solving a sparse linear system for every
iteration. We have attempted to parallelise the routines using GPGPUs and cuSPARSE. However,
memory transfer was a signi��cant bottleneck. We have not found any speed up of the cuSPARSE
implementation over the highly optimised serial libraries that exist to solve sparse linear system. It is
therefore doubtful whether a naïve parallelisation would improve performance and developing a
highly optimised implementation is beyond the scope of this work.

Following the update of the ice and water dynamics, the new layer heights need to be com-
municated to the other processes. The ice surface is represented by a sequence of vertices which
is broadcast to all processors. Each processor updates the signed distance ��eld on its local patches.
Based on the modi��ed interface, the load balancer decides whether redistribution of the workload is
necessary and a new iteration starts.
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Figure 5.3: Flowchart of the full simulation with a continuously deforming interface. The air and droplet ��ow
solver setup andupdate are depicted. TheMPI communication is illustrated. Regionswith a dotted
border indicate independent processors. Blocks spanning all processors indicate communication.
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Figure 5.4: (Contd.) Flowchart of the full simulation with a continuously deforming interface. The sur-
face data extraction, boundary layer computation and the update of the ice and water layers are
illustrated.
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5.3.3 Optimisations

The interpolation routines in the AMR algorithm by Bell et al. (1994) require a consistent signed
distance ��eld on all levels. Otherwise, it is possible that a ��ne patch of only solid cells exists above
coarse ��uid cells and the projection step fails. Due to this, we chose to update the geometry when
the time on all levels align. This, on the other hand, allows for a signi��cant optimisation in the
context of small geometry deformation as it is typical for ice accretion simulation. If the system is
near equilibrium, e.g. steady state, and the geometry deformation is small, then it is likely that the
equilibrium is reached within a few time steps. On ��ner levels, a number of time steps are required
to advance the solution to the same time as the coarsest level. Since we only update the geometry
every coarsest time step, there are no e�fects perturbing the system form the equilibrium. Therefore,
as soon as we detect a steady state on a level we can exclude its patches from the list of patches that
need to be updated until the next remeshing takes place.

This process is illustrated in ��gure 5.5. A small perturbation in the geometry causes a new steady
state to be reached after approximately a quarter of the time step on level 0 and we can deactivate
the update computation until the next remeshing.

t

t
n

t
n+1

Level 0
Level 1
Level 2
Level 3
Level 4

Remesh RemeshSteady state

Figure 5.5: Illustration of potential optimisation exploiting the temporal structure of the AMR setup. If a
steady state is detected on a level (dashed line) the update can be suspended (greyed area) until the
next remeshing step since no other perturbing factors force the system out of equilibrium.

5.3.4 Validation of the implementation of the geometry update

This section validates the implementation of the representation of the moving boundary. Similarly
to the test case from section 3.5, which validates that the implementation of the quantities transfer
from the air and droplet module to the thin ��lm solver, we need to con��rm that the growing ice
layer correctly alters the geometry.
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Figure 5.6: Illustration of moving ��lm boundary of the icing of a ��at inclined plate. The ��rst sub��gure shows
the initial data, the second the mesh after 30s and the third and ��nal mesh at 60s. The transitions
of cut-cell states can be seen. Previously regular cell become cut-cells and cut-cells turn into fully
covered cells.
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To this end, we compare the positions of the cut-cell interface centroids with the ice and water
layer heights from the substrate dynamics solver. We use a simple test case of icing of an inclined
��at plate. The experimental set up is identical to the test case from section 4.8. The cut-cell mesh
evolution is illustrated in ��gure 5.6. The ��rst sub��gure shows the initial condition and the second
sub��gure the mesh after the ice grew for 30s. The framework deals robustly with the covering of
small cut-cells and creating of new mixed cells from previously regular cells.
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Figure 5.7: Validation results for the interface update of the icing of a ��at inclined plate. The ice layer is shown
after an accretion time of 60s. The data from the ice and water ��lm solver is represented by orange
points. The cut-cell interface centroids are plotted as blue points. The cut-cell data is rotated such
that the substrate aligns with the x-axis.

Figure 5.7 compares the interface centroids of the cut-cells with the layer height data from
the thin ��lm solver. The interface centroids are rotated about the origin by�20� such that their
y-component represents the ��lm height. Excellent agreement validates the polygonisation approach
of coupling the growing ice layer with the cut-cell methodology.
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5.4 Showcase: NACA 0012

Finally, we present a showcase of the glaze ice accretion on a continuously deforming NACA 0012
aerofoil. To the best of our knowledge, this is the ��rst such simulation in literature.

The setup is similar to the O9 test case from the RTOworkshop but an increased free stream
temperature is speci��ed to exhibit stronger glaze ice e�fects. An aerofoil of chord length 0.533m and
an angle of attack of 4� is introduced into a free stream ��ow of 103ms�1, a free stream pressure
of 99.6kPa and a free stream temperature of 270K. The results are illustrated in ��gures 5.8 and
5.11. The simulation was run on four Intel Xeon Skylake 6142 CPUs with 16 cores each and took
approximately ten days of wall-clock time to reach a simulated time of 150s.

Figure 5.8 compares the ice accretion on the aerofoil for the simulation with a continuously
moving boundary and a static approach. Additionally, we mark the location of the stagnation point
by the tip of an arrow in ��gure 5.8.

Initially, the two methodologies produce the same results, however, after approximately 60s we
see a slightly thinner accretion in the dynamic boundary case. This is due to the altering collection
e���ciency. Figure 5.10 illustrates the droplet trajectories at di�ferent times. Since the aerofoil is at an
angle of incidence, the vertically growing ice shields the upper surface of the aerofoil from impinging
water droplets. This can be seen when comparing the droplet trajectories between the dynamic and
static case. The distance between impinging streamlines is directly proportional to the collection
e���ciency (see equation (1.2)). The blue streamlines in ��gure 5.10, which represent the dynamic results,
are spread farther apart compared with the red streamlines obtained from the static simulation.

The di�ference in the two methodologies is also exhibited by considering the position of the
stagnation point. In a static simulation, the stagnation point remains stationary, whereas it moves
further forward towards the leading edge as the ice accretes if the interface is tracked dynamically.
Eventually, it settles at the indentation below the leading edge.

The e�fects of a di�ferent process appear after approximately 90s. We believe that the appearing
horn shape at the leading edge and the upper apex of the ice layer is due to the temperature ��eld
of the air ��ow. Air temperature contours are illustrated in ��gure 5.11. We notice that the, in the
beginning convexly shaped, ice layer becomes ��atter in the vicinity of the stagnation point. This can
be observed in sub��gure 5.11d and later. The ��atter geometry around the stagnation point causes a
larger convex curvature of the interface in its surroundingwhich a dynamically remeshing simulation
feeds back to the air ��ow update. The high curvature produces a stronger expansion of the air and
therefore lower temperature which causes more water to freeze adjacent to the stagnation point.
The additional ice creates a protrusion at the leading edge of the aerofoil. Moreover, after 90s the
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previously ��at interface around the stagnation point turns concave. This creates a larger region of
decelerated ��ow and higher temperature which reduces ice build-up.

A similar process can be observed at the upper apex of the ice layer and the aerofoil. The high
concave curvature at the apex causes a compression which increases the air temperature. This e�fect
starts to appear after 90s, is slightly more pronounced after 120s and is clearly visible at 150s. The
high-temperature region forms a barrier for the ice layer to grow further downstream. At the same
time, it creates a steeper angle between the ice layer and the aerofoil which increases the curvature
of the interface. Due to analogue reasons to the one described in the previous paragraph, the ��ow
expands at this point of high convex curvature and causes ice to accrete forming another protrusion.

At this point the physical accuracy of the integral boundary layer model is debatable. The
model was derived under the assumption that surface curvature is negligible which breaks down
for complex interfaces like the ��nal one presented. A desirable direction for future research is to
investigate the performances of boundary layer models in the context of the ice accretion process.
Nevertheless, this showcase demonstrates the increased modelling capability of the methodology by
continuously evolving the accretion layer.
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Figure 5.8: Comparison of static interface and continuously updating interface methodologies. The clean
aerofoil is illustrated as a solid black curve. The ice accretion interface obtained with the static
interface assumption is plotted in orange. The interface obtained using a continuous feedback of
the ice shape is illustrated in blue. The moving stagnation point in the dynamic case is indicated
by the arrow.
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(a) t = 0 s (b) t = 30 s

(c) t = 60 s (d) t = 90 s

(e) t = 120 s (f) t = 150 s

Figure 5.9: Air streamlines for the ice accretion of a NACA 0012 aerofoil. The blue streamlines represent the
velocity ��eld if the interface evolves dynamically. The red streamlines correspond to the static case.
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(a) t = 0 s (b) t = 30 s

(c) t = 60 s (d) t = 90 s

(e) t = 120 s (f) t = 150 s

Figure 5.10: Droplet streamlines for the ice accretion of a NACA 0012 aerofoil. The blue streamlines represent
the velocity ��eld if the interface evolves dynamically. The red streamlines correspond to the static
case.
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(a) t = 0 s (b) t = 30 s

(c) t = 60 s (d) t = 90 s

(e) t = 120 s (f) t = 150 s

273K 261.5K 250K

Figure 5.11: Contours of air temperature for the ice accretion of a NACA 0012 aerofoil.
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5.5 Conclusions

In this chapter, we have presented the full ice accretion simulation using the Cartesian cut-cell
methodology for the air and droplet ��ow and the extended thin ��lm model. We validated our
static approach against results from literature for the NATO test cases. We found that even for a
static interface our predictions are comparable to the best performing multi-step approaches from
literature.

Subsequently, we have introduced an implementation which dynamically incorporates the
evolving ice layer. The novelmethodologywas showcased by studying the accretion of ice on aNACA
0012 aerofoil. We found that small changes in the interface curvature have a signi��cant e�fect on the
temperature ��eld of the air ��ow which is pivotal for the ice layer dynamics. However, the simplistic
integral boundary layer model is not adequate to study more general cases and improvement is left
for future work. Moreover, the dynamic ice interface still represents a signi��cant computational
bottleneck. Even though the cut-cell methodology makes it possible to study accretion times on the
order of minutes, a simulation of 150s accretion time takes on the order of ten days to compute.
This makes a comprehensive validation study using the NATO test cases which require an accretion
time of ten minutes prohibitively expensive within the scope of this work. Nevertheless, we have
demonstrated that the continuously moving boundary approach adds signi��cant physical accuracy
and we recommend for next generation ice accretion software to include this e�fect.
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Chapter 6

Conclusions

6.1 Summary

In this thesis, we have developed a novel ice accretion simulation methodology. The framework
is based on a Cartesian cut-cell mesh and we have suggested various modelling improvements to
the governing equations. All of the improvements are validated or demonstrated using test cases
relevant for atmospheric ice accretion on aircraft.

Modelling of droplet flow

In chapter 2, wehave presented a novelmodel to study thewater droplet ��owaround icing geometries.
Our droplet model is augmented by an energy conservation equation and a heat exchange term. This
allows the recovery of droplet temperatures as they interact with the air ��ow. We have demonstrated
that this e�fect yields droplet temperature di�ferences of up to 2K which can be signi��cant in the
context of ice accretion.

Moreover, we have discussed the need for a non-negativity preservation property of the nu-
merical method. The employed cut-cell method violates the requirement but using the collection
e���ciency boundary condition we proposed a conditional stabilisation that recovers non-negativity
preservation.

We have validated the approach by computing collection e���ciencies around two-dimensional
aerodynamic bodies and presented a ��nal showcase of air and droplet ��ow around a complex three-
dimensional automotive body.
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Generalisation of thin film flow on arbitrary parameterised surfaces

Subsequently, we have described a comprehensive derivation of the lubrication limit of the Navier-
Stokes equation on a smoothly parameterised surface. To the best of our knowledge, the resulting
model is themost general for this type of ��ow in literature. It has no requirements on the parameteri-
sation except su���cient smoothness and the truncation order is higher than comparable models from
literature. We demonstrated the bene��ts of the higher truncation order and presented results for a
one-dimensional thin ��lm ��ow on a two-dimensional cylinder. Our results agree signi��cantly better
with the analytical solution than commonly used approaches. Lastly, we extended the free surface
boundary condition to incorporate the droplet temperatures and validated the implementation by
studying the freezing of a thin ��lm on a ��at plate in one spatial dimension.

Continuously deforming ice accretion simulation

Finally, we have combined the previously presented modules to give a full in-��ight ice accretion
simulation. We validated our methodology against results from literature for the NATO icing
workshop test cases. We found that even for a static interface our results agree well with results from
multi-step methodologies.

Subsequently, we presented a novel approach to describe a continuously moving ice interface
utilising the fast mesh generation capability of the Cartesian cut-cell method. We illustrated the
advantages of such a methodology by studying the ice accretion on a NACA 0012 aerofoil. We have
found that the interface curvature has a signi��cant e�fect on the air ��ow. An increase in the curvature
causes pronounced compression or expansion of the air phase which in turn creates regions of high
temperature. These regions have a pivotal e�fect on the extent of the ice layer and form protrusion.
This kind of analysis has previously not been possible with multi-step methods or static interface
methods.

6.2 Further Work

Finally, we present directions for future researchwebelieve could improve the ice accretionprediction
capability of CFDmethods.

Boundary layer model and roughness model: The convective heat transfer coe���cient has a leading
e�fect on the freezing process. Further investigation is necessary to establish the accuracy of
the integral boundary layer model. In particular, the surface roughness and regions of high
interface curvature could create a turbulent transition.
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6.2. Further Work

Inertial effects in the thin film model: Research by Rothmayer and Tsao (2000) has shown that the
lubrication theory approach to modelling the water ��lm breaks down for thicker ��lms when
air pressure gradients drive the water layer. In such a case inertia terms within the ��lm become
important. A comprehensive thin ��lm model for fast ��ows based on centre manifold theory
was developed by Roy et al. (2002). Centre manifold theory acts as an ideal framework to
generalise the lubrication approximation model to faster ��ows.

Lateral discretisation of ice temperature field: The governing equations for the water and ice ��lm
assume that heat conduction mainly occurs in the substrate normal direction. For large
accretion, further investigation is necessary to con��rm this hypothesis. Alternatively, the
temperature ��eld in the ice should be computed without a thin layer assumption.

SLDs: We have neglected super large droplets since they exhibit new dynamics such as break-up
and merging. There are empirical approaches to take these e�fects into account which would
make a straightforward generalisation possible. Nevertheless, more theoretical approaches
would be desirable.

Three-dimensional flow: Most of the modules we presented are validated or generalise straightfor-
wardly to three-dimensional ��ow. Only the boundary layer model requires more work in
order to study more than two dimensions. Some e�fects such as viscous ��nger formation of
the water ��lm are only possible in three space dimensions and an extension would therefore
immediately allow the study of more physical e�fects.
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Appendix A

Representation of icing geometries

In this appendix, we describe how icing bodies are represented in the numerical simulation. The
geometry is an essential part of two stages of the simulation process. Firstly, it determines the
air and water droplet ��ow. The geometry is incorporated into the ��ow simulation through the
cut-cell methodology. This approach requires knowledge of various geometrical properties of the
intersection of the Cartesian grid cells with the geometry such as volume fractions and face fractions
of the cut-cells, and interface normals. Secondly, the governing system of the water ��lm ��ow and ice
growth depends on the tangential and normal vectors of the surface. Furthermore, the boundary
conditions at the free surface depend on the curvature of the geometry. Given the multitude of
dependencies, a unifying approach to representing the geometry is desirable.

One of these approaches, and the one mainly employed in this work, is to describe the geometry
as a parametric surface. Let U be the parameter space then the surface of the geometry is the image of
a parametrisation x : U !RD . Given a parameterisation tangent and normal vectors, curvatures,
etc. are readily computed. However, the analytical expression can be rather convoluted, hence, we
use SymPy, a computer algebra Python library, to generate the relevant derivates and produce C-code.
The approach of de��ning the geometry via a parametrisation also ties in well with the computation
of the cut-cell geometry parameters.

A.1 Extraction of cut-cell parameters

All relevant cut-cell parameters such as ��uid volume fraction↵, face fractions� and interface normals
n can be obtained from a vertex centred signed distance ��eld assuming a ��at interface in every cell.
Under this assumption, the cut-cell parameters are readily found. The set of explicit formulas is
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Appendix A. Representation of icing geometries

summarised by Gokhale et al. (2018).

A.1.1 Signed distance function

The e���cient implementation of a signed distance function is a less straightforward problem. The
signed distance function� of a geometry⌦ is de��ned by

�(x) = o inf
x̂2@ ⌦

d (x , x̂) , o =

8
<
:

1 if x 2⌦

�1 otherwise
. (A.1)

The value of the signed distance function is required for every cell vertex in the computational mesh.
In general, this means that a minimisation problem has to be solved for every cell making this a
computationally expensive part of the simulation. For static boundaries, this might be acceptable
but for a moving surface, a more e���cient approach is required. Since the step of extracting cut-cell
parameters from the signed distance function assumes a piecewise ��at interface, we extend this
assumption and replace the geometry⌦with a polyhedron approximating the surface @ ⌦.

E���cient algorithms exist to populate the signed distance function of a piecewise ��at geometry
such as polyhedra on a rectangular mesh. We brie��y summarise the used algorithm in section A.1.2.
Given a parametric surface, a polyhedra approximation is easily computed by sampling the surface
in regular intervals. The interval size should be based on the computational cell size and the speed
of the parametrisation. We usually require the characteristic physical length of an interval�� to
be less than half of the characteristic size of a computational cell. The arc length�� can then be
translated into a coordinate interval�s using the relation

d�2 = aµ⌫ d s
µ d s

⌫ , (A.2)

where a is the ��rst fundamental form of the surface.

A.1.2 The Characteristic Scan Conversion (CSC) algorithm

Awidely used method was developed byMauch (2001, 2003) and subsequently optimised for the
use on GPGPUs by Roosing et al. (2018). This algorithm is linear in both the number of grid points
and the number of geometry nodes and the algorithm works as follows:

In the beginning, all cells are updated to the largest representable ��oating point value. The
algorithmwalks along nodes and ��at elements of the tessellated geometry. If a ��at part is encountered,
the surface is extruded along the normal direction. The shortest distance of all cells within the volume
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A.2. Example: NACA 0012

to the geometry is along the normal of the surface and, therefore, easily computed. We update all cells
within the extruded volume if the magnitude of the new value is smaller than the magnitude of the
current one. We de��ne a similar volume for nodes by considering the pyramid which is constructed
by taking the apex to be the node and the sides to be along the neighbouring normals. Again, the
shortest distance to the geometry for all cells within this volume is directly to the apex. We update
all cells in a similar fashion to the straight part. This method partitions the whole domain and,
therefore, assigns every cell a signed distance.

A.2 Example: NACA 0012

The NACA four-digit aerofoil series is a popular validation case for CFD studies. The original
de��nition of the aerofoil shape by Jacobs et al. (1933) is given as an explicit function for the upper
and lower half of the geometry. Every digit encodes a parameter which relates to the shape of the
aerofoil. The ��rst two digit represent the camber of the geometry. Pro��les which start with 00 have
no camber and are symmetric. Especially the NACA 0012 aerofoil is a popular object of studies and
is widely found in experimental setups. It is also featured in a number of core test cases from the
NATO/RTO icing workshop as given in Kind (2001) which makes the NACA 0012 an important
validation geometry for this work. The original de��nition of the NACA polynomial by Jacobs et al.
(1933) as an explicit function which causes numerical problems when computing the normal of the
geometry since the derivative diverges. Therefore, we use a Bezier representation given by

x(s ) =
8X

k=0

P
k

b
k ,8(s ) , (A.3)

where b
k ,8 denote the Bernstein basis polynomials of degree 8 and P

k
the control points. The

control points for a NACA 0012 aerofoil of chord length 1 were determined by Boehm (1987) and
are given by

P0 =
Ç

0.0
0.0

å
, P1 =

Ç
0.0

0.0222672

å
, P2 =
Ç

0.035
0.0418356

å
,

P3 =
Ç

0.10714
0.0587028

å
, P4 =
Ç

0.21429
0.0698568

å
, P5 =
Ç

0.35714
0.0668688

å
,

P6 =
Ç

0.53571
0.0539148

å
, P7 =
Ç

0.75
0.0363372

å
, P8 =
Ç

1.
0.00126

å
.

(A.4)
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Therefore, the parameter space U = [�1,1] and the image of x(U ) is the surface of the geometry.
The polygon vertices are given by the sequence x(s

i
)where s

i
:= s0+ i�s with s0 := inf U , s

i
2 U

and�s �x
p

a/2, where�x is the smallest grid spacing.
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