192,323 research outputs found

    CPUアーキテクチャを考慮した性能モデルの導入によるデータベース・クエリ最適化のためのコスト計算の精度向上

    Get PDF
    Non-volatile memory is applied not only to storage subsystems but also to the main memory of computers to improve performance and increase capacity. In the near future, some in-memory database systems will use non-volatile main memory as a durable medium instead of using existing storage devices, such as hard disk drives or solid-state drives. In addition, cloud computing is gaining more attention, and users are increasingly demanding performance improvement. In particular, the Database-as-a-Service (DBaaS) market is rapidly expanding. Attempts to improve database performance have led to the development of in-memory databases using non-volatile memory as a durable database medium rather than existing storage devices. For such in-memory database systems, the cost of memory access instead of Input/Output (I/O) processing decreases, and the Central Processing Unit (CPU) cost increases relative to the most suitable access path selected for a database query. Therefore, a high-precision cost calculation method for query execution is required. In particular, when the database system cannot select the most appropriate join method, the query execution time increases. Moreover, in the cloud computing environment the CPU architecture of different physical servers may be of different generations. The cost model is also required to be capable of application to different generation CPUs through minor modification in order not to increase database administrator\u27s extra duties. To improve the accuracy of the cost calculation, a cost calculation method based on CPU architecture using statistical information measured by a performance monitor embedded within the CPU (hereinafter called measurement-based cost calculation method) is proposed, and the accuracy of estimating the intersection (hereinafter called cross point) of cost calculation formulas for join methods is evaluated. In this calculation method, we concentrate on the instruction issuing part in the instruction pipeline, inside the CPU architecture. The cost of database search processing is classified into three types, data cache access, instruction cache miss penalty and branch misprediction penalty, and for each a cost calculation formula is constructed. Moreover, each cost calculation formula models the tendency between the statistical information measured by the performance monitor embedded within the CPU and the selectivity of the table while executing join operations. The statistical information measured by the performance monitor is information such as the number of executed instructions and the number of cache hits. In addition, for each element separated into elements repeatedly appearing in the access path of the join, cost calculation formulas are formed into parts, and the cost is calculated combining the parts for an arbitrary number of join tables. First, to investigate the feasibility of the proposed method, a cost formula for a two-table join was constructed using a large database, 100 GB of the TPC Benchmark(TM) H database. The accuracy of the cost calculation was evaluated by comparing the measured cross point with the estimated cross point. The results indicated that the difference between the predicted cross point and the measured cross point was less than 0.1% selectivity and was reduced by 71% to 94% compared with the difference between the cross point obtained by the conventional method and the measured cross point. Therefore, the proposed cost calculation method can improve the accuracy of join cost calculation. Then, to reduce the operating time of the database administration, the cost calculation formulawas constructed under the condition that the database for measuring the statistical value was reduced to a small scale (5 GB). The accuracy of cost calculations was also evaluated when joining three or more tables. As a result, the difference between the predicted cross point and the measured cross point was reduced by 74% to 95% compared with the difference between the cross point obtained by the conventional method and the measured cross point. It means the proposed method can improve the accuracy of cost calculation. Finally, a method is also proposed for updating the cost calculation formula using the measurement-based cost calculation method to support a CPU with architecture from another generation without requiring re-measurement of the statistical information of that CPU. Our approach focuses on reflecting architectural changes, such as cache size and associativity, memory latency, and branch misprediction penalty, in the components of the cost calcula-tion formulas. The updated cost calculation formulas estimated the cost of joining different generation-based CPUs accurately in 66% of the test cases. In conclusion, the in-memory database system using the proposed cost calculation method can select the best join method and can be applied to a database system with CPUs from different generations.首都大学東京, 2019-03-25, 博士(工学)首都大学東

    Comparisons of the execution times and memory requirements for high-speed discrete fourier transforms and fast fourier transforms, for the measurement of AC power harmonics

    Get PDF
    Conventional wisdom dictates that a Fast Fourier Transform (FFT) will be a more computationally effective method for measuring multiple harmonics than a Discrete Fourier Transform (DFT) approach. However, in this paper it is shown that carefully coded discrete transforms which distribute their computational load over many frames can be made to produce results in shorter execution times than the FFT approach, even for large number of harmonic measurement frequencies. This is because the execution time of the presented DFT actually rises with N and not the classical N2 value, while the execution time of the FFT rises with Nlog2N

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings
    corecore