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Abstract
Non-volatile memory is applied not only to storage subsystems but also to the main memory

of computers to improve performance and increase capacity. In the near future, some in-
memory database systems will use non-volatile main memory as a durable medium instead
of using existing storage devices, such as hard disk drives or solid-state drives. In addition,
cloud computing is gaining more attention, and users are increasingly demanding performance
improvement. In particular, the Database-as-a-Service (DBaaS) market is rapidly expanding.
Attempts to improve database performance have led to the development of in-memory databases
using non-volatile memory as a durable database medium rather than existing storage devices.

For such in-memory database systems, the cost of memory access instead of Input/Output
(I/O) processing decreases, and the Central Processing Unit (CPU) cost increases relative to
the most suitable access path selected for a database query. Therefore, a high-precision cost
calculation method for query execution is required. In particular, when the database system
cannot select the most appropriate join method, the query execution time increases. Moreover,
in the cloud computing environment the CPU architecture of different physical servers may be
of different generations. The cost model is also required to be capable of application to different
generation CPUs through minor modification in order not to increase database administrator’s
extra duties.

To improve the accuracy of the cost calculation, a cost calculation method based on CPU
architecture using statistical information measured by a performance monitor embedded within
the CPU (hereinafter called measurement-based cost calculation method) is proposed, and the
accuracy of estimating the intersection (hereinafter called cross point) of cost calculation
formulas for join methods is evaluated.

In this calculation method, we concentrate on the instruction issuing part in the instruction
pipeline, inside the CPU architecture. The cost of database search processing is classified into
three types, data cache access, instruction cache miss penalty and branch misprediction penalty,
and for each a cost calculation formula is constructed. Moreover, each cost calculation formula
models the tendency between the statistical information measured by the performance monitor
embedded within the CPU and the selectivity of the table while executing join operations. The
statistical information measured by the performance monitor is information such as the number
of executed instructions and the number of cache hits. In addition, for each element separated
into elements repeatedly appearing in the access path of the join, cost calculation formulas are
formed into parts, and the cost is calculated combining the parts for an arbitrary number of
join tables.

First, to investigate the feasibility of the proposed method, a cost formula for a two-table
join was constructed using a large database, 100 GB of the TPC Benchmark™H database. The
accuracy of the cost calculation was evaluated by comparing the measured cross point with
the estimated cross point. The results indicated that the difference between the predicted cross
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point and the measured cross point was less than 0.1% selectivity and was reduced by 71%
to 94% compared with the difference between the cross point obtained by the conventional
method and the measured cross point. Therefore, the proposed cost calculation method can
improve the accuracy of join cost calculation.

Then, to reduce the operating time of the database administration, the cost calculation
formula was constructed under the condition that the database for measuring the statistical value
was reduced to a small scale (5 GB). The accuracy of cost calculations was also evaluated when
joining three or more tables. As a result, the difference between the predicted cross point and
the measured cross point was reduced by 74% to 95% compared with the difference between
the cross point obtained by the conventional method and the measured cross point. It means
the proposed method can improve the accuracy of cost calculation.

Finally, a method is also proposed for updating the cost calculation formula using the
measurement-based cost calculation method to support a CPU with architecture from another
generation without requiring re-measurement of the statistical information of that CPU. Our
approach focuses on reflecting architectural changes, such as cache size and associativity,
memory latency, and branch misprediction penalty, in the components of the cost calcula-
tion formulas. The updated cost calculation formulas estimated the cost of joining different
generation-based CPUs accurately in 66% of the test cases.

In conclusion, the in-memory database system using the proposed cost calculation method
can select the best join method and can be applied to a database system with CPUs from
different generations.
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1. Introduction
Improving the performance and expanding the capacity of non-volatile memory (NVM) is

necessary for both high-speed disk drives and main memory units. Accordingly, Intel and
Micron developed an NVM called 3D Xpoint memory [1]. An NVM is implemented as a
byte-addressable memory and assigned as a part of the main memory space. An application
programming interface (API) [2] for accessing the NVM was proposed to make the development
of applications easier. The API provides two types of access methods to the NVM from the
software. The first is the “load/store type,” which is the same method used to access the
conventional main memory from user applications. The other is the “read/write type,” which
is the method used by existing input/output (I/O) devices, such as hard disk drives (HDDs) or
solid-state drives (SSD), through operating system (OS) calls such as read/write functions.

Tera-byte class in-memory databases are proposed to provide expanded capacity and per-
formance improvement, and for the emergence of Dual Inline Memory Module (DIMM)
compatible implementation of NVM [3, 4]. An in-memory database is intended for use in
decision support systems. Therefore, our main target operations are analytical queries such as
those of the TPC-H benchmark [5].

There are two types of implementations of in-memory databases through the application of
an NVM to the main memory. The load/store type must be implemented using array structures
or list structures on a main memory address area, such as the durable media of the database
(Figure 1.1(c)). The read/write type can be easily applied to the existing database management
system (DBMS) because the database files stored on disk drives (Figure 1.1(a)) are moved
to files on the NVM using libraries and accessed by API for the NVM [6] (Figure 1.1(b)).
When accessing the database, the performance of the load/store type is better than that of
the read/write type because the DBMS directly accesses the database without any I/O device
emulation operation. Database administration operations (e.g., system configuration, backup)
need not be changed, which indicates that it is easy for the administrators to introduce an
in-memory database system.

DBMS’s query optimization methods include cost-based and rule-based. The cost based-
optimization is a method of obtaining the minimum cost access path using the value of cost
calculated from the distribution of data and data selection condition. The cost is a numerical
value corresponding to the execution time of the query. The rule based-optimization is the
method of obtaining the access path according to a rewrite rule of the description of the
query. It is possible to provide a stable access path irrespective of changes in the distribution
characteristics of data. However, to keep up with fluctuation of data distribution, database
administrator tuning work is required. In a large-scale system such as cloud services, a cost-
based optimization is better to reduce the operation workload because it is possible to optimize
queries automatically. Therefore, this study target is the cost-based optimization.

The DBMS encounters a problem when preparing for the execution of an analytic query.
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Figure 1.1.: Disk-based Database and In-memory Database

In general, the DBMS performs several steps prior to query execution. First, it analyzes the
query. Second, it creates multiple access paths. Third, it estimates the query processing cost
for each access path. Finally, it selects the access path with the minimum cost from several
candidates. For example, when the DBMS joins two tables, such as the R table and S table
shown in Figure 1.2(a), it generates the access path (Figure 1.2(b)) that minimizes the number
of rows to be referenced. At this time, the execution time depends on the join method selected
by the DBMS. The DBMS estimates the cost of each join method using statistical information
from the database, and chooses the method with the lowest cost. In general, the cost of a joining
operation is a function of the ratio of the extracted records to all the records. Hereafter, we
refer to this ratio as the selectivity. In Figure 1.2, the selectivity is determined by the condition
x for column R.C in Figure 1.2(c). In Figure 1.2(c), two cost functions intersect at Xcross. Join
method 2 must be chosen from the left side of Xcross, and join method 1 must be chosen from
the right side of Xcross. If the DBMS cannot estimate the selectivity Xcross accurately, it will
choose the wrong join method.

In the cost-based optimization, both the accuracy of estimating the data distribution and the
accuracy of the cost calculation formula has been required to improve the cost accuracy. Many
studies have been done on improving the accuracy of data distribution such as histograms [7].
However, it is also required to increase the accuracy of the cost calculation formula together [8].
In this research we will examine improvement of accuracy.

In general, the query execution cost is expressed as the sum of the central processing unit
(CPU) cost and the I/O cost [9,10]. The CPU cost is the CPU time, whereas the I/O cost is the
latency when accessing the disk drive. This cost model was established under the condition
that I/O performance is the bottleneck of the query execution time. A further improvement in
disk performance increases the CPU cost relative to the I/O cost. If the I/O cost itself ultimately
disappears with a native in-memory database (Figure 1.1(c)), it becomes necessary to predict
the CPU cost accurately.

To improve the accuracy of prediction of CPU processing cost, the estimation of CPU
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processing time must become more accurate than that obtained with the aforementioned con-
ventional method. In general, the CPU processing time can be predicted by the product of the
number of executed instructions and the latency until an instruction is completed. To estimate
the latency with high accuracy, it is necessary to consider the hardware structure, such as
instruction execution parallelism, cache miss ratio, and memory hierarchy. These problems
cannot be solved by the software algorithm alone. To improve the accuracy of cost calculation,
we focus on constructing a CPU operation model by considering the CPU architecture.

In this study, we propose a method based on statistical information on CPU operations to
improve the accuracy of estimation of CPU cost for in-memory databases applied to existing
DBMSs (Figure 1.1(b)) and native in-memory databases (Figure 1.1(c)).

As mentioned above, our main target operations are analytic queries. An analytic query is
composed of selection, projection, join, aggregation, sort, etc. The query optimizer decides
the order of accessing tables and chooses a proper join method and does not need to choose an
alternative way for other operations. For instance, a quick sort algorithm is commonly used in
most DBMSs. The optimizer does not need to choose different sort algorithms such as merge
sort and bubble sort. This study focuses on choosing a proper join method with selection
operation. The proper join method depends on the selectivity of the attributes in WHERE clause
in the query . The order of tables is determined according to the traditional way based on the
number of records to be accessed [9].

Processing time increases in proportion to the number of accessed records. However, the
number of accessed records and the record access patterns, such as random or sequential, are
different for each join method. The analytic query processing time increases depending on
which method is selected. Therefore, the cost calculation formula of join processing is our
main research target. Our proposed cost calculation method can be easily applied to operations
other than join if the CPU statistical information can be measured.

On the other hand, the market for cloud computing is expanding. In particular, the demand for
database services in the cloud (DataBase-as-a-Service; DBaaS) is rapidly increasing. DBaaS
requires higher performance and reliability than other cloud-based services. Its performance
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requirements can be satisfied by using NVM as a durable database medium instead of existing
storage devices. In-memory databases using NVM as the main memory are expected to gain
popularity. When the user requests a new virtual server from the cloud service provider, an
image of a virtual machine (VM) as an in-memory database server is attached to the physical
server, as shown in Figure 1.3.
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Figure 1.3.: Cloud Service Infrastructure

In the cloud environment, many DBMS instances run concurrently. We solve the single
instance case in this study. We will solve the multi instance case in the future works. The
cost calculation equations of multi instance case can be created by modifying those of single
instance case.

From the viewpoint of the operation cost of the cloud environment, it is unrealistic to
recreate the cost calculation formula every time the VM with the database is transferred to
another server using CPUs with a different architecture. This study aims to propose methods
to obtain cost calculation formulas that can employ CPUs with different architectures with no
changes or minor changes. The change in performance as a result of architectural changes,
such as the memory latency and cache size, among different generations of CPUs is reflected
in the proposed cost calculation formula. We used this updated cost calculation formula to
verify whether it is possible to select the joining methods, i.e., nested loop join (NLJ) and hash
join (HJ), accurately for different generations of CPUs. We determined that the updated cost
calculation formulas can estimate the cross point accurately.

In this study, our proposed highly accurate cost calculation method allows portability of the
cost calculation formulas across different generations of CPUs and can contribute to reducing
the cost of cloud service platforms.

The rest of this paper is organized as follows:

• In chapter 3, we propose a method for modeling CPU cycles and estimating the join
operation cost for a database. While considering the CPU pipeline architecture, we
classify the CPU cycles into three components: a pipeline stall cycle caused by instruction
cache misses, a pipeline stall cycle caused by branch misprediction, and an access cycle
of data caches or main memory. Using this classification, we propose a CPU cycle
modeling method that can express the total CPU execution time. In addition, to estimate
the processing time of the join operation of a database, we decompose the pattern of join
processing into four parts and estimate the join operation cost using a combination of
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these parts in chapter 4. Chapter 5 describes inputs and outputs of the cost calculation
method and shows the overall view of the cost calculation formulas for join operations
such as NLJ and HJ.

• Chapter 6 describes a feasibility study of our proposed cost calculation method. Our
first target is to propose cost calculation methods of two-table join using large data. We
analyze the trends or characteristics of the measured results for the join operation by
using a performance monitor embedded in the CPU and determine the cost estimation
formulas. We verify the accuracy of the proposed CPU cost estimation formulas by
comparing the actual CPU processing cycle and the conventional CPU cost estimation
formula of MySQL.

• In chapter 7, in developing the cost calculation formula, reference queries are executed
on a small reference database. The cost calculation formulas for multiple-table join are
proposed, and the accuracy of estimating the cross point of NLJ and HJ is evaluated.
Moreover, we verify that the cost calculation formulas can be used to determine the order
of tables to be joined.

• In chapter 8, we propose a method for extending the join operation cost calculation
formulas for different generations of CPUs. By considering the differences in CPU
pipeline architectures between CPUs of different generations, we classify the architec-
tural changes and impacts on performance. Using this classification, we propose an
extending method of the measurement-based cost calculation formula. We measure the
statistic information for executing the join operation and obtain cost calculation formu-
las of the CPUs of different generations using the measurement results. We verify the
accuracy of estimating the cross point using the cost calculation formula of the target
CPU obtained from a reference CPU.

• Finally, in chapter 9, we summarize the conclusions and describe future works.
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There are two approaches to optimize queries of database. One is cost-based optimization,

another is rule-based optimization. The rule-based optimization is a method in which the
access path is statically determined based on the rule and it is often used in banking systems
that is required to avoid sudden system behavior change by the access path of queries change.
On the other hand, the cost-based optimization has the advantage that it can automatically
optimize following the characteristics of data if the distribution of data changes.

This study relates to cost calculation methods used for cost-based query optimization of
database. In the optimization of the query, it is necessary to accurately obtain the selectivity
which is the input of the cost calculation. In order to correctly obtain the selectivity, it is
necessary to understand the related studies for managing the statistical information of the data
distribution represented by the histogram in the database. Therefore, this chapter introduces
the related studies on the statistical information of the data distribution stored in the database
and the related studies on the cost calculation. In addition, we will introduce the related works
on the modeling of CPU behavior which is another problem of this study.

2.1. Estimating Data Distribution for Query Optimization
The selectivity used for cost calculation can be estimated from the frequency distribution of

attributes of the database. Several techniques have been proposed to estimate the frequency
distribution [11]. Many commercial DBMSs use histogram [12].

A histogram is one of means for expressing distribution of data and is created by dividing
the data distribution of attributes into β mutually disjoint subsets called buckets. Each bucket
has approximating frequencies and values obtained using methods of extracting characteristics
of data distribution [7].

Numerous types of histograms and their various construction methods have been proposed.
Poosala et al. [13] introduces three viewpoints p(s, u) called partition constraint (p), sort
parameter (s) and source parameter (u) to classify various histograms. They defined spreads
(S), attribute values (V), frequencies (F), cumulative frequencies (C), and area (A) as the sort
parameters and source parameters. Spreads S is the distance between attribute values. Area A
is given by the product of spreads S and frequencies F. In the following, some example of the
histograms are introduced.

Equi-width [13] When dividing the data distribution into β buckets, the attribute value width
of the data distribution is divided into equal width by β−1. Many commercial DBMSs
use equi-width. The partition constraint of this histogram is p(V, S).
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Equi-depth [14] Equi-depth histogram is the sum of the frequencies in each bucket to be
equal height. MySQL [15], MariaDB [16] and Oracle [7] use equi-depth. The partition
constraint is p(V, F).

V-Optimal [13] V-Optimal histogram is contiguous sets of frequencies into buckets so as to
minimize the variance of the overall frequency approximation. The partition constraint
is p(F, F), p(V, F), p(V, A), p(A, A) and p(V,C).

V-Optimal-End-Biased [14] V-Optimal-End-Biased histogram is some of the highest fre-
quencies and some of the lowest frequencies are placed in individual buckets, while the
remaining frequencies are all grouped in a single bucket. The partition constraint is
p(F, F).

Maxdiff [13] Maxdiff histogram has a bucket boundary between two source parameter values
that are adjacent if the difference between these values is one of the β − 1 largest
such differences. The partition constraint is p(V, F), p(V, A) and p(A, A). The maxdiff
histogram with p(V, A) is the best histogram on the issues of construction time and
generated error.

Moreover, Poosala et al. proposed the multi-dimensional maxdiff histograms computed
using the MHIST algorithm for accurate estimation of multi-dimensional data distribution,
that is, combination of attributes [17]. To shorten time of creating histogram, sampling is
used instead of searching whole data. Chaudhuri et al. proposed the calculation method of
the number of samples to create equi-depth histogram [18]. On the other hand, Ioannidis et
al. reported that the error of estimating size of query results increases exponentially with the
number of joins [19]. Leis et al. determined that the contribution of selectivity is limited to
improve query performance [8]. These researches suggests that not only effort of improvement
accuracy of cost calculation method but also improvement accuracy of estimating distribution
of attributes of data are required. We focused on improving accuracy of the cost calculation as
the first step. We will tackle develop a method of estimating data distribution suitable for the
proposed cost calculation method as a future work.

2.2. Cost Calculation
There has been many studies regarding how to calculate cost of executing a query. Cost

calculation formulas include one assuming a state where a single DBMS instance is running
and one assuming an environment where multiple instances are running. In addition, the single
instance cases are further classified as white-box analysis [20] and black-box analysis [21].

2.2.1. Single Instance
White-box Analytic Approach

The white-box analytic approach is a method for creating cost calculation formulas by
modeling the data access of the DBMS while executing the query. Based on this white-box
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analytic approach, there are some cost calculation methods. One is the product of a unit cost
and the number of accessed records [9, 10, 22]. Some cost calculation model are the sum of
only I/O cost [22] and others are the sum of CPU cost and I/O cost [9, 10].

The cost calculation formula is the sum of CPU cost and I/O cost as following:

cost = cpu_cost + io_cost. (2.1)

For example, the cost formula for MySQL is given below [23]. The cost of scanning a table R
is given by

table_scan_cost(R) = record(R) × CPR + page(R) × CPIO (2.2)

where record(R) is the number of records of table R, CPR is the CPU cost per record, page(R)
is the number of pages of table R, and CPIO is the I/O cost per page stored record for DBMS
access. When table R (inner table) and table S (outer table) are joined, the cost of a join
operation is given by

table_join_cost(R, S) = table_scan_cost(R) + record(R)
× selectivity × records_per_key(S) × (CPIO + CPR) (2.3)

where selectivity is the selectivity ratio given by the distribution of attributes, and the selection
conditions, such as a where-clause definition in SQL and records_per_key(S), are the number
of join keys specified by table S’s records. Here, CPR = 0.2 and CPIO = 1 are the default
defined values.

Moreover, another method is to improve accuracy using the unit cost estimated from the
execution time of several evaluation queries [10, 20].

From a different viewpoint, there exist the macro-level and micro-level approaches. The
macro-level approach is suitable for a heterogeneous DBMS system because it is composed
of different DBMSs (open source or commercial DBMSs) and cost is calculated based on the
processing time of commonly executable queries. Our approach is a micro-level one. It is
created from measurement results of CPU events while executing a query. The micro-level
approach can create an accurate model by considering the CPU operation, but it cannot be
applied to different DBMS.

Another study on the micro-level approach is the method that applies a CPI measurement and
focuses on a memory reference for cost calculations (2.4) of an in-memory database [24, 25].
In equation 2.4, blocking factor means the ratio of overlapped memory accesses. This research
targeted a DBMS that use the load/store type memory access (Figure 1.1(c)). In this work, the
number of cache hits or main memory accesses was predicted from the data access pattern of
the database (Figure 2.1), and the cost was calculated as the product of the number of cache
hits or main memory accesses and the memory latency. The modeling of CPI0, which is the
state where all data exist in the L1 cache, and modeling of instruction cache misses have not
been considered in previous studies. Although not explicitly mentioned in past studies, it was
presumed that it was impossible to reproduce and measure the state in which all instructions
and data were on the L1 cache, which is the definition of CPI0, using methods such as a
CPU-embedded performance monitor.
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先⾏研究におけるコスト計算式
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Figure 2.1.: Relation of Data Access Pattern and Cache Hit [25]

CPI=CPI0+{
last level cache∑

L2cache

((number of cache hits) × latency×(blocking factor))

+(number of main memory accesses)×latency×(blocking factor)} (2.4)

In many existing studies [9], the performance of queries was considered as a function of
selectivity. Kester et al. [26] used not only selectivity but also the concurrency of queries
in the execution to calculate the query execution cost. When many queries are executed
simultaneously in a cloud computing system, hardware resources (e.g., memory bandwidth,
disk bandwidth, etc.) will become scarce. In this case, the hardware resource utilization is
affected by query performance. In this study, the single query executing case is solved as first
step. The cost calculation equations of multi query executing concurrently case will be able to
be created by modifying those of single instance case as a future work.

Black-box Analytic Approach

The black-box analysis approach does not compute the sum by using each operation cost
like accessing records of tables, accessing I/O, etc., but calculates the cost using multiple
regression, which analyzes the objective variable with the information that the user of the
database ordinarily obtains as shown in Table 2.1 [21].

In most of the open source and commercial DBMSs, the white-box analysis approach is
used because of the ease of understanding the models. This study adopts the white-box
analysis approach for the same reason. The black-box analysis approach can easily deal with
any DBMS because it does not use DBMS-dependent information. However, its estimation
accuracy worsens in cases where the value of cost is small [21].

The cost value is relatively small at the cross point between NLJ and HJ. When the number
of records in the outer table is RO and the number of records in the internal table is RI and the
selectivity of the outer table PO, then the number of records accessed by NLJ is RO×PO×RI,
that of HJ is RO+RI. In general, the cost value is proportion to the number of records to be
accessed, the PO is very small,1 that is, the cost value is very small.

1Note. Let RO=RI=104. If (NLJ execution time) < (HJ execution time), then PO < 2×10−4.
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Table 2.1.: Explanatory Variables for Creating Cost Calculation Formulas [21]
No. Explanatory Variables

1 Cardinality of table of processing result of query
2 Size of intermediate result
3 Record length of table to be processed
4 Record length of obtained records by query
5 Number of used disk blocks of table to be processed and obtained records by query
6 System parameters such as number of process and memory size
7 Characteristics of an index such as height of number of leaves

Therefore, this study aims to calculate an accurate cost when the cost value is small, by
modeling the CPU activities.

Multiple applications are executed on a real production system. The cost model of a
multiple-application environment is based on multiple regression models and it uses sample-
query execution time and statistical calibration methods [27, 28]. Applying these methods to
our approach will help achieve a more accurate model.

2.2.2. Multiple Instance
Our cost calculation model is based on the statistic information of CPU under a single VM

execution. However, multiple VMs are executed on a real production system. Kester et al. [26]
make models by multivariate regression of measured logical I/O latency when the plural of
queries execute concurrently. When many queries are executed simultaneously in a cloud
computing system, hardware resources (e.g., memory bandwidth, disk bandwidth, etc.) will
become scarce. In this case, hardware resource utilization is affected by query performance.
Our proposed method can support concurrency by introducing the queuing theory in the
memory latency and I/O latency model. Moreover, the concurrent query execution model is
utilized for deciding the combination of executing queries parallelly to make batch operation
time minimum [29].

2.3. Hardware Activity Evaluation on Database Workload
Ailamaki et al. [30] studied that evaluating CPU performance using the performance monitor

for behavior analysis of a DBMS has long been performed. In particular, in the evaluation of
the benchmark TPC-D for decision support systems, the L1 miss and the processing delay due
to L2 cache occupy a large part as the components of the CPI, and it is important in terms of
performance. However, it is only used for bottleneck analysis. Hankins et al. [31] also studied
characteristics of database workload such as TPC-C for online transaction processing using
CPI. The largest component of CPI is main memory access occurred by L3 cache miss. TLB
miss is less than half of branch misprediction penalty.
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There is research that applied a CPI calculation method focusing on a memory reference to
cost calculation (2.4) for an in-memory database [24] [25]. This research targets DBMS that
use the load/store type memory access (Figure 1.1(c)). In this research, the number of cache
hits or main memory accesses is predicted from the data access pattern of the database, and
the cost is calculated as the product of the number of the cache hits or main memory accesses
and the memory latency. As mentioned in Section 2.2, the way of obtaining CPI0 is a difficult
problem. Another CPI calculation method considering memory latency and the number of
memory accesses of CPI is required.

From the point of cloud computing environment, Tanaka et al. [32] researched the database
application whose performance bottleneck is disk I/O and CPU utilization is low, e.g. TPC-
H, is suitable for virtualized environment. However, their research target is only analysis of
performance evaluation using CPI and it has not predicted query performance.

2.4. Hardware Modeling
CPI is one of the most popular performance metric to evaluate CPU performance bottleneck.
As CPI-based evaluation method, the performance monitor embedded in the CPU is utilized

while executing an application such as a benchmark program and measure statistical informa-
tion such as the number of CPU execution cycles and the number of executed instructions and
calculate CPI using these statistical information [30, 33, 34]. As other approach, simulating
the CPU operation which execute a lightweight benchmark program or instruction sequence
extracted only for the main part of the application program acquired beforehand by a method
such as tracing [35, 36] and the desk study using a spreadsheet [37, 38], which are made to
operate on the simulator based on the information obtained from the simulator.

These methods have advantages and disadvantages. Measurement with the performance
monitor has the advantage of running an actual application, but it has restrictions to measure
with the number of pieces of statistical information to be collected and the number and size of
counters installed in the circuit [39]. The evaluation using simulators has the advantage that
it can change the configuration of the hardware such as the size and the latency of the cache
memory easily [35], but it is difficult to strictly evaluate a relatively large application such as
a database. The desk study approach often use queuing theory, although it is relatively easy to
evaluate to change the configuration of hardware easily as simulation, it is difficult to consider
transient phenomena happened on operating system, device drivers and CPU.

In addition, when focusing on the cache miss penalty as in the Equation 3.2, it is popular to
evaluate the memory latency constituting the CPI as a fixed value [35,40,41]. Memory latency
become longer when the utilization of system resources such as main memory and disk drives
become higher.

In the case of using CPI for performance evaluation of virtual environment [32,42], perfor-
mance prediction using evaluation results has not been achieved. On the other hand, CPI is
used for not only performance evaluation but also operation optimization of the VM that runs
on the cloud environment [43].

11
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In this chapter, we first analyze the CPU pipeline architecture and categorize pipeline events.

Second, we propose the CPU operation cycle estimation method, which can express whole CPU
process cycles by considering the categorized events. Third, we categorize join operations
of the DBMS and divide the join operation into several parts. We propose an estimation
model based on a combination of these parts. Finally, we create the CPU cost formulas
for estimating each part of the join operation using statistical information measured by the
performance monitor embedded in the CPU, and then combine these join part formulas to
obtain the complete CPU cost estimation formula.

We chose the Intel Nehalem processor as a typical model of a CPU for application to the
database server because all of the processors developed after Nehalem, namely Sandy Bridge,
Haswell, and Skylake, are based on the pipeline architecture of Nehalem. Partial enhancements,
such as additional cache for micro-operations (µOPs), increased reorder buffer entries, and
increased instruction execution units, were added to the successor CPUs of Nehalem.
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Figure 3.1.: Focus point of the CPU pipeline

The pipeline is composed of a front-end and back-end, as shown in Figure 3.1 [44]. The
front-end fetches instructions from the L1 instruction cache (L1I) and decodes them into
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µOPs in-order. The term “in-order” means that a subsequent instruction cannot override the
preceding instructions in the pipeline. After decoding the instructions, the front-end issues
the µOPs to the back-end. Conversely, the back-end executes the µOPs in execution units that
are out-of-order. The back-end can execute the µOPs in a different order than that issued by
the front-end to improve the throughput of operating µOPs. An L1I miss causes the pipeline
of the front-end to stall until the missing instruction is fetched from the lower level cache or
main memory. A branch prediction miss causes a dozen cycles of the instructions executed
speculatively to be flashed, and the front-end cannot issue µOPs. Such a condition is referred
to as an instruction-starvation state (Figure 3.1(3)). There are cases in which the µOP issued
in the front-end is not executed because of the saturation of the reorder buffer or reservation
station in the back-end, or the data dependency of the preceding instructions. We refer to
this state as a stall state (Figure 3.1(2)). In addition, we refer to the state in which the µOPs
are issued excluding the instruction-starvation state and the stall state as an active state. A
summary of the notations related to CPU cost calculation to be used later in the study is
presented in Table 3.1, Table 3.2 and Table 3.3 before creating the CPU cost calculation model.

In this study, we focus on the boundary between the front-end and back-end in the CPU
pipeline (Figure 3.1) to model the overall operation of the CPU. The µOPs are issued from
front-end to back-end, and are stored in buffers, i.e., the reorder buffer and reservation station.
The buffers allow us to change the processing order of µOPs from in-order to out-of-order
across the boundary. The CPU-embedded performance monitor can measure events such as
the saturation of buffers, de-queues from buffers by the completion of µOPs, and the existence
of µOPs to issue to the back-end [44]. Any CPU cycle situation can be modeled by the
performance monitor to analyze these events. Therefore, we propose a measurement-based
estimation of the query execution cost. The active state is estimated from the number of events
in which the µOP is issued without delay in the back-end buffer. The back-end buffer holds
the µOPs until the execution of the µOPs is completed, and the µOPs are deleted from the
buffer. The stall state is estimated from the number of events for which the buffer cannot
receive µOPs. The starvation state is inferred from the event count where there are no µOPs
to be issued to the back-end buffer. The total CPU cycle is composed of the active state, stall
state, and starvation state cycles. Therefore, the following equation can be obtained:

CTotal=CActive+CStall+CStarvation (3.1)

The cycles per instruction (CPI) metric, which refers to the number of CPU clock cycles per
instruction, is widely used for evaluating the CPU processing efficiency [45]. CPI is calculated
as the product of the number of references to the memory and the latency of the memory
access. Latency is the delay time when fetching an instruction or data from memory. CPI is
given by

CPI=CPI0+{
LLC∑
i=2
(HLi × LLi×BFLi)+(HM M × LMM×BFM M)} (3.2)

where LLC denotes last level cache and means the lowest cache in the cache memory hierarchy;
the blocking factor [45] is a correction coefficient for concealing the latency by executing
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Table 3.1.: Notations for CPU Cost Calculation Model (1)
Symbol Description

I Number of instructions to complete a query
ILoad Number of load instructions
CPI Cycle per instruction (CPI)
CPI0 Cycle per instruction (CPI) on the condition that all of instructions and data are stored

in L1 cache
Mevents Number of events

events Description

MM References of instructions and data to main memory
MMI References of instructions to main memory
MMD References of data to main memory
Li References of instructions and data to Li cache
LiI References of instructions to Li cache
MP Branch mispredictions
LMM References to local main memory
LMMI References of instructions to local main memory
LMMD References of data to local main memory
RMM References to remote main memory
RMMI References of instructions to remote main memory
RMMD References of data to remote main memory
LLLCI References of instructions to local LLC
LLLCD References of data to local LLC
RLLCI References of instructions to remote LLC
RLLCD References of data to remote LLC

Lmemory Latency of cache memory or main memory
memory Description

MM Main memory
Li Li Cache
MP Recovering latency from a branch misprediction
LMM Local main memory
LLLC Local LLC
RLLC Remote LLC

BFevents Blocking factor of events
events Description

MM References of instructions and data to main memory
MMI References of instructions to main memory
MMD References of data to main memory
Li References of instructions and data to Li cache
LiI References of instructions to Li cache
LiD References of data to Li cache
MP Branch misprediction and instruction cache miss occur simultaneously
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Table 3.2.: Notations for CPU Cost Calculation Model (2)
Symbol Description

Hmemory Ratio of memory references to instructions
(Hmemory=Mmemory/I)
memory Description

MM References to main memory
Li References to Li cache memory
LiI References of instructions to Li cache
LiD References of data to Li cache

Cstate CPU cycles in state during executing a query
state Description

Total Total of all states
Active Not occurring stall
Stall Stall of CPU pipeline
Starvation Starvation of instructions to issue
ICacheMiss CPU cycles from occurrence of L1I miss until the acquisition of

an instruction from other cache or the main memory
DCacheAcc CPU cycles in active state
MP Total CPU cycles when recovering from branch mispredictions

Cjoin_state CPU cycles of join in state
join Description

NLJ Nested Loop Join
HJ Hash Join
Build Build phase of Hash Join
Probe Probe phase of Hash Join
Cmd Combination of Hash Join and Nested Loop Join
CmdBld Combination build phase
SMJ Sort Merge Join
SortDb Sorting records in a database table
SortTmp Sorting records buffered in a temporary table in main memory
Merge Merge Join without sorting

state Description

ICacheMiss CPU cycles from occurrence of L1I miss until the acquisition of
an instruction from other cache or the main memory

DCacheAcc CPU cycles in active state
MP Total CPU cycles when recovering from branch mispredictions
Total Total of ICacheMiss, DCacheAcc and MP
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Table 3.3.: Notations for CPU Cost Calculation Model (3)
Symbol Description

RCI_total(n) Total number of accessed records in n inner tables and entries of indexes
P Selectivity of the tables for join
PO Selectivity of the outer table
PIk Selectivity of the inner table k (k = 1, 2, · · · )
RO Number of records in outer table
RIk Number of records in inner table k (k = 1, 2, · · · )
RI_total(n) Total number of accessed records in n inner tables
RCI_total(n) Total number of accessed records in n inner tables and entries of indexes
Pj Selectivity of the table j ( j = 0, 1, · · · ) in SMJ
Rj Number of records in the table j ( j = 0, 1, · · · ) in SMJ

instructions in parallel. The second term on the right-hand side of (3.2) is the product of the
number of memory references, latency, and blocking factor, i.e., the stall state. The product of
the second term on the right-hand side of (3.2) and the number of instructions I is the pipeline
stall cycle (CStall):

CStall=

LLC∑
Li=L2
(MLi×LLi×BFLi)+(MMM×LMM×BFMM) (3.3)

CTotal=CPI×I=CPI0×I+CStall (3.4)

From (3.2)–(3.4), we can show that CPI0 includes the active state and starvation state.

CPI0×I=CActive+CStarvation (3.5)

The starvation state is mainly caused by instruction cache misses or branch mispredictions,
and can be classified as the number of CPU cycles from the occurrence of one of these events
until the acquisition of the next instruction to be executed.

CStarvation=CICacheMiss+MMP×LMP×BFMP (3.6)

CICacheMiss=

LLC∑
Li=L2
(MLiI×LLi×BFLiI)+(MMMI×LMM×BFMMI) (3.7)

Here, BF is a correction coefficient for considering that both branch misprediction and instruc-
tion cache miss occur simultaneously. ICacheMiss is expressed as (3.7) by modifying (3.3)
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because the operations after instruction cache misses and data cache misses are the same. Only
the terms relating to branch misprediction are defined.

CMP=MMP×LMP×BFMP (3.8)

According to previous research [46], the CPI of the decision support system benchmark is 1.5
to 2.5. In general, when the CPI is 1, this means that one instruction is completed in one cycle;
thus the instructions are executed sequentially in query execution. According to P. Trancoso,
et. al. [47], the large amount of accessed database data are not reused. In addition, because
the indices and tables of the database are usually implemented with list or tree structures, the
next reference address becomes clear only after the stored data that the pointer refers to is
read out. In particular, the characteristics of such a memory reference in the list structure are
applied to a benchmark program for measuring memory latency [48]. Therefore, the stall state
occurs because the operation of the stalled instruction waits for the preceding data reference
processing to be completed. From the viewpoint of memory reference, the active state can
be considered as an L1 data cache (L1D) reference, and the stall state can be considered as
a reference to a cache level lower than L1 or a main memory reference. Therefore, the CPU
cycles in the active state and stall state can be integrated as CDCacheAcc

CDCacheAcc=CActive+CStall (3.9)

CDCacheAcc=

LLC∑
Li=L1
(MLiD×LLi×BFLiD)+(MM MD×LM M×BFMMD) (3.10)

where (3.3) and (3.10) use the same symbols for both the latency and blocking factor for
convenience, but the contents are different.

From the above discussion, the total number of CPU cycles is calculated using

CTotal=CDCacheAcc+CICacheMiss+CMP (3.11)

In this study, each term on the right-hand side of (3.11) uses statistical information obtained
from actual measurements.

In our CPU pipeline activity model, TLB miss penalty is omitted from the cache miss
penalty, which is sum of the product of memory latency and the number of memory access.
However, the instruction cache miss penalty CICacheMiss and the data access CDCacheAcc events
measured by the CPU performance monitor also include TLB miss penalties. Therefore, in this
study, TLB miss penalty is omitted from the cost calculation to simplify the memory access
model.
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In considering the access path of the query, there are the order of accessing the tables, the

order of applying the operators, the order of the joins, and the selection of the join method.
Existing cost calculation has been done with a simple linear expression of the number of pages
and the number of records. In the cost calculation method of this study, it is possible to create
a model as long as processing for cost calculation can be extracted as parts.

In this study, we build a model for selection and join. Since the join method to be selected
depends on the selectivity of the table, we consider that the selection operator related to
selectivity is integral with join.

DBMS queries perform operations including selection, projection, and join. Queries per-
forming the join operation depend on the join method chosen by the DBMS’s optimizer. The
optimizer selects the join method to minimize the operating cost of the join operation. The
cost depends on the selectivity of records defined by the clause of the SQL and the statistics
of the attribute value of the database. Most DBMSs calculate the statistics during data loading
to the database. This study focuses on cost estimation for the optimization of join operations.
There are three basic joins: nested loop join (NLJ), hash join (HJ), and sort-merge join (SMJ).

NLJ searches records from the inner table every time it reads one record from the outer table.
The generalized operation model of NLJ is shown in Figure 4.1. The process involves tracing
multiple tables and indices from the point of view of memory access, which means repeatedly
traversing linked lists. Therefore, NLJ can be regarded as searching between the outer table
and the huge inner table created by tracing multiple tables in the same way as loop expansion
by a compiler. Moreover, it is possible to calculate the cost of NLJ for multiple tables using
the cost estimation function with two typical NLJs (Figure 4.1(a)), which is a function of the
number of total records to be referenced in the multi-table join. NLJ and HJ are regarded as
part of our proposed cost estimation method. Figure 4.1 also shows that HJ is decomposed into
a build phase (Figure 4.1(b-1)) and a probe phase (Figure 4.1(b-2)) because each operation
of HJ is executed sequentially and can be modeled separately in the cost calculation formula
based on measurement results.

When more than three tables are joined, the DBMS optimizer chooses a combination of
different join methods for executing a query. Figure 4.2 shows a combination of HJ and NLJ.
The first table to operate a join is called the “outer table,” while the other tables are called “inner
table.” In addition, the inner tables are called “inner table1” and “inner table2” according to
the joining order. A combination of different join methods is divided into an HJ build phase
(Figure 4.2 (c-1) ). The cost model of (c-1) is the same as (b-1). However, the cost model of
(c-2) is different from the one mentioned above. It is presumed that the HJ probe phase and
NLJ cannot be divided because the DBMS repeatedly searches one record in table Y using the
hash table X, and searches table Z by NLJ. The (c-1) phase is called the “combination build
phase” and the (c-2) phase is called the “combination probe phase.”
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The cost of the operation such as grouping, aggregating and sorting (Figure 4.3(d)) except
join is divided into two cost calculation parts, storing table scanned or index scanned data into
a temporary table on the main memory in Figure 4.3(d-1) and operation such as grouping,
aggregating and sorting of the temporary table on the main memory in Figure 4.3(d-2). In
particular, the process of Figure 4.3(d-1) includes the selection after the table scan or the index
scan. It can be realized by separating CPU statistical information into each processing to
divide the statistical information of modeling target operation into several parts. A statistical
information is divided into several processes and is the sum of those statistical information in
Equation (4.1).

Table X

X

γ, τ, etc. 

Table X

γ, τ, etc. 

(d-1) Table or Index Scan

γ, τ, etc. 

Temporary table
on memory

(d) Grouping and Aggregation (γ), 
Sorting (τ), etc. Operation

(d-2) Only γ, τ, etc. Operation

Figure 4.3.: Split Cost Calculation of Grouping, Aggregating, Sort, etc.

(CPU Statistical Information of Operation in Figure 4.3(d-2))
= (CPU Statistical Information of Operation in Figure 4.3(d))

−(CPU Statistical Information of Operation in Figure 4.3(d-1)) (4.1)

SMJ can be modeled in the same way of HJ mentioned above. SMJ is divided into two type
of sort operations (Figure 4.4(e-1) and (e-2)) and a merge join operation (Figure 4.4(e-3)). The
sort operation (e-2) sorts records stored in memory temporal table. Those operations (e-1) and
(e-2) also filter records according to the condition of WHERE clause. The statistical Information
of sort operation (e-2) can be obtained by the method in Figure 4.3. The statistical Information
of merge join operation (e-3) can be obtained by the method in Figure 4.5. However, it cannot
be obtained directly using a simple query as joining two tables by merge join because the
query includes the sort operations. Therefore, statistical information on SMJ of two table is
introduced in Figure 4.5. The sort operation (e-3) can be calculated using statistical information
of (e-1) and the two-table SMJ in Figure 4.5.

Using the above idea, the cost of complex queries can be calculated by accumulating cost
parts. For example, the query in Figure 4.6(a) can be divided into parts from (1) to (4). In
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particular, in the case where three table joins are performed by NLJ, Figure 4.6(1) and (2) can
be calculated with one cost formula as shown in Figure 4.1(a). In the join operation (1) and
(2), selection operation to the outer table is also included. In the case of HJ, each operation of
(1) and (2) can be divided into build phase and probe phase as shown in Figure 4.1(b-1) and
(b-2).

As described above, there is a problem that the way of making the cost calculation parts is
different depending on the selection of the join method. In this study, we focus on selection of
join method as cost calculation target.
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select 
l_orderkey, sum(l_extendedprice*(1-l_discount)) as revenue, o_orderdate, o_shippriority

from
customer, orders, lineitem

where
c_mktsegment = ‘BUILDING'
and c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate < date '1995-03-15'
and l_shipdate > date '1995-03-15‘

group by
l_orderkey, o_orderdate, o_shippriority

order by
revenue desc, o_orderdata;

(b) Access Path and Decomposition for Cost Calculation 

(a) SQL (TPC-H Query 3)
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Figure 4.6.: Dividing TPC-H Query3 [5] into Cost Calculation Parts
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5. Cost Calculation Formula
Before considering the cost calculation formulas, we define the inputs and outputs as listed in

Table 5.1. The information input into the cost calculation formulas is recorded in the database
for management as statistical information, and is collected generally by the DBMS when storing
or updating the record. Information regarding memory latency and I/O response time is also
required. This information can be measured with a simple benchmark program [48].

Table 5.1.: Parameter List for Cost Calculation
Input Condition of selecting records of table to join, selectivity of tables to

join and the number of records of tables

Output Calculated cost expressed by the number of CPU cycles or by the exe-
cution time of the query

Parameters of
cost calculation
formulas

Static information: Memory latency and I/O response time
Information obtained from measurement: Relational formula between
the input information and number of CPU cycles of the events on
the right-hand side of (3.11) (e.g., slope and intercept if the input
information and the number of cycles of the event of interest can be
linearly approximated.)

In this section, we derive the cost calculation formulas (3.11) for NLJ, HJ, SMJ, and a
combination of NLJ and HJ on the condition that the number of inner tables is N , where each
element of (3.11) is obtained as a function of the selectivity and number of records in the
joining tables. The cost formula of NLJ

CN LJ_Total(P, PI1, · · · , PIN, RO, RI1, · · · , RIN)
= CNLJ_ICacheMiss(P, PI1, · · · , PIN, RO, RI1, · · · , RIN)
+ CNLJ_MP(P, PI1, · · · , PIN, RO, RI1, · · · , RIN)

+ CNLJ_DCacheAcc(P, PI1, · · · , PIN, RO, RI1, · · · , RIN) (5.1)

is obtained by combining (3.7), (3.8), (3.10), and (3.11). The cost related to each element of
the instruction cache miss, branch misprediction, and data reference are expressed as
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5. Cost Calculation Formula

CN LJ_ICacheMiss(P, PI1, · · · , PIN, RO, RI1, · · · , RIN)
= ML2I(P, PI1, · · · , PIN, RO, RI1, · · · , RIN) × LL2 × BFL2I

+ MLLCI(P, PI1, · · · , PIN, RO, RI1, · · · , RIN) × LLLC × BFLLCI

+ MMMI(P, PI1, · · · , PIN, RO, RI1, · · · , RIN) × LMM × BFMMI (5.2)

CN LJ_MP(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN) = MMP(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)
× LMP × BFMP(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN) (5.3)

CN LJ_DCacheAcc(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)
= ML1D(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)× LL1×BFL2D(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)
+ML2D(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN) × LL2 × BFL2D(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)
+MLLCD(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)×LLLC×BFLLCD(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)
+MMMD(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)×LM M×BFMM(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN).

(5.4)

The structure of the cost calculation formulas is basically a product-sum formula of the number
of occurrences of the event, its latency, and the correction coefficient. The number of data
references from the L1D cache, L2 cache, LLC cache, main memory (ML1D, ML2, MLLC , and
MMM), number of branch mispredictions (MMP), and blocking factor BF are expressed as a
function of the selectivity PO, PIk, and the number of rows of the table RO, RIk. The cost of
the instruction reference CN LJ_ICacheMiss does not include L1I hits because it means the L1I
cache miss penalty. However, the cost of the data reference CN LJ_DCacheAcc includes L1D hits
because the data reference includes all of the data access.

The cost calculation formula of HJ is obtained in the same way as that of NLJ with selectivity
P as follows.

CHJ(P, R) = CBuild_Total(P, R) +
N∑

k=1
CProbe_Total(P, R) ×

⌈
Total Size of Hash Table

Size of Join Buffer

⌉
(5.5)

CPhase_Total(P, R) = CPhase_ICacheMiss(P, R) + CPhase_MP(P, R) + CPhase_DCacheAcc(P, R) (5.6)

CPhase_ICacheMiss(P, R)
= ML2I(P, R) × LL2 × BFL2I(P, R) + MLLCI(P, R) × LLLC × BFLLCI(P, R)

+ MMMI(P, R) × LM M × BFMMI(P, R) (5.7)
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5. Cost Calculation Formula

CPhase_MP(P, R) = MMP(P, R) × LMP × BFMP(P, R) (5.8)

CPhase_DCacheAcc(P, R)
= ML1D(P, R) × LL1 × BFL2D(P, R) + ML2D(P, R) × LL2 × BFL2D(P, R)

+ MLLCD(P, R) × LLLC × BFLLCD(P, R) + MMMD(P, R) × LM M × BFMMD(P, R) (5.9)

where

{Phase, P, R} =
{
{Build, PO, RO} build phase
{Probe, PIk, RIk}(k = 1, 2, · · · , N) probe phase

In the build phase, the cache and main memory references, branch misprediction, and blocking
factor are expressed as functions of selectivity P and the number of records of the outer table
(RO). In the probe phase, these are expressed as functions of selectivity P and the number of
records of the inner table (RIk). For a combination case like Figure 4.2(c-1), the cost formula
of the combination build phase can be created with reference to the cost formula of the HJ
build phase.

CCmb_Total(PO, PIk, RO, RIk) = CCmbBld_Total(PO, RO)

+ CCmbPrb_Total(PO, PIk, RO, RIk) ×
⌈
Total Size of Hash Table

Size of Join Buffer

⌉
(k = 1, 2, · · · , N) (5.10)

CCmbBld_Total(PO, RO)
= CCmbBld_ICacheMiss(PO, RO) + CCmbBld_MP(PO, RO)

+ CCmbBld_DCacheAcc(PO, RO) (5.11)

CCmbBld_ICacheMiss(PO, RO)
= ML2I(PO, RO) × LL2 × BFL2I(PO, RO) + MLLCI(PO, RO) × LLLC × BFLLCI(PO, RO)

+ MMMI(PO, RO) × LMM × BFMMI(PO, RO) (5.12)

CCmbBld_MP(PO, RO) = MMP(PO, RO) × LMP × BFMP(PO, RO) (5.13)

CCmbBld_DCacheAcc(PO, RO)
= ML1D(PO, RO) × LL1 × BFL2D(PO, RO)

+ ML2D(PO, RO) × LL2 × BFL2D(PO, RO) + MLLCD(PO, RO) × LLLC × BFLLCD(PO, RO)
+ MMMD(PO, RO) × LMM × BFMMD(PO, RO) (5.14)
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CCmbPrb_Total(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)
= CCmbPrb_ICacheMiss(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)
+ CCmbPrb_MP(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)

+ CCmbPrb_DCacheAcc(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN) (5.15)

For a combination case such as Figure 4.2(c-2), the cost formula of the combination probe
phase can be created with reference to the cost formula of NLJ.

CCmbPrb_ICacheMiss(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)
= ML2I(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN) × LL2 × BFL2I

+ MLLCI(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN) × LLLC × BFLLCI

+ MMMI(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN) × LMM × BFMMI (5.16)

CCmbPrb_MP(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)
= MMP(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN) × LMP × BFMP(PO, RO, RIk) (5.17)

CCmbPrb_DCacheAcc(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)
= ML1D(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)× LL1×BFL2D(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)

+ ML2D(P, RO, RIk) × LL2 × BFL2D(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)
+ MLLCD(P, RO, RIk) × LLLC × BFLLCD(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN)
+ MMMD(P, RO, RIk) × LMM × BFMM(PO, PI1, · · · , PIN, RO, RI1, · · · , RIN) (5.18)

Sort Merge Join (SMJ) operation is divided into three type of operations, sorting data from
a table of database in Figure 4.4(e-1), sorting data from a temporary table in main memory in
Figure 4.4(e-2) and merge join in Figure 4.4(e-3). The cost of those operations is defined in
Table 5.2. The cost of whole SMJ is defined as CSMJ_Total.

Input parameters of each cost calculation formulas in SMJ operations are explained using
three tables join case in Figure 5.1. First, the operation (a), (b) and (c) are selection of
records with probability P0, P1 and P2 from the tables, which have R0, R1 and R2 records and
sorting those records respectively. The sort operation costs are given by CSortDb_Total(R0, P0),
CSortDb_Total(R1, P1) and CSortDb_Total(R2, P2). Next, the merge join operation (d) join the out-
put records from sorting operation (a) and (b). Therefore, the operation cost is given by
CMerge_Total(R0, R1, P0, P1). Then, the sorting operation (e) sort the outputs from operation (d).
The cost is given by CSortTmp_Total(R0, R1, P0, P1). After that, the merge join operation (f) join
the outputs of the operation (c) and (e). The cost is given by CMerge_Total(R0, R1, R2, P0, P1, P2).
Finally, total cost is given by the following equation.
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Table 5.2.: Parts of SMJ and Notation of Cost
Operation (Figure 4.4) Notation of Cost Input Parameters

Sorting data from a table
of database (e-1)

CSortDb_Total Number of Records of a table and se-
lectivity

Sorting data from a tem-
porary table in main
memory (e-2)

CSortTmp_Total Number of Records of temporary table
or buffer for join in main memory and
selectivity of that records

Merge join (e-3) CMerge_Total Number of records in tables to be
joined and selectivity of those records

τ: Sorting

Number of 
records: R0

τ

τ

σ：Selection
: Join

σ
Selectivity P0

σ
Selectivity P1

τ

σ
Selectivity P2

τ

{R0,P0} {R1,P1}

{R0,R1,P0,P1}
{R2,P2}

CSortDbCSortTmp

CMerge

CSortDb

CMerge

CSortDb

{R0,R1,P0,P1}

(a) (b)

(d)

(e)
(c)

(f)

Table R0
Number of 
records: R1

Table R1

Number of 
records: R2

Table R2

Figure 5.1.: Input Parameters to Each Part of Sort Merge Join
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CSMJ_Total(P0, P1, P2, R0, R1, R2) =
2∑

j=0
CSortDb_Total(P0, · · · , Pj, R0, · · · , Rj)

+ CSordTmpTotal(P0, P1, R0, R1) +
1∑

j=0
CMergeTotal(P0, · · · , Pj, R0, · · · , Rj) (5.19)

The generalized SMJ cost calculation formula is given by equation 5.20.

CSMJ_Total(P0, · · · , PN−1, R0, · · · , RN−1) =
N−1∑
j=0

CSortDb_Total(Pj, Rj)

+

N−2∑
j=1

CSordTmpTotal(P0, · · · , Pj, R0, · · · , Rj) +
N−1∑
j=1

CMergeTotal(P0, · · · , Pj, R0, · · · , Rj) (5.20)

where N is the number of tables to join.
Each part of SMJ operations are obtained using CPU events, instruction cache miss penalty,

branch misprediction penalty and data cache access time as following equations 5.21, 5.22,
5.23 and 5.24.

CPhase_Total(P, R) = CPhase_ICacheMiss(P, R) + CPhase_MP(P, R) + CPhase_DCacheAcc(P, R) (5.21)

CPhase_ICacheMiss(P, R)
= ML2I(P, R) × LL2 × BFL2I(P, R) + MLLCI(P, R) × LLLC × BFLLCI(P, R)

+ MMMI(P, R) × LM M × BFMMI(P, R) (5.22)

CPhase_MP(P, R) = MMP(P, R) × LMP × BFMP(P, R) (5.23)

CPhase_DCacheAcc(P, R)
= ML1D(P, R) × LL1 × BFL2D(P, R) + ML2D(P, R) × LL2 × BFL2D(P, R)

+ MLLCD(P, R) × LLLC × BFLLCD(P, R) + MMMD(P, R) × LM M × BFMMD(P, R) (5.24)

where

{Phase, P, R} =


{SordDb, Pj, Rj} Sorting records in a database table
{SordTmp, P0, · · · , Pj, R0, · · · , Rj}

Sorting records buffered in a temporary table
{Merge, P0, · · · , Pj, R0, · · · , Rj} Merge Join

and j = 0, 1, · · · ,N − 1.
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The accuracy of cost depends on the accuracy of CPU statistical information such as the
number of cache memory accesses, the number of main memory accesses and blocking factors.
It is important to choose how to obtain those parameters. We compare the technologies from
the viewpoint of estimating the execution time.

We can choose a method out of three methods, actual measurement using performance
monitor embedded CPU when executing query, modeling the behavior of query execution and
simulation of query execution as shown in Table 5.3. The method of modeling the behavior of
query execution [25] has high versatility. That is because it is not influenced by the difference
of hardware and software and is not necessary to measure statistics information. However, it is
very difficult to model instruction cache activity because it is difficult to find when instruction
cache misses happen. The simulation of query execution is easy to reflect architectural change
of different generation CPU to simulation models; however, accurate emulation of CPU increase
calculation time [49]. From the viewpoint of accuracy and time to obtain parameters, we chose
a method to use the performance monitor which gives the most accurate parameters.

Table 5.3.: Parameter Estimation Methods
Method of obtaining Pa-
rameters

Advantage Disadvantage

Actual measurement using
performance monitor embed-
ded CPU

Acquiring accurate statistical
information of CPU

Updating parameters when
CPU architecture is changed

Modeling the behavior of
query execution

Small influence of difference
in CPU architecture and
version of software

Difficult to model instruc-
tion cache statistics

Simulation of query execu-
tion

Increasing calculation time
by accurate emulation

The aim of this study is to improve the accuracy of the CPU cost calculation. Therefore, we
use a method to statistically obtain the parameters of the calculation formula from measured
values using the performance monitor. One of the parameters, memory latency, depends on
the hardware configuration, which includes the number of CPUs, which CPU socket the main
memory modules are installed in, and other factors. According to J. L. Lo et al. [50], the
memory access concentration is low when executing analytic queries, such as the TPC-H
benchmark, and does not increase the memory latency.
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6. Feasibility Study of Creating Cost
Calculation Formulas

In this study, we propose a method for obtaining cost calculation formulas for join operations
using statistical information measured by the performance monitor on a CPU. In this chapter,
we use a comparatively large database for a feasibility study of the proposed method and obtain
cost formulas of nested loop join (NLJ) and hash join (HJ) of two tables. The cross point
of these cost calculation formulas is obtained and its prediction accuracy is reported. First,
we describe the measurement environment, and subsequently demonstrate the cost calculation
formulas obtained from the measurement results. Finally, we evaluate the accuracy of the cross
point obtained from the cost formulas. Cost calculation formulas for sort merge join (SMJ)
can be obtained with the same approach. Since there is no SMJ support in the DBMS used in
this experiment, only NLJ and HJ are targeted here.

6.1. CPU Events Measurement for Parameter Setting of Cost
Calculation Formulas

CPU statistical information, such as the numbers of instructions and cache hits, is measured
in the environment in Table 6.1. The parameters in Table 5.1 are calculated using this
information. The server has two CPU sockets with non-uniform memory access (NUMA).
The main memory of NUMA is composed of the local memory attached to CPU directly and
remote memory attached to the other CPU connected through the interconnection network
between CPUs. NVMe Flash SSD is used as storage for storing the database. We used high-
speed NVMe SSD to reduce the time taken for the disk I/O as much as possible and to obtain
an environment closer to the in-memory database environment.

We used open-source MariaDB [51]. MariaDB supports multithreaded, asynchronous I/O
as it utilizes the latest hardware characteristics and it supports multiple join methods, including
NLJ and HJ. The NLJ supported by MariaDB is block nested loop join (BNL), which improved
the NLJ, but under the conditions of the query and index used in this study, it operates in
the same way as the general NLJ. Moreover, as MariaDB does not support NUMA, we set
interleave using OS startup parameters. The MariaDB version used in this study does not
function effectively for automatically selecting a join method based on the cost it calculates,
and fixedly selects the join method with user-configurable parameters.

The evaluated query and the measurement condition are shown in Figure 6.1. We used the
modified query 3 of TPC-H benchmark [5] for the evaluation of two-table join, and obtained
a description by extracting only join processing. SF100 (100 GB) of TPC-H was used as
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Table 6.1.: Measurement Environment for Feasibility Study

CPU Xeon L5630 2.13GHz Quad-core, LLC 12MB [Westmere-EP] ×2
Memory DDR3 24GB (4GB ×6)
Disk (DB) PCIe NVMe Flash SSD 800GB ×1 (Note: Max throughput suppressed by

server’s PCIe I/F (Ver.1.0a), approximately 1/4 of max throughput.)
Disk (OS) SAS 10krpm 600GB, RAID5 (4 Data + 1 Parity)
OS CentOS 6.6 (x64)
DBMS MariaDB 10.1.8

a database. The number of records in the outer table and inner table referenced at the join
changes the selection rate of the data to be referenced by changing the search condition of the
query against the c_acctbal column of the inner table (Figure 6.1(c)). For NLJ, by changing
the number of rows in the inner table, the number of records in the inner table corresponding
to the key to be joined specified in the outer table was changed.(Figure 6.1(d)) The index of
the database is set as the primary key defined according to the specification of TPC-H [5].
The CPU performance counter data were measured using Intel® Vtune™ Amplifier XE. For
understanding the mean of counters, we refer to the literature [44]. The counter measured
mainly collects information related to the reference to the cache memory and the state of the
pipeline such as the number of stall cycles.

CPUコストの計算モデル構築のための予備実験(クエリ)

28

select  count(*)
from customer, orders
where

c_mktsegment = 'MACHINERY'
and c_acctbal > N
and c_custkey = o_custkey
and o_orderdate < date '1995-03-06‘;

実験に用いたクエリ(TPC-H Q3ベース)

σ

σ

customer

orders

N 9998 9978 9798 9200 9000 8000 7000
Selectivity 3.62E‐05 4.00E‐04 3.67E‐03 1.45E‐02 1.82E‐02 3.64E‐02 5.45E‐02

(b) Access Path
γ

c_custkey=o_custkey

count(*)

(a) SQL

Condition 1

Condition 2

(c) Selection Condition and Selectivity (Condition 1)

Condition 1

Condition 2

(d) Number of Inner Table Records (Condition2)

(Inner Table)

(Outer Table)

Number of Records 150,000,000 112,500,000 75,000,000 37,500,000

Join Method 
Selected
Manually

Figure 6.1.: Target Query of Measurement and Cost Estimation
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6.2. Measurement Results and Cost Calculation Formulas
In this section, the measurement results of NLJ and HJ are presented. As the number

of rows referenced by NLJ increases in proportion to the selectivity, it is presumed that the
number of executed instructions and the number of memory references will increase. In
addition, as the amount of referenced data increases, it is assumed that the data in the cache
memory are replaced with new data frequently and the hit ratio becomes lower. Based on
these presumptions, we will analyze the measurement results by focusing on model creation
via linear regression.

In the build phase of HJ, regardless of the selectivity of the outer table, all records are
accessed; therefore, it is presumed that the number of executed instructions and the number
of memory references are constant with respect to the selectivity. Even in the probe phase of
HJ, it is presumed that there is a similar tendency because all the records in the inner table
are accessed. However, as the amount of data stored in the hash table constructed in the build
phase increases in proportion to the selectivity, it is presumed that the tendencies of the number
of executed instructions and the number of memory references are similar to those in NLJ. We
analyze the measurement results based on the above presumptions.

6.2.1. Measurement Results of NLJ
Figure 6.2 shows the relationship between the selectivity of the outer table and the number of

executed instructions when joining two tables. The number of executed instructions increases
almost linearly with respect to the selectivity. Even if the number of records in the inner table is
changed, it has the same tendency as the executed instructions. The straight line is a regression
line. The coefficient of determination (R2), which is an index representing the goodness of
approximation, is one. This indicates that the regression line can be approximated with high
accuracy. Regression analysis of the slope and intercept of the regression line of the number
of executed instructions against the number of lines in the inner table shows that the coefficient
of determination is approximately one and it can be observed that the number of lines in the
inner table can be approximated by a straight line (Figure 6.2(b), (c)).

Figure 6.3(a) shows the relationship between the number of executed instructions and the hit
ratio of the L1I cache. The measured values classified by the number of rows in the inner table
have shapes such as hyperbolas. Assuming that the measured values can be approximated by a
hyperbolic curve from the shape of the distribution, they are analyzed using the concept shown
in Figure 6.4.

First, we introduced a dummy variable corresponding to the asymptotic line and take log-
arithms on both sides of the assumed hyperbolic equation to replace the variable. When this
process was applied to the measured values, it was observed that the graph in Figure 6.3(b)
was obtained, and as the coefficient of determination of linear regression was one, it could be
approximated by a straight line. Therefore, the number of executed instructions and the L1I
hit rate can be approximated by hyperbolic curves.

Subsequently, we analyzed the graph of slope and intercept of the regression line in Figure 6.3
(b) by hyperbolic approximation similarly. As shown in Figure 6.3 (c), the slope, intercept,
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and dummy variable (dm1) can be approximated by straight lines. Therefore, they can also be
modeled by hyperbolic functions.
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coefficient of determination for each regression line.

Figure 6.2.: Number of Instructions on NLJ and Regression Line

Figure 6.5(a) shows the relationship between the L1I cache miss ratio and the L2 cache hit
ratio limited to the instruction references. It can be observed that the L1I cache miss ratio
and the L2 cache hit ratio limited to the executed instructions can be linearly approximated
from the shape of the graph and the value of the decision coefficient obtained via regression
analysis.

Furthermore, the slope and intercept of the linear approximation formula obtained for each
number of records in the inner table can be approximated by a straight line as shown in the
graph on the right side of Figure 6.5(a).

Therefore, the formula to calculate the L2 cache hit ratio from the L1 cache miss ratio can be
obtained by substituting each linear approximation formula of the slope and intercept, which
is a function of the number of records of the inner table on the right side of Figure 6.5(a), for
the slope and intercept.

Subsequently, we describe the tendency of references to last-level cache (LLC) and main
memory. The LLC and main memory installed in the CPU socket on which the DBMS
is running are called local LLC and local main memory, respectively. The LLC and main
memory installed in the other CPU socket on which the DBMS is not running are called
remote LLC and remote main memory, respectively. The tendency of accesses to LLC and
main memory is shown in Figure 6.5(b)–(e). The local LLC hit ratio can be approximated
by a straight line with respect to the L2 miss ratio. The Remote LLC hit ratio, the local
main memory access ratio and the remote cache access ratio have the same tendency as the
local LLC. On the other hand, Regression analysis of the slope and intercept of the linear
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Figure 6.3.: Number of Instructions and L1I Hit Ratio on NLJ

dm

y

x

xa(y-dm)=b
Y

X

Y=AX+Blog(xa(y-dm))=log(b)
A = -a
B = log(b)
X = log(x)
Y= log(y-dm)

Dummy variable “dm” is manually introduced to maximize coefficient 
of determination for regression line “Y=AX+B”. 

: Observed 
Values

(1) (2) (3)

Figure 6.4.: Estimation Method of Curves Using Dummy Variable
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approximation formula obtained for each number of records in the inner table reveals that
the determination coefficient of the intercept is approximately 0.3 and it cannot be said to be
approximated linearly.

Similarly, the remote LLC hit ratio and the local main memory reference rate (the ratio
of instructions obtained from the local main memory to all executed instructions) can be
approximated by a regression line with respect to the local LLC miss rate. However, when
the regression analysis is performed on the slope and intercept of the linearly approximated
expression against the number of rows in the inner table, the coefficient of determination is
small and it is difficult to conclude that it can be approximated by a straight line.

Therefore, in this study, it is determined whether it can be approximated by a straight line
with the magnitude of the decision coefficient, but as the criterion for determining whether it
can be approximated by a straight line varies from one study to another, a tentative intermediate
value of 0.5 is used as a criterion. Thus, modeling with a linear function is performed in the
cases where the coefficient of determination is 0.5 or more, and the average measured values
are used in the cases where the coefficient of determination is less than this value. L2, LLC,
and main memory access case described above can be approximated by a straight line because
those coefficients of determination are more than 0.5 in Table 6.2.

Table 6.2.: Coefficient of Determination of Regression Line of Instruction Access on NLJ

Records of Inner Table

1.50 × 108 1.13 × 108 7.50 × 107 3.75 × 107

L2 1.00 1.00 1.00 1.00
Local LLC 1.00 1.00 1.00 1.00
Remote LLC 1.00 0.97 0.96 1.00
Local Main Memory 0.84 0.90 0.95 0.64
Remote Main Memory 1.00 0.94 0.96 0.99

Subsequently, the measurement results related to data cache are described. The measurement
results of load instructions obtained for each number of records in the inner table can be linearly
approximated as shown in Figure 6.6(a). In addition, it can be observed that the slope and
intercept of these linear approximation equations can be linearly approximated to the number
of records of the inner table. Similarly, in the cases of Figure 6.6(b) to (f), the results
of the regression analysis of the measurement values on the left side have a coefficient of
determination of 0.99 and can be approximated by a straight line as shown in Figure 6.6(a).
The slope and intercept of these approximate lines were analyzed for the number of rows in
the inner table, as shown in the graph on the right side of Figure 6.6(b) to (f), where it was
observed that some slopes and intercepts are difficult to approximate with straight lines.

As the measurement results of L1D hit case have a hyperbolic distribution, the measurement
results are converted into logarithms like an L1I hit to create a graph (Figure 6.7(a)). These
measurement results are distributed on a straight line, but the slope and intercept are varied,
and the coefficient of determination is less than 0.5 (Figure 6.7(b)). Therefore, the average
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Figure 6.6.: Data Access Ratio of L2, LLC and Main Memory on NLJ
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values of slope, intercept, and dummy variable are used as it is difficult to determine whether
they can be approximated by linear regression.
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Figure 6.7.: Relation between Number of Inner Table Records and L1D Hit Ratio on NLJ

Figures 6.8(a) and (b) show the relationship between the sum of the product of the number
of instructions or data references and memory latency for each memory layer, i.e., cache miss
penalty and CICacheMiss or CDCacheAcc. In both cases, as the coefficient of determination obtained
via regression analysis is one, it can be approximated by a straight line. Figures 6.10(a) and (b)
show the relationship between the slopes of these straight lines and the number of records of the
inner table. We also model them using the decision criteria based on the decision coefficient.

For branch misprediction, as shown in Figure 6.9, it can be observed that a straight line
passing through the origin can be used for approximation. Regarding the slope of this regression
line, by analyzing the relation to the number of records in the inner table, the determination
coefficient is 0.98 as shown in Figure 6.10(c). Therefore, the measurement results of branch
misprediction can be approximated by a straight line.

From the above discussion, Equations (6.1), (6.2), and (6.3) are obtained. The definitions
of parameters of the equations are listed in Table 6.3.

CN LJ_ICacheMiss= I×(HL2I×LL2+HLLLCI×LLLLCI+HRLLC×LRLLC

+HLM MI×LLM M+HRM MI×LRM M)×(K01×RI+S01)+A01 (6.1)
where
I= (K02 ×RI+S02)×RO×P+(K03×RI+S03)

HL1I=e−S04×R−K04
I −d0 × Ie−S05×R

−K05
I

−d1
− eS06 × R−K06

I + d2
HL2I= (K07×RI+S07)×(1−HL1I)+(K08×RI+S08)
HLLLCI= (K09×RI+S09)×(1−HL1I−HL2I)+A02

HRLLCI= A03×(1−HL1I−HL2I)+A04

HLMMI= A05×(1−HL1I−HL2I)+A06

HRMMI= A07×(1−HL1I−HL2I)+A08
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Figure 6.10.: Slope and Intercept of Regression Line of Data Access Cycles and Branch
Misprediction on NLJ

CNLJ_MP= {(K11×RI+S11)×P×RO}×LMP (6.2)

CNLJ_DCacheAcc= Iload×(HL1D×LL1+HL2D×LL2+HLLLCD×LLLLC+HRLLCI

×LRLLC+HLMMI×LLMM+HRMMI×LRMM)×(K21×RI+S21) (6.3)
where
Iload= (K22 ×RI+S22)×RO×P+(K23×RI+S23)
HL1D=e−A21×I−A22

load + A23

HL2D= A24×(1−HL1D)+(K24 ×RI+S24)
HLLLCD= A25×(1−HL1D−HL2D)+(K25 ×RI+S25)
HRLLCD= A26×(1−HL1D−HL2D−HLLLCD)+A27

HLMMD= A28×(1−HL1D−HL2D−HLLLCD)+(K26 ×RI+S26)
HRMMD= A210×(1−HL1D−HL2D−HLLLCD)+A211

6.2.2. Measurement Results of HJ Build Phase
Figure 6.11 shows the graphs of instruction access and data access in the build phase of

HJ. As shown in Figure 6.11(b), the data reference has a constant value. This is because the

41



6. Feasibility Study of Creating Cost Calculation Formulas

Table 6.3.: Parameter Setting of NLJ
Slope Intercept Figure

Number
Focused Object

K01 S01 6.10(a) Regression line of slope
K02 S02 6.2(b) Regression line of slope
K03 S03 6.2(c) Regression line of intercept
K04 S04 6.3(d) Regression line of slope
K05 S05 6.3(d) Regression line of intercept
K06 S06 6.3(d) Regression line of dummy variable
K07 S07 6.5(a) Regression line of slope
K08 S08 6.5(a) Regression line of intercept
K09 S09 6.5(b) Regression line of slope
K11 S11 6.10(c) Regression line of slope
K21 S21 6.10(b) Regression line of slope
K22 S22 6.6(a) Regression line of slope
K23 S23 6.6(a) Regression line of intercept
K24 S24 6.6(b) Regression line of intercept
K25 S25 6.6(c) Regression line of intercept
K26 S26 6.6(e) Regression line of intercept

Parameter Figure
Number

Object

A01 6.12(a) Average of intercept
A02 6.5(b) Average of intercept of local LLC
A03 6.5(c) Average of slope of remote LLC
A04 6.5(c) Average of intercept of remote LLC
A05 6.5(d) Average of slope of local main memory
A06 6.5(d) Average of intercept of local main memory
A07 6.5(e) Average of slope of remote main memory
A08 6.5(e) Average of intercept of remote main memory
A21 6.7 Average of intercept
A22 6.7 Average of slope
A23 6.7 Average of dummy variable
A24 6.6(b) Average of slope
A25 6.6(c) Average of slope
A26 6.6(d) Average of slope
A27 6.6(d) Average of intercept
A28 6.6(e) Average of slope
A29 6.6(e) Average of intercept
A210 6.6(f) Average of slope
A211 6.6(f) Average of intercept
d0 6.3(d) Dummy variable of slope
d1 6.3(d) Dummy variable of intercept
d2 6.3(d) Dummy variable of dm1
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entire outer table is scanned even if the selectivity changes, and hence, the data access amount
does not change. Considering that the number of records in the outer table is proportional to
the number of data references, in this study, the intercept of the HJ cost calculation formula is
expressed by a linear expression with respect to the number of records in the outer table. The
instruction access increases with the increase in the selectivity because of the increase in the
registration to the hash table.
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Figure 6.11.: Number of Instruction References and Data References in Build Phase of HJ

CBuild_ICacheiss is modeled by its average value because the coefficient of determination of
linear regression analysis of the instruction miss penalty and CBuild_ICacheiss is small (Fig-
ure 6.12(a)).

6.2.3. Measurement Results of HJ Probe Phase
In Figure 6.13(a), the graph of the number of instruction accesses to the memory of any

memory hierarchy is a straight line passing through the origin as in the NLJ. The number of
data references is almost constant similar to that in the HJ build phase (Figure 6.13(b)).

As the inner table access is also a table scan, the data access in the probe phase has the same
tendency as that in the build phase. Regarding instruction access, if the selectivity of the outer
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table is zero, i.e., if there is no record to be searched, the graph of instruction access can be
approximated by a straight line passing through the origin.

The instruction miss penalty and CProbe_ICacheMiss can be approximated by a straight line to
the selectivity (Figure 6.14(a)). Similarly, for CProbe_DCacheAcc, the coefficient of determination
is one from the result of regression analysis of the total data reference (total data access),
and it can be approximated by a straight line (Figure 6.14(b)). Similarly, CProbe_MP can be
approximated by a straight line to the selectivity as shown in Figure 6.14(c).

Based on the above considerations, the cost formula for HJ is expressed in equations (6.4),
(6.5), (6.7), (6.8), and (6.9). The number of inner tables when measuring CPU events is given
by RO_re f . Table 6.4 shows the definitions of variables.

CBuild_ICacheMiss= A37×
(
RO/RO_re f

)
(6.4)

CProbe_ICacheMiss= [K31×{(K32×P+S32)×LL2

+(K33×P+S33)×LLLLC+(K34×P+S34)×LRLLC

+(K35×P+S35)×LLMM+(K36×P+S36)×LRMM}
+S31]×(RO/RO_re f ) (6.5)

CBuild_MP=K39×P×RO+S39 (6.6)

CProbe_MP=K37×P×RO+S37 (6.7)
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CBuild_DCacheAcc= A38×
(
RRO/RO_re f

)
(6.8)

CProbe_DCacheAcc= {K38×(A31×LL1+A32×LL2

+A33×LLLLC+A34×LRLLC

+A35×LLM M+A36×LRM M)+S38}×
(
RO/RO_re f

)
(6.9)
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Table 6.4.: Parameter Setting of HJ
Slope Intercept Figure Number Focused Object

K31 S31 6.12(a) Regression line
K32 S32 6.13(a) Regression line of L2
K33 S33 6.13(a) Regression line of local LLC
K34 S34 6.13(a) Regression line of remote LLC
K35 S35 6.13(a) Regression line of local main memory
K36 S36 6.13(a) Regression line of remote main memory
K37 S37 6.14(c) Regression line of branch misprediction
K38 S38 6.14(b) Regression line
K39 S39 6.12(c) Regression line

Other Figure Number Focused Object

A31 6.13(b) Average of L1D
A32 6.13(b) Average of L2
A33 6.13(b) Average of local LLC
A34 6.13(b) Average of remote LLC
A35 6.13(b) Average of local main memory
A36 6.13(b) Average of remote main memory
A37 6.12(a) Average
A38 6.12(b) Average
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6.3. Evaluation of Cost Calculation Results
For the three combinations of the Customer table and Order table, Supplier table and

Lineitem table, and Part table and Lineitem table, which are combinations of two tables in
which relations are set and whose capacity is large, from the table of TPC-H evaluate accuracy,
the measured values used for parameter setting of the cost calculation formula are the actual
values measured when joining the Customer table and the Order table and for the remaining two
combinations, the cost calculation is performed using only the number of rows and selectivity
of the table. To compare the execution time of the query, the actual I/O processing time is
added to the CPU cost calculated using the proposed method as the predicted value of the
proposed method. The memory latency refers to the literature [52].

The cost (“proposed” in Figure 6.15) calculated using the above method and the actual query
processing time of the DBMS (including both CPU and I/O) were compared (Figure 6.15 (a)，
(c)，(e)). Furthermore, the actual query processing time and the costs which is described
as “conventional” in Figure 6.15 and obtained from the cost calculation formula of the open
source DBMS in Equation (2.1), (2.2), and (2.3) are also compared. However, as HJ is not
supported in the existing method, it is considered as a sum of single-table scans of the outer
and inner tables. The task set in this study is to determine the cross point of NLJ and HJ
graphs accurately in determining the join method. In the cases evaluated here, the accuracy
improvement ratio AIR is given by the following equation (6.10).

AIR =
|Sproposed − Smeasured |
|Sconventional − Smeasured |

(6.10)

where Sproposed is selectivity of the cross point obtained by the proposed cost calculation
method, Smeasured is selectivity of the measured cross point, and Sconventional is selectivity of the
cross point obtained by the conventional cost calculation method.

The accuracy improvement ratio AIR is an index showing how close the cross point obtained
by the proposed cost calculation method is to the measured cross point in comparison with the
cross point by the conventional method. It is found that the difference between the predicted
cross point and the measured cross point was less than 10−3 (0.1%) selectivity, and the proposed
method could estimate the cross point with 83% to 94% accuracy improvement ratio AIR in
Table 6.5. Improvement of prediction accuracy was achieved compared with accuracy of the
conventional method.

Table 6.5.: Difference of Cross Point and Improvement Ratio
Join tables C-O P-L S-L
Conventional method 1.5×10−2 3.5×10−3 2.2×10−3

Proposed method 5.0×10−4 6.0×10−4 1.4×10−4

Improvement ratio AIR 97% 83% 94%
Note: C: Customer, O: Orders, L: Lineitem, P: Part, S: Supplier

In the conventional model mentioned above, it is assumed that the unit cost of CPU is
CPR = 0.2 and that of I/O is CPIO = 1, which are the default defined values. However,
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considering the CPU unit cost means CPU cycle time or memory access latency and the I/O
unit cost means I/O access latency, it is not reasonable that the unit cost of CPU is 0.2 and
that of I/O is 1 because DB administrators can tune parameters about cost calculation for
optimizing queries. Therefore, we evaluated the case in which the unit cost of CPU is the ratio
of CPU cycle time and measured I/O latency (CPR = 3 × 10−6 = (1/2.13GHz)/154ms) and
the case in which the unit cost of CPU is the ratio of main memory latency and measured I/O
latency (CPR = 6 × 10−4 = 100ns/154ms). These conventional model are called the updated
conventional model below. The results of joining two tables, customer and orders (C-O),
supplier and lineitem (S-L), part and lineitem (P-L) are shown in the Figure 6.16(a)(b)(c).

Table 6.6 shows that the difference between estimating cross point using the unit cost
considering CPU cycle time or main memory latency measured cross point are smaller than
that of the default CPU unit cost case. However, the difference between the cross point estimated
by proposed method and the measured cross point is smaller than updated conventional method
with 71% to 94% accuracy improvement ratio. Therefore, our proposed cost calculation method
can be estimated cross point more accurately than the default method.

Table 6.6.: Difference of Cross Point and Improvement Ratio with Updated Conventional
Method

Join tables C-O P-L S-L
CPU cost parameter type MEM MEM MEM
Updated conventional method 1.8×10−3 2.1×10−3 2.5×10−3

Proposed method 5.0×10−4 6.0×10−4 1.4×10−4

Improvement ratio AIR 72% 71% 94%
Note1: C: Customer, O: Orders, L: Lineitem, P: Part, S: Supplier
Note2: MEM is main memory latency.

6.4. Discussion
In this study, We proposed the cost calculation method based on CPU statistical information

for optimizing database queries and evaluated its effectiveness using a large database. It
is found that our proposed cost calculation method can estimate the cross point closer than
the conventional method to the measured value. As the evaluation environment, the TPC-
H benchmark database is used for the evaluation of the proposed method. TPC-H has an
advantage in that it is easier to analyze the evaluation result because the distribution of data is
uniform. However, actual data have a bias in the distribution of attribute values. In the cost
calculation formula obtained in this study, the cost is determined only by the selectivity, and
the same measurement result can be obtained if the selectivity is the same, regardless of the
distribution of the data. The accuracy of the cost calculation formula in this study depends
on the accuracy of the selectivity. As a general DBMS acquires attribute values and their
distribution information in a database in the form of a histogram at the time of loading data,
the proposed method can be applied to an actual DBMS easily.
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In addition, as the present technique sets parameters of the cost calculation formula based
on measurement, it is difficult to deal with various patterns such as the presence or absence of
indexes and complicated queries. Although we focused on the operation of all CPUs here, it is
necessary to improve accuracy using a model with fewer parameters for a practical application.

6.5. Conclusion of Feasibility Study
For database query optimization, we proposed a cost calculation method focusing on CPU

architecture and presented the proposal and evaluation of a cost calculation formula reflecting
the actual measurement result. In the cost calculation method, CPU processing time is classified
into three types based on the characteristics of instruction processing. Subsequently, CPU
cost calculation formulas using actual measurement values are obtained. In the evaluation
experiment, the difference between the selectivity at which the join method is switched based
on the obtained cost formula and the selectivity at actual measurement is less than 0.1% in the
selectivity of the data. Consequently, the proposed cost calculation method can calculate the
cost with high accuracy. The appropriate join method can be selected by applying the proposed
method in this study, and the possibility of reducing the risk of unexpected query execution
delay to users of DBMS was obtained.
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7. Measurement-based Cost Estimation
Method for Multi-Table Join Operation

In chapter 6, it was found that the proposed measurement-based cost calculation method can
improve accuracy of cost in the case of two table join. In this chapter, the proposed method is
generalized so that it can be applied to multiple-table joins. In addition, the database size is
required to be smaller than that of Chapter 6 to shorten the measurement time of CPU statistical
information for minimizing database administrator’s operation cost. Therefore, we extend the
measurement-based cost calculation method to support multi-table join using measured data
on small database.

Moreover, in query optimization, not only the join method but also the order of the tables
to be joined is determined. In this study, the join operation is performed by the left-deep join
tree [53] because MariaDB uses the left-deep join tree for query optimization. The left-deep
join tree has the feature that the amount of memory usage is small, and the join operation is
completed in one-pass. However, when executing small size of query, performance of bushy
tree is better than liner tree such as left-deep and right-deep tree, and when executing query
parallel, performance of right-deep-tree is better than left-deep-tree [54]. Therefore, it is one
of our future work whether or not the proposed method can be widely applied in various join
trees.

In general, in query optimization, combinations of tables and the order of joining the tables
are created under the condition of having the same attributes to each table, and their costs
are calculated. Then, the combination with the smallest cost among them is selected. In this
study, we compare the actual processing time in the case of joining two or more tables with the
cost calculated using our proposed cost calculation method. We verify that our proposed cost
calculation method can optimize join operation thereby finding the minimum query execution
time case.

7.1. Proposal and Verification of Measurement-based Cost
Estimation Method

7.1.1. Measurement of Parameters for Creation of Cost Formula
To obtain the parameters in Table 5.1, actual measurements were made. The measurement

environment is listed in Table 7.1. We used Westmere CPUs as they have the same architecture
as Nehalem. The servers are equipped with two CPUs. The main memory is connected to
each CPU. The memory connected to one CPU is called the local memory, while the other is
called the remote memory. In general, such a memory architecture is known as non-uniform
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memory access (NUMA). The latencies of the local and remote memory are different. In this
study, main memory modules are installed in only one CPU to simplify the examination of
measurement results. An NVM Flash SSD was used as a disk device to store the database to
improve the experimental efficiency. We used the open-source MariaDB [51] as the DBMS as
it supports multithreading and asynchronous I/O, can utilize the latest hardware characteristics,
and supports multiple join methods. Specifically, the NLJ supported by MariaDB is a block
NLJ, which is an improvement of the NLJ. However, under the conditions of the query and
index used in this study, it behaves like the general NLJ. The version of MariaDB used in
this study does not select the effective join method automatically; it is specified based on the
configuration parameters.

Table 7.1.: Parameter Measurement Environment

CPU Xeon L5630 2.13 GHz 4-core, LLC 12 MB [Westmere-EP]) ×2
Memory DDR3 12 GB (4 GB ×3) physically attached to only one CPU
Disk (DB) PCIe NVMe Flash SSD 800 GB ×1 (Note: maximum throughput suppressed by server’s PCIe

I/F(ver.1.0a), about 1/4 of max throughput)
Disk (OS) SAS 10,000 rpm 600 GB, RAID5 (4 Data + 1 Parity)
OS CentOS 6.6 (x64)
DBMS MariaDB 10.1.8 with InnoDB storage engine (Note: storage engine’s buffer cache size is scaled

to be 1 TB if database size is SF 100 TB.)

The query to be evaluated and its measurement conditions are shown in Figure 7.1. In the
SQL statement, we modified Query 3 of TPC-H for an evaluation of two-table join and extracted
only join processing (Figure 7.1(a)). The order of joining tables is shown in Figure 7.1(b). This
query access path is generated by MariaDB. The database size is scale factor (SF) 5 defined
in the TPC-H specification. SF5 means that the total size of the database is 5 GB. In order to
apply the proposed technology to the actual system, we used small-scale data to minimize the
measurement time. The indices of the database are created on the primary keys and the foreign
keys which are defined in the specification of TPC-H [5].

We changed the search conditions of the query against the c_acctbal column of the outer
table in order to change the selectivity of the data to be referenced (Figure 7.1(c)). As for NLJ,
the selectivity and number of records of the inner table were changed (Figure 7.1(c) and (d)).
The purpose of changing the selectivity is to change the total number of records accessed by
the DBMS. The purpose of changing the number of records of the inner table is to change the
number of records that have the same key as the record selected from the outer table. This
means changing the length of the linked lists that have the key to join with the inner table. As
for HJ, only the outer table was accessed in the build phase, and the number of records of the
outer table was changed (Figure 7.1(e)). In the probe phase, only the inner table was accessed,
and the number of records of the inner table was changed (Figure 7.1(d)). In order to accurately
measure the CPU events of the build phase, the empty inner table (Figure 7.1(f)) was used
for joining with the outer table. In order to measure CPU events without affecting DBMS
behavior, the CPU events that occurred during the probe phase are measured as follows:
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(Number of CPU events during probe phase)
= (Number of CPU events during total query execution)

− (Number of CPU events during build phase) (7.1)

For the combination case, the query and its measurement conditions are shown in Figure 7.2.
This query is based on Query 3 of TPC-H. The order of joining tables is shown in Figure 7.2(b).
This query access path is generated by MariaDB. The search condition and selectivity of the
outer table are shown in Figure 7.2(c). This condition is used for modeling Figure 4.2(c-1). In
addition, the search condition and those of the inner tables are shown in Figure 7.2(d). This
condition for the inner table1 and the inner table2 was used for modeling Figure 4.2(c-2). The
search condition (e) in Figure 7.2 was introduced to accurately measure instructions, LOAD
instructions, and branch mispredictions because we found that these events were more highly
affected than other events through our preliminary experiment.

The CPU performance counter data was collected using Intel® Vtune™ Amplifier XE. We
refer to Levinthal (2009) [44] for a description of the content of those counters. The measured
data is mainly related to the number of accesses to the cache and main memory, the state of
the pipeline such as the number of stall cycles, and the number of cache hits or misses. All of
the counters and the methods of preprocessing them are presented in Table A.1, A.2 and A.3
in Appendix A.2.

It is necessary to analyze not only CPU time but also I/O operation time to estimate the
whole execution time of a query as shown in Equation 2.1. We measured the I/O count and
response time using systemtap and constructed the I/O cost calculation formulas by analyzing
the relation between I/O and the selectivity or number of records.

7.1.2. Measurement Results and Cost Calculation Formulas of Join
Operation

In this study, we investigate the relationships between selectivity, number of instructions,
number of events related to memory reference, and number of branch mispredictions. For
NLJ, the number of instructions and number of memory references are expected to increase
because the number of records accessed by the DBMS increases in proportion to the increase
in selectivity. Based on the assumptions, we now analyze the measurement results and create
formulas using linear regression. For HJ, all of the records of the outer table and inner table
were accessed in both the build phase and probe phase. The cost formulas were assumed to not
have selectivity as a variable; we analyzed the measurement results based on this assumption.
For the combination of HJ and NLJ, the combination build phase was considered to be the same
as the build phase of HJ. We investigated the relationships between the number of selected
records from the outer table, number of records in the inner tables, and number of CPU events.

The CPU cost calculation formulas were obtained through the following steps. First, the
number of instructions, references of each cache memory, and main memory and branch mis-
predictions were analyzed using regression analysis, and the regression models were created.
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select  count(*)
from customer, orders
where
c_mktsegment = 'MACHINERY'
and c_acctbal > N
and c_custkey = o_custkey
and o_orderdate < date '1995-03-06‘;

実験に用いたクエリ(TPC-H Q3ベース)

σ

σ

customer

orders

N 9998 9978 9798 9200 9000
Selectivity PO (Condition 1) 3.62×10-5 4.00×10-4 3.67×10-3 1.45×10-2 1.82×10-0

(b) Access Path
γ

c_custkey=o_custkey

count(*)
Join method is 
manually set.

(a) SQL

Condition 1

Condition 2

(c) Selection Condition and Selectivity

Condition 1

Condition 2

(d) Condition of Inner Table

(Inner Table 1)

(Outer Table)

Number of Records in Inner Table 7,500,000 5,625,000 3,750,000 1,875,000

(e) Condition of Outer Table
Number of Records in Outer Table 750,000 562,500 375,000 187,500

+ q3bempのはなし

(f) Condition of Inner Table for Measuring Build Phase
Number of Records in Inner Table 7,500,000 5,625,000 3,750,000 1,875,000
Number of Records in Outer Table 0

Figure 7.1.: Target Query of Measurement and Cost Estimation for Two-table Join
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select count(*)
from customer, orders, lineitem
Where

c_mktsegment = 'MACHINERY'
and c_acctbal > N
and c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate < date '1995-03-06'
and l_shipdate > date '1995-03-06';

N 9998 9978 9798 9200 9000
Selectivity PO (Condition 1) 3.62×10-5 4.00×10-4 3.67×10-3 1.45×10-2 1.82×10-2

Selectivity PI1 (Condition 2) 0.482 0.482 0.482 0.482 0.482

(b) Access Path

Join method is 
manually set.

(a) SQL

Condition 1

Condition 2

(c) Selection Condition and Selectivity

(d) Condition of Combination Probe phase
Number of Records in Inner Table1 7,500,000 5,625,000 3,750,000 1,875,000
Number of Records in Inner Table2 37,500,000

Condition 3

σ

customer
orders

γ

c_custkey=o_custkey

count(*)

Condition 1

Condition 2

(Inner Table 1)

(Outer Table)

o_orderkey=l_orderkey
lineitem

(Inner Table 2)

σ

σ

Condition 3

(e) Condition of Combination Probe phase for Instruction, 
LOAD Instruction and Branch Misprediction Events

Number of Records in Inner Table1 7,500,000 5,625,000 3,750,000 1,875,000

Number of Records in Inner Table2
52,500,000
37,500,000
22,500,000

Figure 7.2.: Target Query of Measurement and Cost Estimation
for Three-table Join
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In addition, the relationship between the sum of the product of the references to each memory
and its latency, and CICacheMiss (3.7) and CDCacheAcc (3.10) were modeled. Here, CMP (3.8)
was obtained from the product of the number of pipeline stages of the front-end, which is 12
in Nehalem, and the number of mispredictions from the measurement results. Each value of
memory latency is referred from [44, 55]. The number of disk I/O was modeled using the
measured I/O access count and I/O response time. Finally, the cost calculation formulas were
evaluated from the viewpoint of the accuracy of intersection of the two join methods (Xcross in
Figure 1.2) with the conventional method.

Figure 7.3(1) shows the relationship between the number of records the DBMS accessed and
load instructions. Figure 7.3(7) shows the relationship between the total number of accessed
records and number of instructions. The number of accessed records is the product of the
number of outer table records, number of inner table records, and selectivity. The dotted line
is the linear regression line, and its slope and intercept are listed in Table 7.2. The coefficient
of determination (R2) is near 1 and the P value on the F test is less than 0.05. Therefore,
the linear regression model is highly accurate. The slope and intercept were used to create
the cost calculation model. Figures 7.3(2) and (8) show the relationship between the number
of instructions executed by the DBMS and the number of L1 cache hits. Figures 7.3(3)–(6)
and (9)–(12) show the relationships between the number of accesses to L2, LLC, and main
memory, and the number of cache misses of the upper-level cache. These relationships can be
linearly approximated because each R2 is near 1 and each P value is less than 0.05 in Table 7.2.
In this work, a two-CPU server was used and the LLC and main memory were connected to
each CPU. The LLC and main memory of the CPU on which DBMS threads are running are
called the local LLC and local main memory. The others are called remote LLC and remote
main memory. The upper-level cache is the local LLC. There are no references to the remote
main memory because the main memory is connected to only one CPU in our experimental
environment. Figure 7.3(13) shows the relationship between the number of records accessed
for the join operation and the branch misprediction cycles CMP. Figure 7.3(14) shows the
relationship between the product of the number of instruction accesses and latency, and the
L1I miss cycles (miss penalty), CICacheMiss. Figure 7.3(15) shows the relationship between the
products of the number of data accesses and latency, and the data cache and main memory
access, CDCacheAcc. Each graph can also be approximated by a regression line because each R2

is near 1 and each P value is less than 0.05 in Table 7.2.
Figures 7.4(1)–(15), Figure 7.5(1)–(15) and Figures 7.6(1)–(15) show the tendency of in-

structions, cache or main memory accesses, branch misprediction cycles, instruction cache
miss cycles, and data cache access cycles. These events tend to be similar to those of the NLJ.
The dotted line is the linear regression line, and its slope and intercept are shown in Table 7.2
and Table 7.3. The coefficient of determination (R2) is near 1 and the P value on the F test
is less than 0.05. Therefore, the linear regression model is highly accurate. The slope and
intercept are used for creating the cost calculation model.

In particular, the slope of the regression line in Figures 7.3(2)–(5) and (9)–(11); Fig-
ures 7.4(2)–(5), (9)–(11), Figures 7.5(2)–(5), and (9)–(11); and Figures 7.6(2)–(5) and (9)–
(11) represents the cache hit rate because the definition of cache hit rate is the quotient of the
number of cache hits and number of cache references, and the upper-level cache miss becomes
the lower-level cache reference.
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7,500,000 5,625,000 3,750,000 1,875,000 Regression Line
Number of Inner Table Records

(1) Load Instructions (2) L1D Hit (3) L2 Data Hit

(4) Local LLC Data Hit (5) Remote LLC Data Hit (6) Local Main Memory
Data Access

(7) Instructions (8) L1I Hit (9) L2 Instruction Hit

(10) Local LLC Instruction Hit (11) Remote LLC Instruction Hit (12) Local Main Memory
Instruction Access

(13) Branch Misprediction (14) Instruction Cache Miss (15) Data Access

Figure 7.3.: CPU Event Count on Executing NLJ
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Figure 7.4.: CPU Event Count on Executing Build Phase of HJ
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Figure 7.5.: CPU Event Count on Executing Probe Phase of HJ
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In this study, the number of cache hits is chosen as an explanatory variable, as shown in
Figure 7.7(a), which is the same graph as that in Figure 7.3(8). In general, the cache hit ratio is
more often used for modeling CPU memory access than the number of cache hits. However,
the cache hit ratio graph (Figure 7.7(b)) has a hyperbolic shape. The CPU cost calculation
function should be simple in order to apply a simple formula to the actual DBMS. In addition,
the reason why the cache hit ratio graph has a hyperbolic shape is explained by the following
expressions (7.2) and (7.3).
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Figure 7.7.: Problem of Modeling Cache Hit Ratio

The regression line of Figure 7.7(a) is

ML1I= A×I + B, (7.2)

where A and B are the slope and intercept of a linear regression on the two table join in
Figure 7.1, respectively. The cache hit ratio is obtained by dividing the number of cache hits
by that of instructions. Therefore, the cache hit ratio (7.3) is obtained by dividing both sides
of (7.2) by I. The equation 7.3 is a hyperbolic.

(L1I Hit Ratio)= A+
B
I
, (7.3)

In order to apply the two-table join calculation model to three or more tables, it is necessary
to estimate the total number of accessed records in the inner tables (Figure 4.1(a), Figure 4.2
(c-2)). As shown in Figure 7.8, the number of accessed records in inner table1 is RI0×PI0×rsk0
where rsk0 is ratio of RI1 to RI0 (7.4). If RI1 < RI0, then rsk0 = 1 because the number of
accessed records in inner table1 is as large as the references from the outer table. The number
of references from inner table1 to inner table2 is RI0×PI0×rsk0×PI1×rsk1. Therefore, the total
number of accessed records in the inner tables is (RI0×PI0×rsk0)+(RI0×PI0×rsk0×PI1×rsk1).
Based on the above, we introduce rsk and RI_total(n), which are written as (7.4) and (7.5).
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rski=


RIi

RI(i−1)
RIi ≥ max{RI(j), j = 0, 1, · · · , i − 1}

1 RIi < max{RI(j), j = 0, 1, · · · , i − 1}
(7.4)

where RI0=RO

RI_total(n)=RO×
n∑

j=1

j−1∏
i=0
(rski×PIi) (7.5)

where n of RI_total(n) means the number of inner tables to join.
In the combination probe phase, multiple inner tables are traversed with the key of the records

in the hash table. In general, the height of the index is approximately 3 to 4 as more than 100
records are registered in each node of the B+ tree. When the cost calculation equations are a
function of only the accessed records in the inner tables, the traversing records among nodes
and inside nodes can be considered as constant and omitted from the cost calculation model.
However, in order to consider the scan of the hash table at the same time, it is necessary to
consider both index height and records having the same key. Therefore, in the combination
probe phase, RCI_total(n) was introduced to construct a cost calculation formula. RCI_total(n)
is given by (7.6) as follows:

RCI_total(n)=RO×


n∑
j=1

j−1∏
i=0
(rski×PIi)×

(
logt(RIj)+

rsk j+1
2

)
+1

 (7.6)
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where t is the number of entries stored in an index page. t is 100 because the B+ tree index
stores more than 100 records in an index page. (rsk j+1)/2 is the expected value of the number
of traversing pointers from each leaf node of the index page.

The number of instructions, LOAD instructions, and branch mispredictions in the NLJ and
combination probe phase are proportional to the number of referenced records in the inner
tables (Figure 7.3(1)(7)(13) and Figure 7.6(1)(7)(13)).

Based on the above considerations, the formula for calculating the cost of the join methods
is

I= A1×R+B1 (7.7)
ML1I= A2×I+B2 (7.8)
ML2I= A3×(I−ML1I)+B3 (7.9)
MLLLCI= A4×(I−ML1I−ML2I)+B4 (7.10)
MRLLCI= A5×(I−ML1I−ML2I−MLLLCI)+B5 (7.11)
MLMMI= A6×(I−ML1I−ML2I−MLLLCI)+B6 (7.12)
ILoad= A7×R+B7 (7.13)
ML1D= A8×ILoad+B8 (7.14)
ML2D= A9×(I−ML1D)+B9 (7.15)
MLLLCD= A10×(I−ML1D−ML2D)+B10 (7.16)
MRLLCD= A11×(I−ML1D−ML2D−MLLLCD)+B11 (7.17)
MLMMD= A12×(I−ML1D−ML2D−MLLLCD)+B12 (7.18)
CICacheMiss= A13×(ML2I×LL2+MLLLCI×LLLLC

+MRLLCI×LRLLC+MLMMI×LLMM)+B13 (7.19)
CDCacheAcc= A14×(ML1D×LL1+ML2D×LL2

+MLLLCD×LLLLC+MRLLCD×LRLLC

+MLMMD×LLMM)+B14 (7.20)
CMP= A15×R+B15 (7.21)
where

R=



RI_total(n) NLJ

RO HJ build phase and
combination build phase

RI HJ probe phase
RCI_total(n) Combination probe phase.

The cost calculation formulas ((3.11), (7.7)–(7.21)) can become the following single formula
by focusing on R ( (7.22), (7.23), (7.24)). This formula suggests that our approach means
estimating an accurate unit CPU cost per accessed record.

CTotal=α×R+β (7.22)
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where

α= A1×A13×(LL2×A3×(1−A2)
+LLLLC×A4×(1−A3−A2+A2×A3)
+LRLLC×A5×(1−A2−A3+A2×A3−A4+A3×A4
+A2×A4−A2×A3×A4)
+LLMM×A6×(1−A2−A3+A2×A3−A4+A3×A4
+A2×A4−A2×A3×A4))
+A7×A14×(LL1×A8+A14×LL2×(A9−A8×A9)
+LLLLC×A10×(1−A9−A8+A8×A9)
+LRLLC×A11×(1−A8−A9+A8×A9−A10+A9×A10
+A8×A10−A8×A9×A10)
+LLMM×A12×(1−A8−A9+A8×A9−A10+A9×A10
+A8×A10−A8×A9×A10))+A15 (7.23)

β= A13×(LL2×(−A3×B2+B3)
+LLLLC×(−A4×B2+A3×A4×B2−A4×B3+B4)
+LRLLC×(−A5×B2+A3×A5×B2−A5×B3
+A4×A5×B2−A3×A4×A5×B2+A4×A5×B3
−A5×B4+B5)
+LLMM×(−A6×B2+A3×A6×B2−A6×B3+A4
×A6×B2−A3×A4×A6×B2+A4×A6×B3−A6×B4
+B5))+A14×(LL1×B8+LL2×(−A9×B8+B9)
+LLLLC×(−A10×B8+A9×A10×B8−A10×B9+B10)
+LRLLC×(−A11×B8+A9×A11×B8−A11×B9
+A10×A11×B8−A9×A10×A11×B8+A10×A11×B9
−A11×B10+B11)
+LLMM×(−A12×B8+A9×A12×B8−A12×B9
+A10×A12×B8−A9×A10×A12×B8+A10×A12×B9
−A12×B10+B11))+B13+B14+B15 (7.24)

Table 7.2 lists the definitions of the parameters given in (7.7)–(7.21) for NLJ and HJ. the
calculation formula of the number of disk I/Os was created using the regression line shown in
Figure 7.9(a).

Since all the records of outer table are accessed in NLJ, if the size of outer table is larger than
the buffer cache size of DBMS, the characteristics of I/O access are changed by increasing the
number of buffer cache misses. Therefore, changing the order of the tables to join so that the
size of the outer table become larger than the buffer cache size, to investigate the tendency of
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I/O accesses and create a model of I/O by linear regression. The I/O access tendency is shown
in Figure 7.10.

The measured I/O response time (io_response_time) was 154 µs. The I/O cost of NLJ is as
follows:

io_cost=
(
A16×RI_total(n)+B16

)
×io_response_time. (7.25)
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Figure 7.9.: Number of Disk I/Os and Disk I/O Processing Time Ratio while Joining
Customer Table and Order Table by NLJ and HJ

However, in the case of HJ, the ratio of the processing time of disk I/O and the query execution
time of HJ was less than 1% in Figure 7.9(b). The cost calculation formula is composed of
only the CPU cost and disk I/O cost. In order to apply in-memory databases (Figure 1.1(b)),
it is sufficient to change the disk I/O latency to the latency of the memory based disk.

In the combination probe phase, the calculation formula for the number of disk I/Os was
created using the multiple regression line shown in Figure 7.11. The I/O cost of combination
probe phase is as follows:

io_cost= (A17×RI1×PI1+A18×RI1×
n∑

i=2
rski+B17)×io_response_time (7.26)

The regression models for the combination join are also expressed by the same equations,
(7.7)–(7.21), as the two-table NLJ and HJ. Table 7.3 lists the definitions of the parameters.

To evaluate the cost calculation formulas, we used a larger TPC-H database than the database
used for measurement (SF100), and chose a combination of the following two tables, Customer
and Orders, Supplier and Lineitem, and Part and Lineitem. In addition, in order to evaluate
the join of more than two tables, the following combinations were chosen: (Customer, Orders,
Lineitem), (Supplier, Lineitem, Part, Orders, Customer), and (Part, Lineitem, Supplier, Orders,
Customer). In the five-table join case, the STRAIGHT_JOIN query hint was used to keep the
join order of tables. Detailed measurement conditions are shown in Appendix A.1. The
parameter setting of the cost calculation formulas was generated from the measurement values
when joining Customer and Orders in Appendix A.2, whose size is SF5.
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Table 7.2.: Slope and Intercept of the Regression Models

Type
Slope

(Regression Coefficient)
Intercept

(Regression Constant) R2
P value

on F test Reference

NLJ A1 1.745×105 B1 1.64×109 9.99×10−1 1.30×10−29 Figure 7.3(1)
A2 9.80×10−1 B2 1.26×107 1.00 2.18×10−58 Figure 7.3(2)
A3 8.08×10−1 B3 2.68×106 1.00 2.91×10−40 Figure 7.3(3)
A4 8.32×10−1 B4 5.23×104 1.00 3.93×10−39 Figure 7.3(4)
A5 7.43×10−1 B5 −1.18×105 1.00 3.77×10−34 Figure 7.3(5)
A6 2.58×10−1 B6 1.18×105 9.98×10−1 7.05×10−26 Figure 7.3(6)
A7 2.46×104 B7 4.63×108 9.99×10−1 5.97×10−31 Figure 7.3(7)
A8 9.72×10−1 B8 7.05×106 1.00 3.85×10−53 Figure 7.3(8)
A9 4.34×10−1 B9 1.95×106 9.99×10−1 5.17×10−28 Figure 7.3(9)
A10 9.44×10−1 B10 −2.87×104 1.00 2.06×10−44 Figure 7.310)
A11 7.61×10−1 B11 −4.84×104 1.00 2.80×10−35 Figure 7.3(11)
A12 2.39×10−1 B12 4.84×104 9.98×10−1 3.10×10−26 Figure 7.3(12)
A13 5.45×10−1 B13 1.41×108 9.98×10−1 1.21×10−25 Figure 7.3(13)
A14 8.59×10−1 B14 −1.25×109 9.67×10−1 9.00×10−15 Figure 7.3(14)
A15 2.90×103 B15 2.40×107 9.90×10−1 1.35×10−19 Figure 7.3(15)

HJ A1 2.05×103 B1 1.58×107 1.00 4.21×10−40 Figure 7.4(1)
Build A2 9.88×10−1 B2 2.53×105 1.00 2.19×10−61 Figure 7.4(2)

A3 9.71×10−1 B3 −7.48×104 1.00 1.79×10−49 Figure 7.4(3)
A4 9.19×10−1 B4 −6.57×104 9.99×10−1 7.76×10−31 Figure 7.4(4)
A5 3.32×10−1 B5 −1.64×104 9.29×10−1 8.38×10−12 Figure 7.4(5)
A6 6.68×10−1 B6 1.64×104 9.82×10−1 4.49×10−17 Figure 7.4(6)
A7 6.10×102 B7 2.85×105 9.99×10−1 4.46×10−30 Figure 7.4(7)
A8 9.90×10−1 B8 −1.89×103 1.00 1.05×10−57 Figure 7.4(8)
A9 8.03×10−1 B9 −2.39×104 1.00 6.00×10−33 Figure 7.4(9)
A10 9.04×10−1 B10 1.58×102 1.00 8.94×10−46 Figure 7.4(10)
A11 2.13×10−1 B11 −2.74×103 9.80×10−1 1.13×10−16 Figure 7.4(1)
A12 7.87×10−1 B12 2.74×103 9.98×10−1 8.16×10−27 Figure 7.4(12)
A13 1.20 B13 −8.24×106 9.98×10−1 2.14×10−25 Figure 7.4(13)
A14 3.69×10−1 B14 2.02×107 1.00 6.83×10−32 Figure 7.4(14)
A15 2.94×101 B15 6.41×105 9.97×10−1 2.86×10−24 Figure 7.4(15)

HJ A1 1.90×103 B1 2.33×107 1.00 3.46×10−46 Figure 7.5(1)
Probe A2 9.88×10−1 B2 3.88×105 1.00 3.69×10−62 Figure 7.5(2)

A3 9.75×10−1 B3 −1.76×104 1.00 6.81×10−52 Figure 7.5(3)
A4 8.13×10−1 B4 −2.44×104 1.00 1.12×10−41 Figure 7.5(4)
A5 9.46×10−1 B5 −2.44×104 1.00 8.30×10−36 Figure 7.5(5)
A6 5.45×10−2 B6 2.44×104 9.56×10−1 1.15×10−13 Figure 7.5(6)
A7 5.76×102 B7 −3.57×107 9.99×10−1 6.14×10−27 Figure 7.5(7)
A8 9.89×10−1 B8 −3.89×105 1.00 6.68×10−54 Figure 7.5 (8)
A9 7.29×10−1 B9 1.58×105 9.88×10−1 7.30×10−19 Figure 7.5(9)
A10 7.95×10−1 B10 2.81×104 1.00 5.98×10−33 Figure 7.5 (10)
A11 9.34×10−1 B11 −6.04×104 1.00 7.79×10−34 Figure 7.5 (11)
A12 6.60×10−2 B12 6.04×104 9.52×10−1 2.69×10−13 Figure 7.5(12)
A13 1.48 B13 2.87×1007 9.87×10−1 1.40×10−18 Figure 7.5(13)
A14 3.58×10−1 B14 6.61×107 9.98×10−1 1.75×10−25 Figure 7.5(14)
A15 3.45×101 B15 −1.39×107 9.35×10−1 3.77×10−12 Figure 7.5(15)

NLJ1 A16 1.02 B16 2.52×103 1.00 5.29×10−14 Figure 7.10(c)-
graph(a)

NLJ2 A16 7.40 B16 6.38×104 1.00 1.15×10−11 Figure 7.10(c)-
graph(b)

HJ A16 0.000 B16 0.000 N/A N/A N/A

Note: NLJ1 is chosen in the case outer table size is smaller than the buffer cache size and NLJ2 is chosen in the other case.
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Table 7.3.: Slope and Intercept of the Regression Models in Combination Probe Phase

Type
Slope

(Regression Coefficient)
Intercept

(Regression Constant) R2
P value

on F test Reference

Probe A1 2.01×103 B1 9.80×108 9.42×10−1 1.63×10−37 Figure 7.6(1)
A2 9.86×10−1 B16 1.79×107 1.00 1.11×10−44 Figure 7.6(2)
A3 8.53×10−1 B3 6.58×106 9.94×10−1 2.79×10−21 Figure 7.6(3)
A4 7.06×10−1 B4 −6.80×105 9.99×10−1 3.12×10−29 Figure 7.6(4)
A5 3.74×10−1 B5 −1.58×105 9.99×10−1 3.51×10−28 Figure 7.6(5)
A6 6.26×10−1 B6 1.58×105 1.00 3.21×10−32 Figure 7.6(6)
A7 5.76×102 B7 2.31×108 9.75×10−1 2.78×10−48 Figure 7.6(7)
A8 9.86×10−1 B8 1.83×106 1.00 1.75×10−41 Figure 7.6(8)
A9 4.79×10−1 B9 3.97×106 9.00×10−1 2.03×10−10 Figure 7.6(9)
A10 9.36×10−1 B10 −9.55×105 9.97×10−1 7.85×10−25 Figure 7.610)
A11 3.70×10−1 B11 −9.15×104 9.75×10−1 6.97×10−16 Figure 7.6(11)
A12 6.30×10−1 B12 9.15×104 9.91×10−1 5.74×10−12 Figure 7.6(12)
A13 6.25×10−1 B13 6.85×108 8.75×10−1 1.51×10−9 Figure 7.6(13)
A14 4.49×10−1 B14 −2.66×108 9.72×10−1 2.16×10−15 Figure 7.6(14)
A15 4.93×101 B15 2.62×107 9.70×10−1 1.03×10−45 Figure 7.6(15)

Probe A17 7.84×10−1 B17 −6.59×103 9.79×10−1 7.43×10−21 N/A
(I/O) A18 3.24×10−4 N/A

For the join cases of three or more tables, the measurement values under joining Customer,
Orders, and Lineitem were used. The I/O processing time was added to allow comparison
with the query execution time. The proposed cost calculation method was compared with
the measured query execution time and conventional method (2.2)(2.3). The conventional
method is expressed as the sum of the CPU cost and the I/O cost as mentioned in Section 2.2.
Each cost is calculated as the product of the number of records and the manually defined
processing unit cost of CPU or I/O. The conventional method and proposed method followed
the access path generated by MariaDB. In our measurement environment, the HJ access path
for joining more than two tables is the combination case (Figure 4.2 ). We evaluated whether
the selectivity where the join method is switched can be estimated accurately. However,
because the conventional method does not support HJ, single-table scans of the outer and inner
tables were used. Moreover, MariaDB, as used in this experiment, cannot use the function to
automatically select the join method, and only the join method set by the user was selected.
The goal of this study is to accurately find the intersection point of the NLJ and HJ graphs.
As a result, in all of the cases evaluated, the proposed method was able to find the intersection
point with an accuracy of one significant figure or better compared to the conventional method
(Figure 7.12 and Figure 7.13). The accuracy improvement ratios of the proposed method
and conventional method are shown in Table 7.4. The second and third rows indicate the
difference of selectivity between the intersection point of the measured result and that of the
conventional method or proposed method. The accuracy improvement ratio is obtained by
dividing the difference between the intersection selectivity of the conventional method and that
of the proposed method by that of the conventional method in the equation 6.10. Table 7.4
shows that the proposed method improved the accuracy of selecting the proper join method by
90% or more.

As in chapter 6, we evaluated the updated conventional model case in which the unit
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Figure 7.12.: Cost Comparison of Measured, Proposed Cost Model, and Conventional Cost
Model Results for Joining Two Tables
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Figure 7.13.: Cost Comparison of Measured, Proposed Cost Model, and Conventional Cost
Model Results for Joining Three or More Tables
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Table 7.4.: Accuracy Improvement Ratio for Estimating Cross Point of NLJ and HJ
Join tables C-O P-L S-L C-O-L S-L-P-O-C P-L-S-O-C
Conventional method 1.5×10−2 3.5×10−3 2.2×10−3 7.5×10−3 8.9×10−2 2.2×10−5

Proposed method 1.3×10−4 3.2×10−4 1.0×10−4 8.8×10−5 3.0×10−4 2.2×10−7

Accuracy Improve-
ment ratio

99% 91% 95% 99% 97% 99%

Note: C: Customer, O: Orders, L: Lineitem, P: Part, S: Supplier

cost of CPU is the ratio of CPU cycle time and measured I/O latency (CPR = 3 × 10−6 =
(1/2.13GHz)/154ms) and the unit cost of CPU is the ratio of main memory latency1 and
measured I/O latency (CPR = 6 × 10−4 = 100ns/154ms). The results of joining two tables
(C-O, S-L and P-L) are shown in the Figure 7.14(a)(b)(c). The results of joining three or
more tables (C-O-L, S-L-P-O-C and P-L-S-O-C) are shown in the Figure 7.15(a)(b)(c). The
proposed method is estimated cross point more accurately than updated conventional method
as shown in Table 7.5. The updated conventional models can calculate cost more accurately
than the default cenventional method. However, the proposed model is more accurately than
the updated conventional models in the evaluated join cases.

Table 7.5.: Accuracy Improvement Ratio for Estimating Cross Point of NLJ and HJ with
Updated Conventional Method

Join tables C-O P-L S-L C-O-L S-L-P-O-C P-L-S-O-C
CPU cost type MEM MEM MEM MEM CPU CPU
Conventional method 1.8×10−3 2.4×10−3 2.2×10−3 4.4×10−4 4.6×10−3 8.6×10−7

Proposed method 1.3×10−4 3.2×10−4 1.0×10−4 8.8×10−5 3.0×10−4 2.2×10−7

Accuracy Improve-
ment ratio

93% 87% 95% 80% 94% 74%

Note1: C: Customer, O: Orders, L: Lineitem, P: Part, S: Supplier
Note2: CPU is CPU cycle time, and MEM is main memory latency.

1It is not a measured value but an approximate value of main memory latency.
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CONV-CPU: Conventional Method Using CPU Cycle time as unit cos of CPU
CONV-MEM: Conventional Method Using Main Memory Latency as unit cos of CPU

Figure 7.14.: Cost Comparison of Measured, Proposed Cost Method and Updated
Conventional Cost Method Results for Joining Two Tables
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CONV-CPU: Conventional Method Using CPU Cycle time as unit cos of CPU
CONV-MEM: Conventional Method Using Main Memory Latency as unit cos of CPU

Figure 7.15.: Cost Comparison of Measured, Proposed Cost Method, and Updated
Conventional Cost Method Results for Joining Three or More Tables
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7.2. Degradation of Data Distribution Accuracy
When the prediction accuracy of cost is lowered, accuracy of selectivity can be lowered by

using highly accurate cost calculation method. In other words, if the accuracy of cost can be
degraded to the same degree as the accuracy of conventional cost calculation, the accuracy of
the histogram representing the data distribution using the proposed cost calculation method
can be degraded.

The cross point obtained by the proposed cost calculation method (hereinafter called “pro-
posed cross point”) is defined as C and the difference of measured cross point and proposed
cross point is defined as ∆Cp in Figure 7.16(a). The difference of measured cross point and
conventional cross point is defined as ∆Cc.
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Figure 7.16.: Histograms Using Difference of Measured Cross Point and Proposed Cross
Point

We evaluated the accuracy of cost calculation methods by selectivity. The selectivity is
related to the distribution of values of attributes. Therefore, we study the case that the sort
parameter of histogram is value of an attribute. In the case of equi-width histogram and the
attribute value V as a sorting parameter of histogram is a discrete value, the degraded bucket
width Wdeg is given by

Wdeg =
∆Cc

∆Copt
×Wopt, (7.27)
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where the minimum bucket width is Wopt in Figure 7.16(b).
The equation 7.27 means that the accuracy of histogram can be degraded by the ratio of

∆Copt/∆Cc. When the bucket width is W (W < Wdeg), it is possible to widen the bucket width to
Wupdated in equation 7.28 using the proposed cost calculation method.　The bucket expansion
rate α is given by

α =
Wupdated

W
=
∆Cc

∆Copt
×

Wopt

W
. (7.28)

If we allow the same accuracy of cost using the proposed cost calculation method as that of
the conventional method, we can use the histogram with the bucket width α×W .

If the cross point in advance can be identified, the above idea can also be applied to the
equi-depth histogram.

As a result of evaluating the ratio of increasing the width of the bucket size in the example
used in this study (Table 7.6), it is found that the bucket width can be expanded up to four times
of Wopt.

Table 7.6.: Increasing Ratio of Equi-Width Histogram buckets Width Using Updated
Conventional Method and Proposed Method

Join tables C-O P-L S-L C-O-L S-L-P-O-C P-L-S-O-C
∆Cc/∆Copt 14 8 22 5 16 4
Note: C: Customer, O: Orders, L: Lineitem, P: Part, S: Supplier

7.3. Verification of Determining Join Method and Ordering
Joining Tables

7.3.1. Verification Method
In this section, using the proposed method, we verify whether the join method and the

order of joining tables that minimizes execution time are found. First, we collect statistical
information of CPU and create cost formula in Section 7.1. Then, in two or more joins in the
same database environment, join the tables in all executable order, and compare the execution
time with the cost calculation result. Similarly to the above experiments, we used TPC-H
database. The combinations of TPC-H tables to join are as follows: Customer and Orders, Part
and Lineitem, Supplier and Lineitem, Customer, Orders and Lineitem, and Supplier, Lineitem,
Orders, Customer and Part. The queries for join operation is shown in Figure 7.17. When
measuring query execution time, the order of tables to join is fixed by STRAIGHT_JOIN hint.

The CPU statistical information for formulating the cost calculation is measured through
the reference CPU, the details of which are provided in Table 7.7. The prediction of the cross
point of two join methods by using the cost calculation formula is aimed at determining case
SF100 on the Skylake-based processor as shown in Table 7.7. The cost calculation formula
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select count(*)
from  lineitem, part 
where
(p_type='STANDARD ANODIZED TIN’ 
or p_type='STANDARD ANODIZED STEEL’)
and p_size < 2
and p_partkey = l_partkey
and l_shipdate < date '1995-03-06'; 

select count(*)
from  lineitem, supplier 
where
s_acctbal > 9000
and s_nationkey = 0
and s_suppkey = l_suppkey
and l_shipdate > date '1995-03-06';

select count(*)
From customer, orders, lineitem, part, supplier
where
l_shipdate > date '1995-03-06' and l_quantity = 10 and  l_discount=0.08
and p_size < 2
and o_orderdate < date '1995-03-06‘
and c_acctbal > 9000
and s_acctbal > 9000
and s_suppkey = l_suppkey
and l_partkey = p_partkey
and l_orderkey = o_orderkey
and o_custkey = c_custkey;

(a) Join of Lineitem and Part (b) Join of Lineitem and Supplier

select count(*)
from  orders, customer
where
c_mktsegment = 'MACHINERY’
and c_acctbal > 9000
and c_custkey = o_custkey
and o_orderdate < date '1995-03-06';

select count(*)
from  customer, orders, lineitem
where
c_mktsegment = 'MACHINERY’
and c_acctbal > 9000
and c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate < date '1995-03-06’
and l_shipdate > date '1995-03-06’;

(c) Join of Orders and Customer (d) Join of Customer, Orders, and Lineitem

(e) Join of Part, Supplier, Customer, Orders, and Lineitem

Figure 7.17.: Queries for Evaluating Join Method and the Order of Joining Tables
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of Skylake was generated in Section 7.1. As we used a disk-based DBMS, the join cost is the
sum of the CPU and I/O costs. The formula to determine the I/O cost was estimated using the
measured value.

Table 7.7.: Evaluation Environment
CPU Xeon E3-1230 v5 3.4 GHz 4-core, LLC 8 MB [Skylake] ×1
Memory DDR4 32 GB
Disk for DB PCIe NVMe Flash SSD 800 GB
OS/DBMS CentOS 6.6 (×64)/MariaDB 10.1.8 with InnoDB
DB size TPC-H SF5 (5GB) for generation of cost calc. formula and SF100 (100

GB) for validation
Measuring tool [CPU events] VTune Amplifier, [Query, I/O] System Tap

7.3.2. Comparison of Measured Query Execution Time and Estimated
Query Cost

Table 7.8 shows measured time and estimated cost using our proposed cost calculation
method excluding the cases where the join key does not exist between tables. In the case of
joining two or three tables, it was confirmed that the join order of tables and the join method
whose query processing time was minimum execution time in the measurement are the same
as those of the smallest cost obtained by our proposed cost calculation method.

However, in the case of joining five tables, the predicted minimum join cost cases were
L→P→S→O→C, L→P→O→S→C and L→P→O→C→S. The smallest measurement result
case was S→L →O→P →C. The difference between the minimum execution time and the
execution time in the predicted minimum join order is seven seconds, that is 2.9% of minimum
execution time.

In the case of joining three tables, the case of joining in order of Orders and Lineitem and
the case of joining in order of Lineitem and Orders are not consistent with the measured. In
the case of joining five tables, except for the cases starting with the join of Orders and Lineitem
(O-L Join), the magnitude relation between the cost of NLJ and the cost of HJ by the proposed
cost calculation method is consistent with the measured value. The reason why the predicted
cost of O-L Join by NLJ is far from the measured value is that the operation of the I/O of the
DBMS used in this study is different from the other cases. Figure 7.18 shows the number of
issued I/O requests while joining by NLJ and Figure 7.19 shows the distribution of I/O request
size. From these figures, in the case starting with the join of Lineitem and Orders (L-O Join)
and the case of O-L Join, issued I/O request size is larger than that of the other cases. However,
the number of I/ O requests of L-O join and O-L Join case is smaller than the other case. This
suggests that the cost models of the CPU and I/O have to be changed because the behavior of
the DBMS is different from the queries that is used for creating the proposed cost calculation
model.

In addition, we examined the relationship between the number of I/O requests and selec-
tivity of joining Orders and Lineitem to investigate whether behavior of the DBMS changes.
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Table 7.8.: Measured Time and Estimated Cost to Decide a Join Method and Order of
Accessing Tables

Join Order Query execution time and cost (second)
Measured time Estimated cost

NLJ HJ NLJ HJ

C→ O 489 61 488 59
O→ C 11163 179 84001 61

S→ L 483 241 391 213
L→ S 1027 329 318302 223

P→ L 54 244 29 220
L→ P 42626 832 318302 230

C→ O→ L 910 264 1672 267
L→ O→ C 1217 4506 101667 5133
O→ C→ L 11349 426 14900 457
O→ L→ C 1222 6774 61357 19463

S→ L→ O→ P→ C 11864 245 11432 416
S→ L→ O→ C→ P 11878 248 11432 416
P→ L→ O→ S→ C 2693 249 2516 419
P→ L→ S→ O→ C 2693 250 2515 419
P→ L→ O→ C→ S 2674 250 2516 419
S→ L→ P→ O→ C 11908 251 11427 416
L→ P→ S→ O→ C 361 252 731 261
L→ P→ O→ S→ C 367 252 737 261
L→ P→ O→ C→ S 363 253 737 261
L→ O→ S→ P→ C 345 305 1087 359
L→ O→ S→ C→ P 343 305 1090 361
L→ O→ P→ C→ S 346 305 1063 359
L→ O→ C→ P→ S 346 305 1064 361
L→ O→ P→ S→ C 343 305 1063 359
L→ O→ C→ S→ P 340 305 1089 359
O→ L→ S→ C→ P 366 5869 60602 5857
O→ L→ P→ S→ C 369 5865 60598 5850
O→ L→ S→ P→ C 372 5879 60602 5857
O→ L→ P→ C→ S 372 5854 60598 5850
O→ L→ C→ P→ S 372 5852 60553 5850
O→ L→ C→ S→ P 373 5867 60597 5850
C→ O→ L→ P→ S 4331 488 1673 1098
C→ O→ L→ S→ P 4343 488 1673 1102
O→ C→ L→ S→ P 11615 1322 6057 718
Note1: The minimum query execution time and minimum query cost are surrounded by frames.
Note2: C: Customer, O: Orders, L: Lineitem, P: Part, S: Supplier
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Figure 7.20 shows that the behavior of I/O is changed by selectivity. Therefore, it is possible to
further improve the accuracy of the cost calculation model by creating a cost model consistent
with the internal operation policy of the DBMS.

The difference between the actual and the predictions in the multi-table join was found to
be that the DBMS’s I/O is one of the reasons for the actual difference between the model.
The DBMS used in this experiment generated the same access path regardless of selectivity.
Therefore, the operation of the I/O engine changed with selectivity. It is necessary to consider
the model of the I/O engine as a future work.

On the other hand, when the first table to join was Orders table or Lineitem table, the join
method in which the actual execution time was minimum was different from the join method
in which the estimated cost was minimum. Looking into the details, it was found that there is
a problem in the accuracy of the estimated I/O processing cost. In this study, we introduced
a behavior model of CPU pipeline to improve the accuracy of CPU cost. To improve the
accuracy of I/O, a precise I/O behavior model like CPU will be introduced as future works.
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Figure 7.18.: Distribution of Number of I/O Requests in Nested Loop Join
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select count(*)
from

orders
STRAIGHT_JOIN lineitem 

where
l_orderkey = o_orderkey
and o_orderdate < date parameter
and l_shipdate > date '1995-03-06';

parameter ∈ ′1992−03−06′, ′1993−03−06′, ′1994−03−06′, ′1995−03−06′ , ′1996−03−06′, ′1997−03−06′, ′1998−03−06′

(a) Query of Joining Two Large Tables, Orders and Lineitem 

(b)  Difference in I/O Request Count and Size when Joining Two Large Tables

Figure 7.20.: I/O Request Size in Joining Orders and Lineitem by Nested Loop Join

7.4. Discussion
In the acquisition of measurement data for constructing the cost calculation formula, because

the type of counters that the hardware monitor can collect at one time is limited to four, it
is necessary to perform measurements several times to obtain an accurate measurement of
40 events. Therefore, a certain amount of time must be allocated for measurement. For
example, it took approximately 5 h and 30 min to perform the measurements in this study.
From the perspective of allocating time for measurement, and given the fact that the CPU
cost calculation formula does not need to be changed unless there is a change in hardware
configuration or DBMS join operation codes, it is appropriate to create the proposed CPU
cost calculation formula when integrating or updating a system. With regard to the use of
the cost calculation formula, the proposed CPU cost formula was used in the optimization
process to be executed before executing a query. The CPU cost of executing the query was
calculated from the number of records to be searched. As shown in references [56, 57], in a
general DBMS, the histograms representing the relationship between the attribute value and
appearance frequency are automatically acquired when inserting or updating records. From
the histogram and condition of the clause of the query, it is possible to estimate the number
of records accessed by the DBMS. In this way, the CPU costs can be calculated with only the
data already acquired by the DBMS; hence, the costs can be calculated by the cost calculation
formula before query execution.

The combination join case modeled in this study was the two or more tables join case, as
shown in Figure 4.2. Theoretically, there is a case in which HJ is assigned after NLJ. In the
case where HJ was executed after NLJ (Figure 7.21), the cost model (d-1) was the same as (a),
and the cost model (d-3) was the same as (b-2). The cost model of (d-2) was required because
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building the hash table from temporary table X was not covered in the other case. Most of the
join cases seem to be classified as in Figures 4.1, 4.2, and 7.21, and creating the cost models
(a), (b-1), (b-2), (c-2), and (d-2) can support most of the join cases. However, the NLJ–HJ
case cannot be implemented in our measurement environment. This problem can be solved by
using a different DBMS.
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Figure 7.21.: NLJ after HJ Case

We proposed a cost calculation method for an in-memory DBMS using a disk-based DBMS.
The calculation formulas were created using the data measured by the CPU-embedded per-
formance monitor. The results reveal that the proposed method can estimate the intersection
point of the join methods more accurately than the conventional method. We used TPC-H
for measuring CPU activities. TPC-H has the advantage of making it easy to analyze the
evaluation results because the data distribution is uniform. However, the actual data is skewed
in terms of the distribution of keys. The premise of the technique proposed in this study is
the accuracy of selectivity, i.e., even if the distribution of data varies, if the selectivity is the
same, then the same measurement results are obtained. Because a general DBMS acquires
attribute values and their distribution in a database is in the form of a histogram when loading
data to the database, the prerequisites for applying the proposed technique are considered to be
satisfactory. However, it is necessary to develop a technique to derive histogram information
and input it as an input parameter of the cost formulas.

As this technique sets parameters based on actual measurements, it is difficult to deal with
various patterns, such as the presence or absence of indices and complex queries. Although we
have focused on the operation of all CPU cycles, it is necessary for practical use to simplify the
model by omitting some parameters. For the collection of statistical data, it is conceivable that
actual measurements can be performed at the time of initial installation and parameter setting.
However, when the DBMS code is modified, it is difficult to change in real time; hence, a
separate complementary technology is required. As a breakthrough measure, it is possible to
reduce both the amount of data to be verified and the measurement points.

In this study, only the cost model for join operations was proposed. However, the query
operation includes not only join but also filter, group-by, and sorting operations. These
operations are difficult to execute by using only a query. However, part of the query can be
extracted by taking the difference between queries, similar to our approach for modeling the
HJ probe phase (7.1).
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7.5. Conclusions
In this study, we proposed a cost calculation method for an in-memory DBMS using a

disk-based DBMS. We focused on a CPU pipeline architecture and classified the CPU cycles
into three types based on the operational characteristics of the front-end and back-end. The
calculation formulas were created using data measured by the CPU-embedded performance
monitor. In the evaluation of the two-table join, three-table join, and five-table join, the
difference in selectivity corresponding to the intersection points of NLJ and HJ, between the
proposed method and measurements, was reduced by 71% to 94% of the conventional method.
This means that the cost formulas can model the actual join operation with high accuracy. By
applying the proposed cost calculation formulas, the proper join method can be selected and
the risk of unexpected query execution delay for users of the DBMS can be reduced.
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8. Updating Cost Calculation Method
Applying to Different Generation CPUs

In developing our proposed cost calculation formula, reference queries are executed on a
small reference database (Figure 8.1). On executing the queries, the performance monitor
installed in the CPU measures CPU events such as the number of executed instructions and
the number of cache hits. The cost calculation formulas are created using those measurement
values. Analytic queries are executed according to the query access path with the smallest cost,
calculated using the cost calculation formulas. The measurement time of the CPU events can
be shortened by using the small-scale data because the execution time is proportional to the
size of the database. This makes it possible for the database administrator to quickly provide
the most suitable database environment to the user.
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Figure 8.1.: Overview of Query Execution Flow Using Measurement-based Cost Calculation

However, the regression approaches we took in Chapter 6 and 7 need to re-measure the
statistic information and recreate the regression model whenever the CPU is upgraded. In
other words, the operational cost of the database should be increased. In a cloud environment
especially, it is unrealistic to recreate the cost model every time the VM with the database
is transferred to another server using CPUs with a different architecture. This study aims to
verify whether CPUs with different architectures can be employed with no changes or minor
changes to the measurement-based cost calculation method. The change in performance as a
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result of architectural changes, such as the memory latency and cache size, among different
generations of CPUs is reflected in the measurement-based cost calculation formula for join
processing. We used this updated cost calculation formula to verify whether it is possible
to select the joining methods, that is, nested loop join (NLJ) and hash join (HJ), accurately
for different generations of CPUs. We determined that the updated cost calculation formulas
are able to estimate the cross point accurately. In conclusion, our proposed updating method
for the measurement-based join cost calculation allows portability of the join cost calculation
across different generations of CPUs and can contribute to reducing the cost of cloud service
platforms.

8.1. Cost Calculation Method for Join Operation
When executing a query, the DBMS creates multiple access paths for query processing and

estimates the processing cost for each plan. The minimum cost access path is selected from
a plurality of candidates. For example, when the DBMS joins two tables, such as the R and
S tables shown in Figure 1.2(a), it generates the access path illustrated in Figure 1.2(b) and
estimates the cost of each join method by using statistical information such as the distribution
of the join key value and it selects the method with the lowest cost. In general, the cost
calculation is formulated using the sum of CPU and I/O costs, as follows:

cost=CPU_cost+IO_cost. (8.1)

Moreover, the CPU cost (CPU_cost) is obtained with respect to the number of CPU cycles
(CCPU) and CPU frequency (CPUfrequency) in Equation (8.2). The I/O cost (IO_cost) is obtained
through the product of the number of I/Os (MIO) and the I/O response time (IO_response_time)
in Equation (8.3).

CPU_cost=
CCPU

CPUfrequency
(8.2)

IO_cost=MIO × IO_response_time (8.3)

In general, the cost of a join operation is obtained as a function of the ratio of the number of
extracted records to the total records. This ratio is known as the selectivity. In Figure 1.2, the
selectivity is determined according to condition x for column R.C in Figure 1.2(c). Two cost
functions intersect at Xcross. Join Method 2 must be selected from the left side of Xcross, and
join Method 1 should be selected from the right side of Xcross. If the DBMS cannot estimate
the selectivity Xcross accurately, it will likely select the wrong join method.

In Chapter 7, we proposed a measurement-based join CPU cost calculation method to obtain
the selectivity of cross point Xcross accurately. We focused on the CPU pipeline operation to
construct an accurate model for calculating the cost of the join operation. The total number
of execution cycles during the join operation is composed of the cache miss penalty on the
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instruction access cycles CICacheMiss, branch misprediction recovery cycles CMP, and data access
cycles CDCacheAcc. The join cost CJoin is the sum of these cycles:

CJoin=CDCacheAcc+CICacheMiss+CMP, (8.4)

where CICacheMiss, CDCacheAcc, and CMP are given by the linear regression equation representing
the number of cache hits, main memory accesses, and branch mispredictions measured through
the performance monitor embedded in the CPU. CICacheMiss is expressed by the linear regression
equation of the sum of products of the number of cache hits MLiI_hit (i = 2, · · · , N) or main
memory accesses MMMI_acc in the instruction accesses and the latency of the cache LLiI ,
(i = 2, · · · , N) or of the main memory LMMI in Equation (8.5). Here, wI and bI are the slope
and intercept, respectively, of the linear regression of the measured value of CDCacheAcc versus
the sum of the products of the number of cache or main memory reads and the latency. Similarly,
CDCacheAcc is a linear regression equation that expresses the sum of the products of the number
of cache hits MLiD_hit (i = 1, · · · , N) in terms of data or main-memory accesses MMMD_acc,
considering the number of data accesses and latency of the cache LLiD (i = 1, · · · , N) or main
memory LMMD in Equation (8.6). Here, wI and bI are defined similarly as in Equation (8.5).
In this case, wD and bD are the slope and intercept, respectively, of the linear regression of
the measured CDCacheAcc versus the sum of products of the number of cache or main memory
reads and latency. CMP is given by the measured MMP, number of accessed records R, wMP,
and bMP in Equation (8.7). Here, wMP and bMP are the slope and intercept, respectively, of the
linear regression line of the measured CMP versus the number of branch mispredictions MMP.

CICacheMiss=wI×(
LN∑

Li=L2
(MLiI_hit×LLiI)+(MMMI_acc×LMMI))+bI (8.5)

CDCacheAcc=wD×(
LN∑

Li=L1
(MLiD_hit×LLiD)+(MMMD_acc×LM MD))+bD (8.6)

CMP=wMP×R+bMP (8.7)

The numbers of cache hits and main memory accesses are given by the linear regression
equation for the numbers of cache misses and executed instructions. Moreover, the number
of executed instructions is given by a linear regression equation for the number of records
accessed during the join operation. The numbers of cache memory hits and main memory
accesses are given by

ML1dt_hit=wL1dt_hit×Itp+bL1dt (8.8)

MLidt_hit=wLidt_hit×(Itp−
i−1∑
j=1

MLjdt_hit)+bLidt (8.9)

MMMdt_acc= Itp−
N∑

j=1
MLNdt_hit (8.10)
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where dt is the data type accessed by the CPU, namely an instruction (I) or data (D), tp is
the instruction type, namely all types of instructions all or data load instructions load, wLidt_hit
and wMMdt_hit are the slopes of the linear regressions, and bLidt and bMMdt are respectively the
slope and intercept of the linear regression. The coefficients of the cost calculation formulas
are created from the measurement results of the CPU.

8.2. Extension of Cost Calculation Method
To apply the above-mentioned cost calculation to the cloud environment in Figure 1.3, we

must solve two problems. The first problem is to determine how to apply the cost calculation
formulas to different generations of CPUs for a single VM running on a physical server. The
second problem is to determine how to apply the formulas to multiple VMs running on a
physical server concurrently.

We attempted to solve the first problem by categorizing the architectural changes when the
CPU generation changed, and reflecting those changes in the coefficients of the cost calculation
formulas. Table 8.1 lists the effect of the classification of the architectural change on the CPU
cost of Equation (8.2) and the three elements (CICacheMiss, CDCacheAcc, and CMP) of the cost
calculation formula of Equation (8.4). Changing the number of CPU cores affects the parallel
processing of the table scan of the HJ operation. As most of the DBMS products, such as
Oracle, DB2, and SQL Server, can scan tables in parallel, the CPU cost of HJ is reduced by
1/(the number of CPU cores). However, as many current open source DBMS cannot scan in
parallel, the cost calculation formula is not affected.

Table 8.1.: Architectural Difference between CPU Generations
Component Difference Impact on cost calculation

CPU core Frequency Total CPU cost
Number of cores Total CPU cost

Cache Size Number of cache hits
Latency Instruction or data access latency
Associativity Number of cache hits

Main memory Latency Instruction or data access latency
Branch Predictor Enhancement of accuracy Branch misprediction penalty

The architectural changes related to the measurement-based join cost calculation formulas
are size, the associativity and latency of the cache memory, latency of the main memory,
and branch prediction penalty [58, 59]. Changes in the cache size and associativity affect the
number of cache hits. Further, changes in the latency of the cache or main memory are already
parameterized in the join cost calculation formulas. We introduce the ratio of level-i cache
miss ratio changes MCLi_dtype to the ratio of latency change LCmem_dtype to apply the join cost
calculation by using the values measured on a reference CPU, which is the CPU used for
measuring the parameters of the cost calculation formula. The CPU used to estimate the join
cost is referred to as the target CPU.
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The numbers of cache memory hits and main memory accesses of the target CPU are given
by

ML1dt_hit of target CPU=MCL1_dtype×(wL1dt_hit×Itp+bL1dt)+ (1−MCL1_dtype)×Itp, (8.11)

MLidt_hit of target CPU

=MCLi_dtype×(wLidt_hit×(Itp−
i−1∑
j=1

MLjdt_hit of target CPU)+bLidt)

+(1−MCLi_dtype)×(Itp−
i−1∑
j=1

MLjdt_hit), (8.12)

MMMdt_acc of target CPU= Itp−
N∑

j=1
MLNdt_hit of target CPU (8.13)

LCmem_dt is defined as

LCmem_dt=
Lmem_dt of target CPU

Lmem_dt of reference CPU,
(8.14)

where mem is level i (1 ≤ i ≤ N) of the cache memory (Li) or main memory (MM), and dt is
the data type accessed by the CPU, namely instruction (I) or data (D). mem_dt is either LiI,
M MI, LiD, or M MD.

The memory latency of the target and reference CPUs can be obtained using a pointer
chasing-type micro-benchmark [48, 55]. To obtain CRHmem_dt, the cache hit/miss ratio for
various cache sizes and associativity on the same CPU is required. The relationship between
the cache hit/miss ratio and size and associativity can be obtained through a simulation [60,61].
Alternatively, the cache miss rate of the target CPU can be obtained by applying the rule stating
that the cache miss rate decreases as a power law of the cache size [62].

BM is defined as the ratio of the number of branch misprediction penalties of the target CPU
to those of the reference CPU in Equation (8.15). This led us to propose the use of a CPU
simulator [63] and the approximation of the number of pipeline stages measured using the
micro-benchmark [55] to obtain the branch misprediction penalty for the target and reference
CPUs.

BM=
Branch misprediction penalty of target CPU

Branch misprediction penalty of reference CPU
(8.15)

When splitting the table scan of the hash join into multiple CPU cores, the number of CPU
cores is included in the cost calculation formula. For example, in a hash join for a commercial
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DBMS, the table is divided into Ncore CPU cores defined by the database administrator and a
table scan is performed. In this case the CPU cost (costNparallel) is given by

costNparallel= (CPU_cost+IO_cost)/Ncore. (8.16)

When Ncore changes for different generation CPUs, not only must Equation (8.16) be applied,
but also the number of cache hits and the memory latency change must be considered. In the
case where CPU cores belonging to the same CPU chip, or when simultaneous multithreading
(SMT), a plurality of threads executing simultaneously on a single CPU core is used. This
results in the decrease of the effective capacity of the LLC allocated to each CPU core.
Therefore, the number of cache misses increases.

Many of Intel’s processors use the inclusive cache architecture [52], so as instructions and
data are removed from the shared L3 cache when accessing large-scale data increases, the same
instructions and data existing in the L1 cache and L2 cache are removed also. As a result,
the number of cache misses increases. Furthermore, owing to the increasing number of cache
misses and memory access requests, access concentration in the main memory occurs, and
latency may increase. To deal with the case of parallel processing in the measurement-based
cost calculation method, it is necessary to measure the CPU events under parallel processing
when Ncore is changed.

In addition, when multiple DBMS instances run on a single physical server and queries are
executed on each DBMS instance concurrently, or when multiple VMs are running on a single
physical server and queries are executed concurrently on these VMs, the number of cache
misses increases and memory latency increases.

In this study, as the first step in studying the cost calculation method for cloud database
services, we focused on a single DBMS instance running on a single VM on a physical server
with different-generation CPUs. However, as a single server running multiple VMs is a typical
system configuration, we considered the case of multiple VMs as follows.

When many VMs are running concurrently, two problems occur: an increase in the number
of cache misses due to VM switching, and an increase in the number of instructions or the
data access latency caused by access to the same main memory unit. To solve these problems,
we considered two approaches. Our solution to the first problem entailed introducing the rate
at which the number of cache misses is increased when multiple VMs run, MCmem_dytpe_mvm,
which is obtained through an actual measurement [64]. The second solution is to introduce a
queuing model modifying the method of Gulur and Govindarajan [65], who used M/D/1 [66]
as the DRAM and a memory controller to estimate the latency.

Algorithm 1 presents the method for extending the join cost calculation to the cloud envi-
ronment.

Lmem of prediction target CPU= f (BWMM, LMM), (8.17)

where f is a function of a queuing model, BWMM is bandwidth of main memory, and LMM
is main memory latency. In addition to this approach, a regression model is estimated using
measured latency on a micro-benchmark. The micro-benchmark, such as STREAM bench-
mark [67], issues memory requests and controls the number of accessing arrays concurrently.
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LCmem_dt_mvm=
Lmem_dt of prediction target CPU

Lmem_dt of reference CPU
(8.18)

Algorithm 1 Update cost calculation formula
for x ∈ L1I, L1D, · · · , LNI, LND,MMI,MMD do

CalculateMx_hit or accusing MCxand MCx_mvm
in Eqn. (8.11)(8.12)(8.13)
Lx ← Lx × LCx × LCx_mvm

end for
Right-hand side of Eqn. (8.7)← Right-hand side of Eqn. (8.7) × BM
UpdateCjoin

8.3. Evaluation Method
Initially, we evaluated our proposed method by using a single physical server with a single

VM running on it. We verified that the cost calculation formula using the statistical values
measured on the reference CPU can accurately estimate the cross point of the join methods on
CPUs of different generations. We performed the evaluation by using the database of the TPC-
H benchmark and estimated the cross points between NLJ and HJ. The queries for measuring
CPU statistical information through the performance monitor of the reference CPU comprise
a two-table join and three-table join based on Q3 of TPC-H. The method we used to formulate
the join cost conforms to the method proposed in Chapter 7. The combinations of TPC-H
tables to join are as follows: Customer–Orders (C–O), Part–Lineitem (P–L), Supplier–Lineitem
(S–L), Customer–Orders–Lineitem (C–O–L), Part–Lineitem–Supplier–Orders–Customer (P–
L–S–O–C), and Supplier–Lineitem–Part–Orders–Customer (S–L–P–O–C). The queries to join
are shown in Chapter 7. The CPU statistical information for formulating the cost calculation
is measured through the reference CPU, the details of which are provided in Table 8.2. The
prediction of the cross point of two join methods by using the cost calculation formula is aimed
at determining case SF100 on the reference CPU and target CPU, as shown in Table 8.2. The
reference CPU is a Westmere-based processor, whereas the target CPU is based on a Skylake-
based processor, which is a CPU from a different generation. We refer to Westmere-based
processors as Westmere and Skylake-based processors as Skylake in this paper. For further
verification, we replaced the target CPU and used a small database to measure the statistical
information because we aimed to minimize the cost of the cloud service operation. The cost
calculation formula of Westmere is shown in Chapter 7. The cost calculation formula of
Skylake was generated in this chapter. As we used a disk-based DBMS rather than an in-
memory database, the join cost is the sum of the CPU and I/O costs. The formula to determine
the I/O cost was estimated using the measured value determined in Chapter 7.

To apply the cost formula to the target CPU, MCLi_dtype, LCmem_dt, and CRLMP were de-
termined. For estimating Skylake’s cost calculation formula by changing Westmere’s cost
calculation formula, the difference between the reference and target CPUs is calculated such
that the associativity of the L1I cache is increased from 4-way to 8-way, the associativity of
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Table 8.2.: Evaluation Environment
CPU (Westmere)

CPU Xeon L5630 2.13 GHz 4-core, LLC 12 MB [Westmere-EP] ×2
Memory DDR3 12 GB (4 GB ×3) physically attached to only one CPU
Disk for DB PCIe NVMe Flash SSD 800 GB
OS/DBMS CentOS 6.6 (×64)/MariaDB 10.1.8 with InnoDB
DB size TPC-H SF5 (5 GB) for generation of cost calculation formula and SF100 (100 GB) for

validation
Measuring tool [CPU events] VTune Amplifier, [Query, I/O] System Tap

CPU (Skylake)

CPU Xeon E3-1230 v5 3.4 GHz 4-core, LLC 8 MB [Skylake] ×1
Memory DDR4 32 GB
Disk for DB PCIe NVMe Flash SSD 800 GB
OS/DBMS CentOS 6.6 (×64)/MariaDB 10.1.8 with InnoDB
DB size TPC-H SF5 (5GB) for generation of cost calc. formula and SF100 (100 GB) for validation
Measuring tool [CPU events] VTune Amplifier, [Query, I/O] System Tap

the L2 cache is decreased from 8-way to 4-way, and the capacity of L3, known as the last level
cache (LLC), is reduced from 12 to 8 MB. Hill et al. [60] demonstrated that the instruction
cache miss rate is decreased by approximately 0.06 from 4-way to 8-way (MCL1_I = 1/1.06)
and the unified cache miss rate is increased by approximately 0.06 from 8-way to 4-way
(MCL2_IorD = 1.06). In general, the cache miss rate is decreased as a power law of the cache
size [62]. When this rule is applied, the cache miss rate is reduced by approximately 0.8 times
from 12 MB to 8 MB (MCL3_IorD=1/

√
8/12=1/0.8). CRLMP = 1.1, which is calculated using

the measured branch misprediction penalty according to the 7-Zip LZMA Benchmark [55].
However, when estimating Westmere’s cost calculation formula by changing Skylake’s cost
calculation formula, all the above-mentioned parameters are used as reciprocals of cache miss
ratio changes and branch misprediction penalty changes.

For the server with Westmere, we used a dual CPU, and for the Skylake server, we used a
single CPU (Table 8.2). Therefore, the cost calculation model of Skylake included only the
local main memory. When modifying the Skylake cost formula to Westmere, the Skylake cost
formula used the average latency of local main memory, remote main memory, and remote L3
cache instead of local main memory latency.

8.4. Results and Discussion
We evaluated the proposed cost calculation methods by comparing the measured cross points

and cross-point estimates using the modified cost calculation formula in Tables 8.3 and 8.4.
The base cost calculation formula is created using the value measured on the reference CPU
(row #1 of Tables 8.3 and 8.4). The effects of the changes in CPU frequency, memory latency,
cache miss ratio, and the branch misprediction penalty in this order to the cost formula are
reflected by the cross points shown from rows #2 to #5. The cross point measured on the target
CPU is shown in row #6. The comparison results of the cross points in row #9 of Table 8.3
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show that eight of the 12 join cases improved the accuracy through parameter modification.
Negative values in row #9 imply that the estimation of cross-point accuracy deteriorated more
than before the modification.

追加していく
W->S 変更前(W)f lat Cache branch 実測(S)
C-O 0.00289 0.0020297 0.00213 0.0021 0.002103 0.00212
P-L 0.00272 0.0019159 0.00201 0.00198 0.001986 0.002
S-L 0.00264 0.001855 0.00195 0.00192 0.001923 0.002315
C-O-L 0.00081 0.0006532 0.00066 0.00067 0.000666 0.00063
S-L-P-O-C 0.00093 0.0007443 0.00075 0.00076 0.00076 0.00088
P-L-S-O-C 5.2E-07 4.162E-07 4.2E-07 4.2E-07 4.18E-07 2.1E-07

ROUNDDOWN

変更前(W)f lat Cache branch 実測(S) #7 #8
#1 #2

W->S 変更前-実測 ALL-実測 改善
No change+ Freq +Freq + La+Freq +La+ALL 実測(S) delta delta #1-#2

C-O 2.89E-03 2.03E-03 2.13E-03 2.10E-03 2.10E-03 2.12E-03 7.70E-04 2.00E-05 7.50E-04
P-L 2.72E-03 1.92E-03 2.01E-03 1.98E-03 1.99E-03 2.00E-03 7.20E-04 1.00E-05 7.10E-04
S-L 2.64E-03 1.85E-03 1.95E-03 1.92E-03 1.92E-03 2.32E-03 3.20E-04 4.00E-04 -8.00E-05
C-O-L 8.08E-04 6.53E-04 6.60E-04 6.65E-04 6.66E-04 6.30E-04 1.78E-04 3.60E-05 1.42E-04
S-L-P-O-C 9.27E-04 7.44E-04 7.51E-04 7.59E-04 7.60E-04 8.80E-04 4.70E-05 1.20E-04 -7.30E-05
P-L-S-O-C 5.15E-07 4.16E-07 4.18E-07 4.18E-07 4.18E-07 2.10E-07 3.05E-07 2.08E-07 9.70E-08

Diff. of me+ Freq +Freq + La+Freq +La+ALL 3桁目まるめ 0.00289 0.00289
C-O 7.70E-04 9.00E-05 1.00E-05 2.00E-05 2.00E-05 3桁目切り捨て 0.00289
P-L 7.20E-04 8.00E-05 1.00E-05 2.00E-05 1.00E-05 0.77 -7.29
S-L 3.20E-04 4.70E-04 3.70E-04 4.00E-04 4.00E-04
C-O-L 1.78E-04 2.30E-05 3.00E-05 3.50E-05 3.60E-05
S-L-P-O-C 4.70E-05 1.36E-04 1.29E-04 1.21E-04 1.20E-04
P-L-S-O-C 3.05E-07 2.06E-07 2.08E-07 2.08E-07 2.08E-07

W->S C-O P-L S-L C-O-L S-L-P-O-C P-L-S-O-C
#1 Base Mod Measured (W2.89E-03 2.72E-03 2.64E-03 8.08E-04 9.27E-04 5.15E-07
#2 Modified + Freq 2.03E-03 1.92E-03 1.85E-03 6.53E-04 7.44E-04 4.16E-07
#3 +Freq + Lat 2.13E-03 2.01E-03 1.95E-03 6.60E-04 7.51E-04 4.18E-07
#4 +Freq +Lat + 2.10E-03 1.98E-03 1.92E-03 6.65E-04 7.59E-04 4.18E-07
#5 +ALL 2.10E-03 1.99E-03 1.92E-03 6.66E-04 7.60E-04 4.18E-07
#6 Measured (S 2.12E-03 2.00E-03 2.32E-03 6.30E-04 8.80E-04 2.10E-07
#7 変更前-実測|#1-#6| 7.70E-04 7.20E-04 3.20E-04 1.78E-04 4.70E-05 3.05E-07
#8 ALL-実測 |#5-#6| 2.00E-05 1.00E-05 4.00E-04 3.60E-05 1.20E-04 2.08E-07
#9 Improv. #7-#8 7.50E-04 7.10E-04 -8.00E-05 1.42E-04 -7.30E-05 9.70E-08

67%の項目で改善

delta
+ Freq +Freq + Lat +Freq +La+ALL

C-O 6.8E-04 8.0E-05 -1.0E-05 0.0E+00
P-L 6.4E-04 7.0E-05 -1.0E-05 1.0E-05
S-L -1.5E-04 1.0E-04 -3.0E-05 0.0E+00
C-O-L 1.6E-04 -7.0E-06 -5.0E-06 -1.0E-06
S-L-P-O-C -8.9E-05 7.0E-06 8.0E-06 1.0E-06
P-L-S-O-C 9.9E-08 -2.0E-09 0.0E+00 0.0E+00

Difference+ Frequency+Frequenc+Frequenc+ALL
C-O 7.7 0.9 0.1 0.2 0.2
P-L 7.2 0.8 0.1 0.2 0.1
S-L 3.2 4.7 3.7 4 4
C-O-L 1.78 0.23 0.3 0.35 0.36
S-L-P-O-C 0.47 1.36 1.29 1.21 1.2
P-L-S-O-C 3.05E+00 2.06E+00 2.08E+00 2.08E+00 2.08E+00
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Updated cost model based on measurement values of Westmere
Figure 8.2.: Difference in Updating Architectural Changes for the Skylake Cost Model Based

on Measurement Values of Westmere

The results show that, from among the modified coefficients (CPU frequency, latency,
cache architecture, and branch misprediction penalty), CPU frequency is the most effective
parameter (Figure 8.2 and Figure 8.3). To negate the effect of changing each CPU parameter, we
analyzed the join cost and investigated the proportion of each change in Figure 8.4. The effect
of changing other parameters was less than the effect of changing CPU frequency because

Table 8.3.: Accuracy of Estimating the Selectivity of the Cross Point of a Nested Loop Join
and Hash Join when Applying the Westmere-based Model to Skylake

# Join tables C–O P–L S–L C–O–L S-L-P-O-C P-L-S-O-C

1 [Reference] Model of Westmere 2.89 × 103 2.72 × 103 2.64 × 103 8.08 × 104 9.27 × 104 5.15 × 107

2 Modifying Frequency 2.03 × 103 1.92 × 103 1.85 × 103 6.53 × 104 7.44 × 104 4.16 × 107

3 Modifying Latency +#2 2.13 × 103 2.01 × 103 1.95 × 103 6.60 × 104 7.51 × 104 4.18 × 107

4 Modifying Cache +#3 2.10 × 103 1.98 × 103 1.92 × 103 6.65 × 104 7.59 × 104 4.18 × 107

5 Modifying Branch. +#4 2.10 × 103 1.99 × 103 1.92 × 103 6.66 × 104 7.60 × 104 4.18 × 107

6 [Target] Measured on Skylake 2.12 × 103 2.00 × 103 2.32 × 103 6.30 × 104 8.80 × 104 2.10 × 107

7 |#1 − #6| 7.70 × 104 7.20 × 104 3.20 × 104 1.78 × 104 4.70 × 105 3.05 × 107

8 |#5 − #6| 2.00 × 105 1.00 × 105 4.00 × 104 3.60 × 105 1.20 × 104 2.08 × 107

9 Improvement |#7 − #8| 7.50 × 104 7.10 × 104 −8.00 × 105 1.42 × 104 −7.30 × 105 9.70 × 108

[Note] C: Customer, O: Orders, L: Line item, P: Part, S: Supplier, Branch.: Branch misprediction
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Table 8.4.: Accuracy of Estimating the Selectivity of the Cross Point of a Nested Loop Join
and Hash Join when Applying the Skylake-based Model to Westmere

# Join tables C–O P–L S–L C–O–L S-L-P-O-C P-L-S-O-C

1 Reference Model of Skylake 2.16 × 103 2.04 × 103 1.86 × 103 6.61 × 104 7.28 × 104 3.90 × 107

2 Modifying Freqency 3.22 × 103 3.02 × 103 2.68 × 103 8.64 × 104 9.63 × 104 5.22 × 107

3 Modifying Latency +#2 3.02 × 103 2.83 × 103 2.55 × 103 8.44 × 104 9.42 × 104 5.09 × 107

4 Modifying Cache +#3 3.00 × 103 2.81 × 103 2.53 × 103 8.38 × 104 9.36 × 104 5.06 × 107

5 Modifying Branch. +#4 3.00 × 103 2.81 × 103 2.53 × 103 8.38 × 104 9.35 × 104 5.06 × 107

6 [Target] Measured on Westmere 2.77 × 103 2.40 × 103 2.54 × 103 8.96 × 104 1.22 × 103 2.90 × 107

7 |#1 − #6| 6.10 × 104 3.60 × 104 6.80 × 104 2.35 × 104 4.92 × 104 1.00 × 107

8 |#5 − #6| 2.30 × 104 4.10 × 104 1.00 × 105 5.80 × 105 2.85 × 104 2.16 × 107

9 Improvement |#7 − #8| 3.80 × 104 −5.00 × 105 6.70 × 104 1.77 × 104 2.07 × 104 −1.16 × 107

[Note] C: CUSTOMER, O: ORDERS, L: LINEITEM, P: PART, S: SUPPLIER, Branch.: Branch misprediction

the impact on the performance parameters resulting from the architectural change was less
than the change in CPU frequency. All the components, such as cache memory access, main
memory access, branch misprediction penalty, and I/O are functions of selectivity in Chapter 7.
Each component of Figure 8.4 was changed because the cross point was changed in each case.
However, the size of each component was different, and a larger component had a greater effect
on cost value. In the NLJ case, frequency, I/O, and L1 Data were effective. However, these
parameters were not included in the Westmere and Skylake differences, and only frequency
was an effective parameter in the NLJ case.

In the case of the HJ build phase, the costs of L2 Instruction and L1 Data were greater
than other costs. In the case of the HJ probe phase, the costs of L2 instruction, L1 Data,
and I/O were greater than other costs. The cost of I/O depends on the selectivity of the cross
point. Therefore, changes to L2 cache and CPU frequency were dominant for the join cost. In
addition, Figures 8.2 and 8.3 show that our cost calculation formula should be updated when
CPU frequency or L1 cache architecture are updated.

Incidentally, in the HJ build phase, join cost did not include I/O cost because the main
thread of MariaDB-measured CPU events does not issue many disk I/O requests, while its I/O
threads issued a lot of asynchronous disk I/O requests in our configuration. In the HJ probe
phase of the three-table join, MariaDB accesses the third table the same as in NLJ and issues
a synchronous disk I/O. Hence, the cost of the probe phase includes the I/O cost (Figures 8.2
and 8.3).

When modifying the Westmere cost formula to Skylake, the accuracy of estimating the cross
point of the S-L join and S-L-P-O-C join was lower than other join cases. Each modified cost
model of NLJ or HJ approached the target cost measured on Skylake in Figure 8.5(a) and (b).
However, the cross point estimated by the modified cost formula moved further away from the
target cross point of the unmodified cost formula. In the case of the cross point of the P-L join
and P-L-S-O-C join using the modified Skylake cost formula to Westmere, the same problem
also occurs, as shown in Figure 8.5(c) and (d). From the above, although our proposed method
of modifying measurement-based cost formulas are effective, it does not always improve the
accuracy of predicted cross points. To further improve the prediction accuracy of the cross
point, it is necessary to study a method for directly controlling the cross points.
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追加していく
W->S 変更前(W)f lat Cache branch 実測(S) No change + Freq +Freq + L +Freq +La+ALL
C-O 0.00216 0.00322 0.00302 0.003 0.003 0.00277 0.00216 0.00322 0.00302 0.003 0.003
P-L 0.00204 0.00302 0.00283 0.00281 0.00281 0.0024 0.00204 0.00302 0.00283 0.00281 0.00281
S-L 0.00186 0.00268 0.00255 0.00253 0.00253 0.00254 0.00186 0.00268 0.00255 0.00253 0.00253
C-O-L 0.00066 0.000864 0.00084 0.00084 0.000838 0.000896 0.000661 0.000864 0.00084 0.00084 0.00084
S-L-P-O-C 0.00073 0.000963 0.00094 0.00094 0.000935 0.00122 0.000728 0.000963 0.00094 0.00094 0.00094
P-L-S-O-C 3.9E-07 5.22E-07 5.1E-07 5.1E-07 5.06E-07 2.9E-07 0.00000039 5.22E-07 5.1E-07 5.1E-07 5.1E-07

ROUNDDOWN

変更前(W)f lat Cache branch 実測(S) #7 #8
#1 #2

W->S 変更前-実測 ALL-実測 改善
No change+ Freq +Freq + La+Freq +La+ALL 実測(S) delta delta #1-#2

C-O 2.16E-03 3.22E-03 3.02E-03 3.00E-03 3.00E-03 2.77E-03 6.10E-04 2.30E-04 3.80E-04
P-L 2.04E-03 3.02E-03 2.83E-03 2.81E-03 2.81E-03 2.40E-03 3.60E-04 4.10E-04 -5.00E-05
S-L 1.86E-03 2.68E-03 2.55E-03 2.53E-03 2.53E-03 2.54E-03 6.80E-04 1.00E-05 6.70E-04
C-O-L 6.61E-04 8.64E-04 8.44E-04 8.38E-04 8.38E-04 8.96E-04 2.35E-04 5.80E-05 1.77E-04
S-L-P-O-C 7.28E-04 9.63E-04 9.42E-04 9.36E-04 9.35E-04 1.22E-03 4.92E-04 2.85E-04 2.07E-04
P-L-S-O-C 3.90E-07 5.22E-07 5.09E-07 5.06E-07 5.06E-07 2.90E-07 1.00E-07 2.16E-07 -1.16E-07

Diff. of me+ Freq +Freq + La+Freq +La+ALL 3桁目まるめ 0.00216 0.00216
C-O 6.10E-04 4.50E-04 2.50E-04 2.30E-04 2.30E-04 3桁目切り捨て 0.00216
P-L 3.60E-04 6.20E-04 4.30E-04 4.10E-04 4.10E-04 0.77 -7.29
S-L 6.80E-04 1.40E-04 1.00E-05 1.00E-05 1.00E-05
C-O-L 2.35E-04 3.20E-05 5.20E-05 5.80E-05 5.80E-05
S-L-P-O-C 4.92E-04 2.57E-04 2.78E-04 2.84E-04 2.85E-04
P-L-S-O-C 1.00E-07 2.32E-07 2.19E-07 2.16E-07 2.16E-07

W->S C-O P-L S-L C-O-L S-L-P-O-C P-L-S-O-C
#1 Base Mod Measured (W2.89E-03 2.72E-03 2.64E-03 8.08E-04 9.27E-04 5.15E-07
#2 Modified + Freq 2.03E-03 1.92E-03 1.85E-03 6.53E-04 7.44E-04 4.16E-07
#3 +Freq + Lat 2.13E-03 2.01E-03 1.95E-03 6.60E-04 7.51E-04 4.18E-07
#4 +Freq +Lat + 2.10E-03 1.98E-03 1.92E-03 6.65E-04 7.59E-04 4.18E-07
#5 +ALL 2.10E-03 1.99E-03 1.92E-03 6.66E-04 7.60E-04 4.18E-07
#6 Measured (S 2.12E-03 2.00E-03 2.32E-03 6.30E-04 8.80E-04 2.10E-07
#7 変更前-実測|#1-#6| 7.70E-04 7.20E-04 3.20E-04 1.78E-04 4.70E-05 3.05E-07
#8 ALL-実測 |#5-#6| 2.00E-05 1.00E-05 4.00E-04 3.60E-05 1.20E-04 2.08E-07
#9 Improv. #7-#8 7.50E-04 7.10E-04 -8.00E-05 1.42E-04 -7.30E-05 9.70E-08

67%の項目で改善

delta
+ Freq +Freq + Lat +Freq +La+ALL

C-O 1.6E-04 2.0E-04 2.0E-05 0.0E+00
P-L -2.6E-04 1.9E-04 2.0E-05 0.0E+00
S-L 5.4E-04 1.3E-04 0.0E+00 0.0E+00
C-O-L 2.0E-04 -2.0E-05 -6.0E-06 0.0E+00
S-L-P-O-C 2.4E-04 -2.1E-05 -6.0E-06 -1.0E-06
P-L-S-O-C -1.3E-07 1.3E-08 3.0E-09 0.0E+00

Difference+ Freq. +Freq. + L+Freq. +La+ALL
C-O 6.10E+00 4.5 2.50E+00 2.3 2.30E+00
P-L 3.6 6.2 4.3 4.1 4.1
S-L 6.8 1.4 0.1 0.1 0.1
C-O-L 2.35 0.32 0.52 0.58 5.80E-01
S-L-P-O-C 4.92 2.57 2.78 2.84 2.85
P-L-S-O-C 1.00E+00 2.32E+00 2.19E+00 2.16E+00 2.16E+00
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Updated cost model based on measurement values of SkylakeFigure 8.3.: Difference in Updating Architectural Changes for the Westmere Cost Model
Based on Measurement Values of Skylake

Considering the limits of our proposed method, our join cost calculation method cannot
overcome large CPU updates, such as pipeline structure level updates, which would require the
cost calculation formula to be prepared in advance for each CPU.

8.5. Conclusion
Performance changes, such as memory latency and cache size, introduced because of archi-

tectural changes using different generations of CPUs were reflected in the measurement-based
cost calculation formula for join processing. By using this updated cost calculation formula,
we verified that it is possible to select the join method of NLJ and HJ accurately when con-
sidering CPUs of different generations. As a result, it was determined that the cross point was
estimated with an accuracy of 66% for the join test cases analyzed. In conclusion, we verified
that our proposed method for the measurement-based join cost calculation can be utilized to
calculate the cost of a join operation for CPUs of different generations, thereby contributing to
a reduction in the operational costs of a cloud service platform.
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8. Updating Cost Calculation Method Applying to Different Generation CPUs
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9. Conclusions and Future Works
To improve accuracy of join cost calculation for database query optimization, we proposed

the measurement-based cost calculation method. We focused on CPU pipeline architecture
to estimate accurate elapsed time of analysis queries as CPU of analysis queries. The CPU
cost is composed of three elements, data cache access time, instruction cache miss penalty and
branch misprediction recovering penalty. Each cost elements are given by regression analysis
of measured CPU statistical information such as number of cache hits during executing a
join operation. For supporting multiple table join, repeating operations are found from a
access path of the query optimizer generated of DBMS and are modeled. First, we created
the proposed cost calculation using 100GB TPC-H database when applying two-tables join.
The join operations were NLJ and HJ. We evaluated the accuracy of intersection of NLJ cost
formula and HJ cost formula. As a result, the difference between the predicted cross point
and the measured cross point was less than 0.1% selectivity and was reduced by 71% to 94%
compared with the difference between the cross point obtained by the conventional method and
the measured cross point. Second, we modified the proposed two-tables join cost calculation
method to support multi-tables join. In addition, to reduce database administrator’s operation
cost, we used the cost calculation formulas created using small size, 5GB database and reduced
measurement time. The experimental results showed the ratio of accuracy improvement was
74% to 95%. Finally, we evaluated our proposed method could apply different generation
CPUs with small change of cost calculation formula’s coefficients. We utilized other research
results such as change rate of cache miss ratio against changes in associativity or size to
modify the coefficients. We verified that it is possible to select the join method of NLJ and
HJ accurately when considering CPUs of different generations. As a result, it was determined
that the cross point was estimated with an accuracy of 66% for the join test cases analyzed.
In conclusion, by applying the proposed cost calculation formulas, the proper join method can
be selected and the risk of unexpected query execution delay for users of the DBMS can be
reduced. Our proposed method for the measurement-based join cost calculation can be utilized
to calculate the cost of a join operation for CPUs of different generations, thereby contributing
to a reduction in the operational costs of a cloud service platform.

In the future, we will also implement a DBMS that automatically distinguishes CPU differ-
ences from the analysis results and automatically corrects the parameters for cost calculation
or the calculation model itself. Moreover, to support cloud environment more, we will propose
how to modify the measurement-based cost calculation method for single database instance
for multiple database instance running environment.

Furthermore, not only effort of improvement accuracy of cost estimation but also improve-
ment accuracy of estimating distribution of attributes of data are required to improve accuracy
for multi-table join. Therefore, we will tackle develop a method of estimating data distribution
suitable for the proposed cost calculation method.

99



References
[1] A. Foong and F. Hady. Storage as fast as rest of the system. In 2016 IEEE 8th International

Memory Workshop (IMW), pages 1–4, May 2016.

[2] Andy Rudoff. The impact of the NVM programming model. Storage
Developer Conference, SNIA, Santa Clara, CA, USA, September, 2013,
https://www.snia.org/sites/default/files/files2/files2/SDC2013/
presentations/GeneralSession/AndyRudoff_Impact_NVM.pdf [retrieved:
March, 2017].

[3] Zora Caklovic, Product Expert, Oliver Rebholz, et al. Bringing persistent memory
technology to sap hana: Opportunities and challenges. Annual SNIA Persistent Memory
Summit, 2017.

[4] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner, Thomas Willhalm,
and Grégoire Gomes. Memory management techniques for large-scale persistent-main-
memory systems. Proceedings of the VLDB Endowment, 10(11):1166–1177, 2017.

[5] Transaction Processing Performance Council (TPC). TPC BENCHMARK™ H
(decision support) standard specification revision 2.17.3. http://www.tpc.org/
tpc_documents_current_versions/pdf/tpc-h_v2.17.3.pdf, January 2018.

[6] Andy Rudoff. Persistent memory programming. Login: The Usenix Magazine, 42:34–40,
2017.

[7] Yannis Ioannidis. The history of histograms (abridged). In Proceedings 2003 VLDB
Conference, pages 19–30. Morgan Kaufmann, San Francisco, 2003.

[8] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. How good are query optimizers, really? Proc. VLDB Endow.,
9(3):204–215, November 2015.

[9] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In Proceedings of the
1979 ACM SIGMOD International Conference on Management of Data, SIGMOD ’79,
pages 23–34, New York, NY, USA, 1979. ACM.

[10] W. Wu et al. Predicting query execution time: Are optimizer cost models really unusable?
In Data Engineering (ICDE), 2013 IEEE 29th International Conference on, pages 1081–
1092, April 2013.

100



References

[11] Michael V. Mannino, Paicheng Chu, and Thomas Sager. Statistical profile estimation in
database systems. ACM Comput. Surv., 20(3):191–221, September 1988.

[12] Yannis E. Ioannidis. Query optimization. ACM Comput. Surv., 28(1):121–123, March
1996.

[13] Viswanath Poosala, Peter J. Haas, Yannis E. Ioannidis, and Eugene J. Shekita. Improved
histograms for selectivity estimation of range predicates. SIGMOD Rec., 25(2):294–305,
June 1996.

[14] Gregory Piatetsky-Shapiro and Charles Connell. Accurate estimation of the number of
tuples satisfying a condition. In Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’84, pages 256–276, New York, NY,
USA, 1984. ACM.

[15] Oystein Grovlen. Histogram Support in Mysql 8.0. https://www.slideshare.net/oysteing/
histogram-support-in-mysql-80 [retrieved: Jan, 2019], February 2018.

[16] MariaDB Knowlegde Base – Histogram-Based Statistics. https://mariadb.com/kb/en/
library/histogram-based-statistics/ [retrieved: Jan, 2019].

[17] Viswanath Poosala and Yannis E Ioannidis. Selectivity estimation without the attribute
value independence assumption. In VLDB, volume 97, pages 486–495, 1997.

[18] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. Random sampling for his-
togram construction: How much is enough? SIGMOD Rec., 27(2):436–447, June 1998.

[19] Yannis E. Ioannidis and Stavros Christodoulakis. On the propagation of errors in the size
of join results. In Proceedings of the 1991 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’91, pages 268–277, New York, NY, USA, 1991. ACM.

[20] Weimin Du, Ravi Krishnamurthy, and Ming-Chien Shan. Query optimization in a het-
erogeneous dbms. In VLDB, volume 92, pages 277–291, 1992.

[21] Qiang Zhu and Per-Åke Larson. Building regression cost models for multidatabase
systems. In Proceedings of the Fourth International Conference on on Parallel and
Distributed Information Systems, DIS ’96, pages 220–231, Washington, DC, USA, 1996.
IEEE Computer Society.

[22] Goetz Graefe. Query evaluation techniques for large databases. ACM Comput. Surv.,
25(2):73–169, June 1993.

[23] Olav Sandstå. Mysql Cost Model. http://www.slideshare.net/olavsa/mysql-optimizer-
cost-model [retrieved: Jan, 2018], October 2014.

[24] Stefan Manegold, Peter A Boncz, and Martin L Kersten. Optimizing database architecture
for the new bottleneck: memory access. The VLDB Journal, 9(3):231–246, 2000.

101



References

[25] Stefan Manegold, Peter Boncz, and Martin L Kersten. Generic database cost models for
hierarchical memory systems. In Proceedings of the 28th international conference on
Very Large Data Bases, pages 191–202. VLDB Endowment, 2002.

[26] Michael S. Kester, Manos Athanassoulis, and Stratos Idreos. Access path selection in
main-memory optimized data systems: Should I scan or should I probe? In Proceedings
of the 2017 ACM International Conference on Management of Data, SIGMOD ’17, pages
715–730, New York, NY, USA, 2017. ACM.

[27] Amira Rahal, Qiang Zhu, and Per-Åke Larson. Evolutionary techniques for updat-
ing query cost models in a dynamic multidatabase environment. The VLDB Journal,
13(2):162–176, May 2004.

[28] Qiang Zhu, S. Motheramgari, and Yu Sun. Cost estimation for large queries via fractional
analysis and probabilistic approach in dynamic multidatabase environments. In Proceed-
ings of the 11th International Conference on Database and Expert Systems Applications,
DEXA ’00, pages 509–525, London, UK, UK, 2000. Springer-Verlag.

[29] Mumtaz Ahmad, Songyun Duan, Ashraf Aboulnaga, and Shivnath Babu. Predicting com-
pletion times of batch query workloads using interaction-aware models and simulation.
In Proceedings of the 14th International Conference on Extending Database Technology,
EDBT/ICDT ’11, pages 449–460, New York, NY, USA, 2011. ACM.

[30] Anastassia Ailamaki, David J DeWitt, Mark D Hill, and David A Wood. DBMSs on a
modern processor: Where does time go? In VLDB" 99, Proceedings of 25th International
Conference on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK,
number DIAS-CONF-1999-001, pages 266–277, 1999.

[31] Richard A. Hankins, Trung Diep, Murali Annavaram, Brian Hirano, Harald Eri, Hubert
Nueckel, and John P. Shen. Scaling and charact rizing database workloads: Bridging
the gap between research and practice. In Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 36, pages 151–, Washington,
DC, USA, 2003. IEEE Computer Society.

[32] Tsuyoshi Tanaka, Toshiaki Tarui, and Ken Naono. Investigating suitability for server
virtualization using business application benchmarks. In Proceedings of the 3rd interna-
tional workshop on Virtualization technologies in distributed computing, pages 43–50.
ACM, 2009.

[33] Dileep Bhandarkar and Jason Ding. Performance characterization of the pentium pro
processor. In High-Performance Computer Architecture, 1997., Third International Sym-
posium on, pages 288–297. IEEE, 1997.

[34] Kimberly Keeton, David A Patterson, Yong Qiang He, Roger C Raphael, and Walter E
Baker. Performance characterization of a quad pentium pro smp using oltp workloads. In
ACM SIGARCH Computer Architecture News, volume 26, pages 15–26. IEEE Computer
Society, 1998.

102



References

[35] R. Murphy. On the effects of memory latency and bandwidth on supercomputer applica-
tion performance. In 2007 IEEE 10th International Symposium on Workload Character-
ization(IISWC), volume 00, pages 35–43, 09 2007.

[36] Stijn Eyerman and Lieven Eeckhout. System-level performance metrics for multiprogram
workloads. IEEE micro, 28(3), 2008.

[37] Richard E Matick, Thomas J Heller, and Michael Ignatowski. Analytical analysis of finite
cache penalty and cycles per instruction of a multiprocessor memory hierarchy using miss
rates and queuing theory. IBM Journal Of Research And Development, 45(6):819–842,
2001.

[38] Richard E Matick. Comparison of analytic performance models using closed mean-value
analysis versus open-queuing theory for estimating cycles per instruction of memory
hierarchies. IBM Journal of Research and Development, 47(4):495–517, 2003.

[39] Intel® 64 and ia-32 architectures software developer’s manual, volumes 3a, 3b, 3c, and
3d: System programming guide, 2018.

[40] Peter A Boncz, Stefan Manegold, Martin L Kersten, et al. Database architecture optimized
for the new bottleneck: Memory access. In VLDB, volume 99, pages 54–65, 1999.

[41] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith. A performance
counter architecture for computing accurate cpi components. In Proceedings of the 12th
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XII, pages 175–184, New York, NY, USA, 2006. ACM.

[42] Omesh Tickoo, Ravi Iyer, Ramesh Illikkal, and Don Newell. Modeling virtual machine
performance: Challenges and approaches. SIGMETRICS Perform. Eval. Rev., 37(3):55–
60, January 2010.

[43] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John Wilkes.
Cpi2: Cpu performance isolation for shared compute clusters. In Proceedings of the 8th
ACM European Conference on Computer Systems, EuroSys ’13, pages 379–391, New
York, NY, USA, 2013. ACM.

[44] David Levinthal. Performance analysis guide for intel core i7 processor and intel xeon
5500 processors. Intel Performance Analysis Guide, 30:18, 2009.

[45] Padma Apparao, Ravi Iyer, and Don Newell. Towards modeling & analysis of consolidated
CMP servers. SIGARCH Comput. Archit. News, 36(2):38–45, May 2008.

[46] N. Hardavellas et al. Database servers on chip multiprocessors: Limitations and opportu-
nities. In Proceedings of the Biennial Conference on Innovative Data Systems Research
(CIDR), pages 79–87, Asilomar, CA, USA, January 2007.

103



References

[47] P. Trancoso, J. . Larriba-Pey, Z. Zhang, and J. Torrellas. The memory performance of
dss commercial workloads in shared-memory multiprocessors. In Proceedings Third
International Symposium on High-Performance Computer Architecture, pages 250–260,
Feb 1997.

[48] L. McVoy et al. lmbench: Portable tools for performance analysis. In USENIX annual
technical conference, pages 279–294, San Diego, CA, USA, 1996.

[49] A. Patel, F. Afram, S. Chen, and K. Ghose. Marss: A full system simulator for multicore
x86 cpus. In 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC), pages
1050–1055, June 2011.

[50] J. L. Lo et al. An analysis of database workload performance on simultaneous multi-
threaded processors. In ACM SIGARCH Computer Architecture News, volume 26, pages
39–50. IEEE Computer Society, 1998.

[51] The MariaDB foundation - ensuring continuity and open collaboration in the mariadb
ecosystem, 2017.

[52] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller. Memory performance and cache
coherency effects on an intel nehalem multiprocessor system. In 2009 18th International
Conference on Parallel Architectures and Compilation Techniques, pages 261–270, Sept
2009.

[53] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database systems: the
complete book, Second Edition, pages 804–807. Pearson Education Limited, 2014.

[54] Annita N. Wilschut, Jan Flokstra, and Peter M. G. Apers. Parallel evaluation of multi-join
queries. SIGMOD Rec., 24(2):115–126, May 1995.

[55] Igor Pavlov. 7-Zip LZMA Benchmark. http://www.7-cpu.com/ [retrieved: January,
2018], 2017.

[56] A. Aboulnaga et al. Automated statistics collection in DB2 UDB. In Proceedings of the
Thirtieth International Conference on Very Large Data Bases - Volume 30, VLDB ’04,
pages 1158–1169. VLDB Endowment, 2004.

[57] I. Babae. Engine-independent persistent statistics with histograms in MariaDB. Percona
Live MySQL Conference and Expo 2013, April, 2013, https://www.percona.com/
live/london-2013/sites/default/files/slides/uc2013-EIPS-final.pdf
[retrieved: March, 2017].

[58] Intel Corporation. Intel 64® and IA-32 architectures optimization reference man-
ual. https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-
32-architectures-optimization-manual.pdf, January 2018.

104



References

[59] Jack Doweck, Wen-Fu Kao, Allen Kuan yu Lu, Julius Mandelblat, Anirudha Rahatekar,
Lihu Rappoport, Efraim Rotem, Ahmad Yasin, and Adi Yoaz. Inside 6th-generation intel
core: New microarchitecture code-named skylake. IEEE Micro, 37(2):52–62, Mar 2017.

[60] M. D. Hill and A. J. Smith. Evaluating associativity in cpu caches. IEEE Transactions
on Computers, 38(12):1612–1630, Dec 1989.

[61] Rathijit Sen and Karthik Ramachandra. Characterizing resource sensitivity of database
workloads, Feb. 2018. 24th IEEE International Symposium on High-Performance Com-
puter Architecture (HPCA 2018).

[62] A. Hartstein, V. Srinivasan, T. R. Puzak, and P. G. Emma. On the nature of cache miss
behavior: Is it

√
2 ?, June 2008.

[63] S. Eyerman, J. E. Smith, and L. Eeckhout. Characterizing the branch misprediction
penalty. In 2006 IEEE International Symposium on Performance Analysis of Systems and
Software, pages 48–58, March 2006.

[64] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John) Janakiraman, and Willy
Zwaenepoel. Diagnosing performance overheads in the xen virtual machine environment.
In Proceedings of the 1st ACM/USENIX International Conference on Virtual Execution
Environments, VEE ’05, pages 13–23, New York, NY, USA, 2005. ACM.

[65] Nagendra Gulur, Mahesh Mehendale, and Ramaswamy Govindarajan. A comprehensive
analytical performance model of dram caches. In Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering, ICPE ’15, pages 157–168, New
York, NY, USA, 2015. ACM.

[66] Robert B. Cooper. Introduction to Queueing Theory. North Holland, 2nd edition, 1981.

[67] John D. McCalpin. Memory bandwidth: Stream benchmark performance results.
http://www.cs.virginia.edu/stream/ [retrieved: March, 2018].

105



Related Publications
Journal papers

1. Tsuyoshi Tanaka and Hiroshi Ishikawa, CPU cost estimation method for relational
database query execution to improve accuracy of join method selection. The IEICE
Transactions on Information and Systems (Japanese Edition), J100-D(4), pages
485–499, April 2017 (in Japanese).

2. Tsuyoshi Tanaka and Hiroshi Ishikawa, Measurement-based cost estimation method
for multi-table join operation in an in-memory database, International Journal on
Advances in Software, Vol. 10, No. 3&4: pages 459–476, 2017.

International Conference papers

1. Tsuyoshi Tanaka and Hiroshi Ishikawa, Measurement-based cost estimation method
of a join operation for an in-memory database, In The Ninth Internationa Confer-
ences on Advances in Multimedia, MMEDIA2017, pages 57–66, Venice, Italy,
April 2017.

2. Tsuyoshi Tanaka and Hiroshi Ishikawa. Evaluation on applicability of measurement-
based join cost calculation method using different generation CPUs. In Proceedings
IEEE 2018 International Congress on Cybermatics, The 18th IEEE Computer and
Information Technology, CIT-2018, pages 1894–1901. IEEE Computer Society,
2018.

Domestic Conference papers

1. Tsuyoshi Tanaka and Hiroshi Ishikawa, Cost estimation method based on CPU
architecture for relational database query optimization, In IEICE Technical Report,
vol. 115, no. 399, CPSY2015-116, pages 67–72, Jan. 2016 (in Japanese).

2. 田中剛, 石川博, ジョイン方式選択の精度向上をめざしたデータベース問い
合わせ処理における CPU処理コスト計算方法の検討とその評価,第 8回デー
タ工学と情報マネジメントに関するフォーラム, DEIM 2016, 2016年 3月 (in
Japanese).

106



Acknowledgments
First of all, I would like to express my deepest gratitude to my supervisor, Prof. Hiroshi

Ishikawa from Department of Information and Communication Systems, Graduate School of
System Design, Tokyo Metropolitan University for the continuous support of my doctoral
study and related research, for insightful comments and suggestions. Without his guidance
and persistent help this dissertation would not have been possible.

Next, I would like to express my gratitude to my examiner, Assoc. Prof. Shohei Yokoyama
from Graduate School of System Design, Assoc. Prof. Kaoru Katayama from Graduate School
of System Design and Prof. Jun Miyazaki from Department of Computer Science, School of
Computing, Tokyo Institute of Technology. Thanks also to Assoc. Prof. Masaharu Hirota and
Research Assistant Prof. Tetsuya Araki for constructive comments and warm encouragement.
I would like to offer my special thanks to Emeritus Professor Yoshifumi Masunaga from
Ochanomizu University and Dr. Yasuhiro Fujiwara from NTT Software Innovation Center for
giving me great suggestions to the research policy and evaluation method at DEIM 2016.

Then, I would like to express my gratitude to Hitachi, Ltd. Research & Development Group
for their financial support. I would also like to express my gratitude to the members of the
Data Science Research Department of Research & Development Group, Hitachi, Ltd., for
providing business support on the balance between daily work and studies. I had the support
and encouragement of Assoc. Prof. Masaki Endo from Polytechnic University as senior student
in the Ishikawa’s laboratory. I was encouraged by discussing Mr. Daiju Kato, who entered
the same year, about our jobs and studies. I received much cooperation from the members of
Ishikawa’s laboratory.

Finally, I would also like to express my gratitude to my wife, my daughter and other family
members for their moral support and warm encouragements.

107



A. Appendix

A.1. Queries for Evaluating Cost Calculation Formulas
The Queries used for evaluation of the proposed cost calculation formulas are shown in

Figure A.1, A.2, A.3, and A.4.

select count(*)
from  part, lineitem
where

(p_type='STANDARD ANODIZED TIN' 
or p_type='STANDARD ANODIZED STEEL) 
and p_size < N
and p_partkey = l_partkey
and l_shipdate < date '1995-03-06';

P-L join

σ

σ

part

lineitem

N 6 8 10 20 30 40 50
Selectivity PO
(Condition 1) 1.33×10-3 1.87×10-3 2.40×10-3 5.07×10-3 7.73×10-3 1.04×10-2 1.31×10-2

(b) Access Path
γ

p_partkey=l_partkey

count(*)
Join method is 
manually set.

(a) SQL

Condition 1

Condition 2

(c) Selection Condition and Selectivity

Condition 1

Condition 2

(Inner Table 1)

(Outer Table)

Figure A.1.: Target Query of Cost Estimation for Part and Lineitem Join
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A. Appendix

select count(*)
from supplier, lineitem
where

s_acctbal > N
and s_nationkey = 0
and s_suppkey = l_suppkey
and l_shipdate > date '1995-03-06';

Q3e  S-L

σ

σ

supplier

lineitem

N 9998 9978 9798 9200 9000 8000 7000
Selectivity PO
(Condition 1) 7.24×10-6 8.00×10-5 7.35×10-4 2.91×10-3 3.64×10-3 7.27×10-3 1.09×10-2

(b) Access Path
γ

s_suppkey = l_suppkey

count(*)
(a) SQL

Condition 1

Condition 2

(c) Selection Condition and Selectivity

Condition 1

Condition 2

(Inner Table 1)

(Outer Table)

Figure A.2.: Target Query of Cost Estimation for Supplier and Lineitem Join

select count(*)
from 

part
STRAIGHT_JOIN lineitem
STRAIGHT_JOIN supplier
STRAIGHT_JOIN orders
STRAIGHT_JOIN customer

where
(p_type='STANDARD ANODIZED TIN'  or
p_type=''STANDARD ANODIZED STEEL‘) 
and p_size < N
and p_partkey = l_partkey
and l_shipdate < date '1992-03-01'
and l_quantity = 10
and l_orderkey = o_orderkey
and o_custkey = o_custkey
and l_suppkey = s_suppkey;

P-L-S-O-C join

N 6 8 10 20 30 40 50
Selectivity PO
(Condition 1) 1.33×10-3 1.87×10-3 2.40×10-3 5.07×10-3 7.73×10-3 1.04×10-2 1.31×10-2

(b) Access Path(a) SQL

Condition 1

Condition 2

(c) Selection Condition and Selectivity

σ

σ

part

lineitem

γ

p_partkey=l_partkey

count(*)

Condition 1

Condition 2

(Inner Table 1)

(Outer Table)

l_suppkey=s_suppkey
supplier

(Inner Table 2)

l_orderkey=o_orderkey

(Inner Table 3)
orders

o_custkey=c_custkey

(Inner Table 4)
customer

Figure A.3.: Target Query of Cost Estimation for Part, Lineitem, Supplier, Orders, and
Customer join
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select count(*)
from 

supplier 
STRAIGHT_JOIN lineitem
STRAIGHT_JOIN part 
STRAIGHT_JOIN orders
STRAIGHT_JOIN customer

where
s_acctbal > 9998
and s_nationkey = 0
and s_suppkey = l_suppkey
and l_shipdate > date '1995-03-06'
and l_partkey = p_partkey
and l_orderkey = o_orderkey
and o_custkey = c_custkey;

S-L-P-O-C join

(b) Access Path
γ

(a) SQL

Condition 1

Condition 2

(c) Selection Condition and Selectivity
N 9998 9978 9798 9200 9000 8000 7000

Selectivity PO
(Condition 1) 7.24×10-6 8.00×10-5 7.35×10-4 2.91×10-3 3.64×10-3 7.27×10-3 1.09×10-2

σ

σ

supplier

lineitem

s_suppkey=l_suppkey

count(*)

Condition 1

Condition 2

(Inner Table 1)

(Outer Table)

l_partkey=p_partkey
part

(Inner Table 2)

l_orderkey=o_orderkey

(Inner Table 3)
orders

o_custkey=c_custkey

(Inner Table 3)
customer

Figure A.4.: Target Query of Cost Estimation for Supplier, Lineitem, Part, Orders and
Customer join

A.2. Measured CPU Counters
The list of CPU counters for modeling the CPU cost calculation are shown in Table A.1

and A.4. The constants and intermediate variable for modeling cost calculation formulas are
shown in Table A.2 and A.5. The column of “Symbol” means variables in the cost calculation
formulas. Intermediate Variables to obtain cost calculation formulas are shown in Table A.3
and A.4.
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A. Appendix

Table A.1.: Lists of CPU Counters to Measure and Preprocess of Westmere Processor

No. Counter Name

E1 CPU_CLK_UNHALTED.THREAD
E2 INST_RETIRED.ANY
E3 BR_MISP_EXEC.ANY
E4 DTLB_MISSES.ANY
E5 ITLB_MISS_RETIRED
E6 L1I.CYCLES_STALLED
E7 L1I.HITS
E8 L1I.MISSES
E9 L2_RQSTS.IFETCH_HIT
E10 L2_RQSTS.IFETCH_MISS
E11 MEM_INST_RETIRED.LOADS
E12 MEM_LOAD_RETIRED.HIT_LFB
E13 MEM_LOAD_RETIRED.L1D_HIT
E14 MEM_LOAD_RETIRED.L2_HIT
E15 MEM_LOAD_RETIRED.LLC_MISS
E16 MEM_LOAD_RETIRED.LLC_UNSHARED_HIT
E17 MEM_LOAD_RETIRED.OTHER_CORE_L2_HIT_HITM
E18 OFFCORE_RESPONSE.DATA_IFETCH.LOCAL_CACHE_1
E19 OFFCORE_RESPONSE.DATA_IFETCH.LOCAL_DRAM_AND_REMOTE_CACHE

_HIT_0
E20 OFFCORE_RESPONSE.DATA_IFETCH.OTHER_LOCAL _DRAM_1
E21 OFFCORE_RESPONSE.DATA_IFETCH.REMOTE_CACHE _HITM_0
E22 OFFCORE_RESPONSE.DATA_IFETCH.REMOTE_DRAM_1
E23 OFFCORE_RESPONSE.DATA_IN.LOCAL_DRAM_AND_REMOTE_CACHE

_HIT_0
E24 OFFCORE_RESPONSE.DATA_IN.OTHER_LOCAL_DRAM_0
E25 OFFCORE_RESPONSE.DATA_IN.REMOTE_CACHE_HITM_0
E26 OFFCORE_RESPONSE.DATA_IN.REMOTE_DRAM_1
E27 RESOURCE_STALLS.ANY
E28 RESOURCE_STALLS.LOAD
E29 RESOURCE_STALLS.ROB_FULL
E30 RESOURCE_STALLS.RS_FULL
E31 RESOURCE_STALLS.STORE
E32 UOPS_ISSUED.ANY
E33 UOPS_ISSUED.CORE_STALL_CYCLES
E34 UOPS_ISSUED.CYCLES_ALL_THREADS
E35 UOPS_ISSUED.FUSED
E36 UOPS_RETIRED.ANY
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Table A.2.: Lists of Constants of Westmere Processor
No. Symbol Events Value

E37 − CPU frequency [GHz] (Xeon L5630) 2.13
E38 LL1 L1I Latency [cycle] 4
E39 LL1 L1D Latency [cycle] 4
E40 LL2 L2 Latency [cycle] 10
E41 LLLLC Local LLC Latency [cycle] 40
E42 LRLLC Remote LLC Latency [cycle] 200
E43 LLMM Local Main Memory Latency [cycle] E41 + 67[ns] × E37
E44 — Remote Main Memory Latency [cycle] E41+105[ns]×E37
E45 LMP Branchmiss prediction cycle 15
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Table A.3.: Lists of Intermediate Variable of Westmere Processor
No. Symbol Events Calculation Formula for Preprocessing

E46 ILoad LOAD instruction E11
E47 ML1D L1D Hit (data) E46 × E13/(E12 + E13 + E14 + E15 + E16 + E17)
E48 — L1D Miss (data) E46 − E47
E49 ML2D L2 Hit (data) E46 × ((1 − (E13/(E12 + E13 + E14 + E15 + E16 +

E17))) × (E14/(E14 + E15 + E16 + E17)))
E50 — L2 Miss (data) E48 − E49
E51 MLLLCD LLC Hit (data) E46 × ((1 − (E13/(E12 + E13 + E14 + E15 + E16 +

E17)))×(1−(E14/(E14+E15+E16+E17)))×((E16+
E17)/(E15 + E16 + E17)))

E52 — LLC Miss (data) E50 − E51
E53 MRLLCD Remote LLC Hit

(data)
E46 × ((1 − (E13/(E12 + E13 + E14 + E15 + E16 +
E17))) × (1 − (E14/(E14 + E15 + E16 + E17))) × (1 −
((E16+E17)/(E16+E17+E15)))×((E23+E25)/(E23+
E24 + E25 + E26)))

E54 MLMMD Local Main Memory
(data)

E46 × ((1 − (E13/(E12 + E13 + E14 + E15 + E16 +
E17))) × (1 − (E14/(E14 + E15 + E16 + E17))) × (1 −
((E16+E17)/(E16+E17+E15)))×(E24/(E23+E24+
E25 + E26)))

E55 — Remote Main Memory
(data)

E46 × ((1 − (E13/(E12 + E13 + E14 + E15 + E16 +
E17))) × (1 − (E14/(E14 + E15 + E16 + E17))) × (1 −
((E16+E17)/(E16+E17+E15)))×(E26/(E23+E24+
E25 + E26)))

E56 — Total Data Access La-
tency

E47 × E39 + E49 × E40 + E51 × E41 + E54 × E43 +
E55 × E44 + E53 × E42

E57 I Instruction E2 + E3
E58 ML1I L1I Hit (instruction) E57 − E8
E59 — L1I Miss (instruction) E57 − E58
E60 ML2I L2 Hit (instruction) E8 − E10
E61 — L2 Miiss (instruction) E59 − E60
E62 MLLLCI Local LLC Hit (in-

struction)
E10 × ((E18/(E18 + E19 + E21 + E20 + E22)))

E63 — Local LLC Miss (in-
struction)

E61 − E62

E64 MRLLCD Remote LLC Hit (in-
struction)

E57×((E10/E57)× (((E19+E21)/(E18+E19+E20+
E21 + E22))))

E65 MLMMD Local Main Memory
(instruction)

E10 × ((E20/(E18 + E19 + E20 + E21 + E22))))

E66 — Remote Main Memory
(instruction)

(E33−E27) × ((E10/E57) × (E22/(E18+E19+E20+
E21 + E22)))

E67 — Total Instruction Ac-
cess Latency

E60 × E40 + E62 × E41 + E64 × E42 + E65 × E43 +
E66 × E44

E68 CDCacheAcc Data Access E27 + E34
E69 CMP Branch Mispredition

Penalty
E3 × E45

E70 CICacheMiss Instruction Penalty E33 − E27 − E69
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Table A.4.: Lists of CPU Counters to Measure and Preprocess of Skylake Processor
No. Counter Name

F1 INST_RETIRED.ANY
F2 CPU_CLK_UNHALTED.THREAD
F3 BR_MISP_RETIRED.ALL_BRANCHES
F4 L2_RQSTS.CODE_RD_HIT
F5 L2_RQSTS.CODE_RD_MISS
F6 MEM_INST_RETIRED.ALL_LOADS_PS
F7 MEM_LOAD_RETIRED.FB_HIT_PS
F8 MEM_LOAD_RETIRED.L1_HIT_PS
F9 MEM_LOAD_RETIRED.L1_MISS_PS
F10 MEM_LOAD_RETIRED.L2_HIT_PS
F11 MEM_LOAD_RETIRED.L2_MISS_PS
F12 MEM_LOAD_RETIRED.L3_HIT_PS
F13 MEM_LOAD_RETIRED.L3_MISS_PS
F14 OFFCORE_RESPONSE:request=DEMAND_CODE_RD:response

=L3_MISS_LOCAL_DRAM.ANY_SNOOP
F15 UOPS_EXECUTED.STALL_CYCLES

Table A.5.: Lists of Constants of DB Server with Skylake Processor
No. Symbol Events Value

F16 − CPU frequency [GHz] (Xeon E3–1250v5) 3.4
F17 LL1 L1I Latency [cycle] 4
F18 LL1 L1D Latency [cycle] 4
F19 LL2 L2 Latency [cycle] 12
F20 LLLLC Local LLC Latency [cycle] 42
F21 LRLLC Remote LLC Latency [cycle] —
F22 LLMM Local Main Memory Latency [cycle] F21 + 51 × F19
F23 — Remote Main Memory Latency [cycle] —
F24 LMP Branchmiss prediction cycle 16.5
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Table A.6.: Lists of Intermediate Variable of Skylake Processor
No. Symbol Events Calculation Formula for Preprocessing

F25 ILoad LOAD instruction F6
F26 ML1D L1D Hit (data) F25 × (F8/(F7 + F8 + F9))
F27 — L1D Miss (data) F25 × (F9/(F7 + F8 + F9))
F28 ML2D L2 Hit (data) F27 × (F10/(F10 + F11))
F29 — L2 Miss (data) F27 − F28
F30 MLLLCD LLC Hit (data) F29 × (F12/(F12 × F13))
F31 — LLC Miss (data) F29 − F30
F32 MRLLCD Remote LLC Hit

(data)
—

F33 MLMMD Local Main Memory
(data)

F31

F34 — Remote Main Memory
(data)

—

F35 — Total Data Access La-
tency

F26 × F18 + F28 × F19 + F30 × F20 + F33 × F22

F36 I Instruction F1 + F3
F37 ML1I L1I Hit (instruction) F36 − F4 − F5
F38 — L1I Miss (instruction) F36 − F37
F39 ML2I L2 Hit (instruction) F38 × (F4/(F4 + F5))
F40 — L2 Miiss (instruction) F38 − F39
F41 MLLLCI Local LLC Hit (in-

struction)
F40 − F14

F42 — Local LLC Miss (in-
struction)

F44

F43 MRLLCD Remote LLC Hit (in-
struction)

—

F44 MLMMD Local Main Memory
(instruction)

F14

F45 — Remote Main Memory
(instruction)

—

F46 — Total Instruction Ac-
cess Latency

F39 × F19 + F41 × F20 + F44 × F22

F47 CDCacheAcc Data Access F2 − F15
F48 CMP Branch Mispredition

Penalty
F3 × F24

F49 CICacheMiss Instruction Penalty F15 − F48
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