2,115 research outputs found

    VOCAL SEGMENT CLASSIFICATION IN POPULAR MUSIC

    Get PDF
    This paper explores the vocal and non-vocal music classification problem within popular songs. A newly built labeled database covering 147 popular songs is announced. It is designed for classifying signals from 1sec time windows. Features are selected for this particular task, in order to capture both the temporal correlations and the dependencies among the feature dimensions. We systematically study the performance of a set of classifiers, including linear regression, generalized linear model, Gaussian mixture model, reduced kernel orthonormalized partial least squares and K-means on cross-validated training and test setup. The database is divided in two different ways: with/without artist overlap between training and test sets, so as to study the so called ‘artist effect’. The performance and results are analyzed in depth: from error rates to sample-to-sample error correlation. A voting scheme is proposed to enhance the performance under certain conditions

    Short user-generated videos classification using accompanied audio categories

    Get PDF
    This paper investigates the classification of short user-generated videos (UGVs) using the accompanied audio data since short UGVs accounts for a great proportion of the Internet UGVs and many short UGVs are accompanied by singlecategory soundtracks. We define seven types of UGVs corresponding to seven audio categories respectively. We also investigate three modeling approaches for audio feature representation, namely, single Gaussian (1G), Gaussian mixture (GMM) and Bag-of-Audio-Word (BoAW) models. Then using Support Vector Machine (SVM) with three different distance measurements corresponding to three feature representations, classifiers are trained to categorize the UGVs. The accompanying evaluation results show that these approaches are effective for categorizing the short UGVs based on their audio track. Experimental results show that a GMM representation with approximated Bhattacharyya distance (ABD) measurement produces the best performance, and BoAW representation with chi-square kernel also reports comparable results

    Automatic chord transcription from audio using computational models of musical context

    Get PDF
    PhDThis thesis is concerned with the automatic transcription of chords from audio, with an emphasis on modern popular music. Musical context such as the key and the structural segmentation aid the interpretation of chords in human beings. In this thesis we propose computational models that integrate such musical context into the automatic chord estimation process. We present a novel dynamic Bayesian network (DBN) which integrates models of metric position, key, chord, bass note and two beat-synchronous audio features (bass and treble chroma) into a single high-level musical context model. We simultaneously infer the most probable sequence of metric positions, keys, chords and bass notes via Viterbi inference. Several experiments with real world data show that adding context parameters results in a significant increase in chord recognition accuracy and faithfulness of chord segmentation. The proposed, most complex method transcribes chords with a state-of-the-art accuracy of 73% on the song collection used for the 2009 MIREX Chord Detection tasks. This method is used as a baseline method for two further enhancements. Firstly, we aim to improve chord confusion behaviour by modifying the audio front end processing. We compare the effect of learning chord profiles as Gaussian mixtures to the effect of using chromagrams generated from an approximate pitch transcription method. We show that using chromagrams from approximate transcription results in the most substantial increase in accuracy. The best method achieves 79% accuracy and significantly outperforms the state of the art. Secondly, we propose a method by which chromagram information is shared between repeated structural segments (such as verses) in a song. This can be done fully automatically using a novel structural segmentation algorithm tailored to this task. We show that the technique leads to a significant increase in accuracy and readability. The segmentation algorithm itself also obtains state-of-the-art results. A method that combines both of the above enhancements reaches an accuracy of 81%, a statistically significant improvement over the best result (74%) in the 2009 MIREX Chord Detection tasks.Engineering and Physical Research Council U

    Temporal Feature Integration for Music Organisation

    Get PDF

    Music Genre Classification Systems - A Computational Approach

    Get PDF

    Adaptive speaker diarization of broadcast news based on factor analysis

    Get PDF
    The introduction of factor analysis techniques in a speaker diarization system enhances its performance by facilitating the use of speaker specific information, by improving the suppression of nuisance factors such as phonetic content, and by facilitating various forms of adaptation. This paper describes a state-of-the-art iVector-based diarization system which employs factor analysis and adaptation on all levels. The diarization modules relevant for this work are: the speaker segmentation which searches for speaker boundaries and the speaker clustering which aims at grouping speech segments of the same speaker. The speaker segmentation relies on speaker factors which are extracted on a frame-by-frame basis using eigenvoices. We incorporate soft voice activity detection in this extraction process as the speaker change detection should be based on speaker information only and we want it to disregard the non-speech frames by applying speech posteriors. Potential speaker boundaries are inserted at positions where rapid changes in speaker factors are witnessed. By employing Mahalanobis distances, the effect of the phonetic content can be further reduced, which results in more accurate speaker boundaries. This iVector-based segmentation significantly outperforms more common segmentation methods based on the Bayesian Information Criterion (BIC) or speech activity marks. The speaker clustering employs two-step Agglomerative Hierarchical Clustering (AHC): after initial BIC clustering, the second cluster stage is realized by either an iVector Probabilistic Linear Discriminant Analysis (PLDA) system or Cosine Distance Scoring (CDS) of extracted speaker factors. The segmentation system is made adaptive on a file-by-file basis by iterating the diarization process using eigenvoice matrices adapted (unsupervised) on the output of the previous iteration. Assuming that for most use cases material similar to the recording in question is readily available, unsupervised domain adaptation of the speaker clustering is possible as well. We obtain this by expanding the eigenvoice matrix used during speaker factor extraction for the CDS clustering stage with a small set of new eigenvoices that, in combination with the initial generic eigenvoices, models the recurring speakers and acoustic conditions more accurately. Experiments on the COST278 multilingual broadcast news database show the generation of significantly more accurate speaker boundaries by using adaptive speaker segmentation which also results in more accurate clustering. The obtained speaker error rate (SER) can be further reduced by another 13% relative to 7.4% via domain adaptation of the CDS clustering. (C) 2017 Elsevier Ltd. All rights reserved
    corecore