17,043 research outputs found

    Permutation Decoding and the Stopping Redundancy Hierarchy of Cyclic and Extended Cyclic Codes

    Full text link
    We introduce the notion of the stopping redundancy hierarchy of a linear block code as a measure of the trade-off between performance and complexity of iterative decoding for the binary erasure channel. We derive lower and upper bounds for the stopping redundancy hierarchy via Lovasz's Local Lemma and Bonferroni-type inequalities, and specialize them for codes with cyclic parity-check matrices. Based on the observed properties of parity-check matrices with good stopping redundancy characteristics, we develop a novel decoding technique, termed automorphism group decoding, that combines iterative message passing and permutation decoding. We also present bounds on the smallest number of permutations of an automorphism group decoder needed to correct any set of erasures up to a prescribed size. Simulation results demonstrate that for a large number of algebraic codes, the performance of the new decoding method is close to that of maximum likelihood decoding.Comment: 40 pages, 6 figures, 10 tables, submitted to IEEE Transactions on Information Theor

    Circulant Arrays on Cyclic Subgroups of Finite Fields: Rank Analysis and Construction of Quasi-Cyclic LDPC Codes

    Full text link
    This paper consists of three parts. The first part presents a large class of new binary quasi-cyclic (QC)-LDPC codes with girth of at least 6 whose parity-check matrices are constructed based on cyclic subgroups of finite fields. Experimental results show that the codes constructed perform well over the binary-input AWGN channel with iterative decoding using the sum-product algorithm (SPA). The second part analyzes the ranks of the parity-check matrices of codes constructed based on finite fields with characteristic of 2 and gives combinatorial expressions for these ranks. The third part identifies a subclass of constructed QC-LDPC codes that have large minimum distances. Decoding of codes in this subclass with the SPA converges very fast.Comment: 26 pages, 6 figures, submitted to IEEE Transaction on Communication

    On the Decoding of Polar Codes on Permuted Factor Graphs

    Full text link
    Polar codes are a channel coding scheme for the next generation of wireless communications standard (5G). The belief propagation (BP) decoder allows for parallel decoding of polar codes, making it suitable for high throughput applications. However, the error-correction performance of polar codes under BP decoding is far from the requirements of 5G. It has been shown that the error-correction performance of BP can be improved if the decoding is performed on multiple permuted factor graphs of polar codes. However, a different BP decoding scheduling is required for each factor graph permutation which results in the design of a different decoder for each permutation. Moreover, the selection of the different factor graph permutations is at random, which prevents the decoder to achieve a desirable error-correction performance with a small number of permutations. In this paper, we first show that the permutations on the factor graph can be mapped into suitable permutations on the codeword positions. As a result, we can make use of a single decoder for all the permutations. In addition, we introduce a method to construct a set of predetermined permutations which can provide the correct codeword if the decoding fails on the original permutation. We show that for the 5G polar code of length 10241024, the error-correction performance of the proposed decoder is more than 0.250.25 dB better than that of the BP decoder with the same number of random permutations at the frame error rate of 10−410^{-4}

    Constructive spherical codes on layers of flat tori

    Full text link
    A new class of spherical codes is constructed by selecting a finite subset of flat tori from a foliation of the unit sphere S^{2L-1} of R^{2L} and designing a structured codebook on each torus layer. The resulting spherical code can be the image of a lattice restricted to a specific hyperbox in R^L in each layer. Group structure and homogeneity, useful for efficient storage and decoding, are inherited from the underlying lattice codebook. A systematic method for constructing such codes are presented and, as an example, the Leech lattice is used to construct a spherical code in R^{48}. Upper and lower bounds on the performance, the asymptotic packing density and a method for decoding are derived.Comment: 9 pages, 5 figures, submitted to IEEE Transactions on Information Theor
    • …
    corecore