1,230 research outputs found

    Top-k Multiclass SVM

    Full text link
    Class ambiguity is typical in image classification problems with a large number of classes. When classes are difficult to discriminate, it makes sense to allow k guesses and evaluate classifiers based on the top-k error instead of the standard zero-one loss. We propose top-k multiclass SVM as a direct method to optimize for top-k performance. Our generalization of the well-known multiclass SVM is based on a tight convex upper bound of the top-k error. We propose a fast optimization scheme based on an efficient projection onto the top-k simplex, which is of its own interest. Experiments on five datasets show consistent improvements in top-k accuracy compared to various baselines.Comment: NIPS 201

    Constrained mutual convex cone method for image set based recognition

    Get PDF
    In this paper, we propose convex cone-based frameworks for image-set classification. Image-set classification aims to classify a set of images, usually obtained from video frames or multi-view cameras, into a target object. To accurately and stably classify a set, it is essential to accurately represent structural information of the set. There are various image features, such as histogram-based features and convolutional neural network features. We should note that most of them have non-negativity and thus can be effectively represented by a convex cone. This leads us to introduce the convex cone representation to image-set classification. To establish a convex cone-based framework, we mathematically define multiple angles between two convex cones, and then use the angles to define the geometric similarity between them. Moreover, to enhance the framework, we introduce two discriminant spaces. We first propose a discriminant space that maximizes gaps between cones and minimizes the within-class variance. We then extend it to a weighted discriminant space by introducing weights on the gaps to deal with complicated data distribution. In addition, to reduce the computational cost of the proposed methods, we develop a novel strategy for fast implementation. The effectiveness of the proposed methods is demonstrated experimentally by using five databases

    Multi-task CNN Model for Attribute Prediction

    Full text link
    This paper proposes a joint multi-task learning algorithm to better predict attributes in images using deep convolutional neural networks (CNN). We consider learning binary semantic attributes through a multi-task CNN model, where each CNN will predict one binary attribute. The multi-task learning allows CNN models to simultaneously share visual knowledge among different attribute categories. Each CNN will generate attribute-specific feature representations, and then we apply multi-task learning on the features to predict their attributes. In our multi-task framework, we propose a method to decompose the overall model's parameters into a latent task matrix and combination matrix. Furthermore, under-sampled classifiers can leverage shared statistics from other classifiers to improve their performance. Natural grouping of attributes is applied such that attributes in the same group are encouraged to share more knowledge. Meanwhile, attributes in different groups will generally compete with each other, and consequently share less knowledge. We show the effectiveness of our method on two popular attribute datasets.Comment: 11 pages, 3 figures, ieee transaction pape

    Deep Dictionary Learning: A PARametric NETwork Approach

    Full text link
    Deep dictionary learning seeks multiple dictionaries at different image scales to capture complementary coherent characteristics. We propose a method for learning a hierarchy of synthesis dictionaries with an image classification goal. The dictionaries and classification parameters are trained by a classification objective, and the sparse features are extracted by reducing a reconstruction loss in each layer. The reconstruction objectives in some sense regularize the classification problem and inject source signal information in the extracted features. The performance of the proposed hierarchical method increases by adding more layers, which consequently makes this model easier to tune and adapt. The proposed algorithm furthermore, shows remarkably lower fooling rate in presence of adversarial perturbation. The validation of the proposed approach is based on its classification performance using four benchmark datasets and is compared to a CNN of similar size
    • …
    corecore