7,130 research outputs found

    Multiple Target, Multiple Type Filtering in the RFS Framework

    Full text link
    A Multiple Target, Multiple Type Filtering (MTMTF) algorithm is developed using Random Finite Set (RFS) theory. First, we extend the standard Probability Hypothesis Density (PHD) filter for multiple types of targets, each with distinct detection properties, to develop a multiple target, multiple type filtering, N-type PHD filter, where N2N\geq2, for handling confusions among target types. In this approach, we assume that there will be confusions between detections, i.e. clutter arises not just from background false positives, but also from target confusions. Then, under the assumptions of Gaussianity and linearity, we extend the Gaussian mixture (GM) implementation of the standard PHD filter for the proposed N-type PHD filter termed the N-type GM-PHD filter. Furthermore, we analyze the results from simulations to track sixteen targets of four different types using a four-type (quad) GM-PHD filter as a typical example and compare it with four independent GM-PHD filters using the Optimal Subpattern Assignment (OSPA) metric. This shows the improved performance of our strategy that accounts for target confusions by efficiently discriminating them

    Poisson multi-Bernoulli conjugate prior for multiple extended object filtering

    Full text link
    This paper presents a Poisson multi-Bernoulli mixture (PMBM) conjugate prior for multiple extended object filtering. A Poisson point process is used to describe the existence of yet undetected targets, while a multi-Bernoulli mixture describes the distribution of the targets that have been detected. The prediction and update equations are presented for the standard transition density and measurement likelihood. Both the prediction and the update preserve the PMBM form of the density, and in this sense the PMBM density is a conjugate prior. However, the unknown data associations lead to an intractably large number of terms in the PMBM density, and approximations are necessary for tractability. A gamma Gaussian inverse Wishart implementation is presented, along with methods to handle the data association problem. A simulation study shows that the extended target PMBM filter performs well in comparison to the extended target d-GLMB and LMB filters. An experiment with Lidar data illustrates the benefit of tracking both detected and undetected targets

    A particle filtering approach for joint detection/estimation of multipath effects on GPS measurements

    Get PDF
    Multipath propagation causes major impairments to Global Positioning System (GPS) based navigation. Multipath results in biased GPS measurements, hence inaccurate position estimates. In this work, multipath effects are considered as abrupt changes affecting the navigation system. A multiple model formulation is proposed whereby the changes are represented by a discrete valued process. The detection of the errors induced by multipath is handled by a Rao-Blackwellized particle filter (RBPF). The RBPF estimates the indicator process jointly with the navigation states and multipath biases. The interest of this approach is its ability to integrate a priori constraints about the propagation environment. The detection is improved by using information from near future GPS measurements at the particle filter (PF) sampling step. A computationally modest delayed sampling is developed, which is based on a minimal duration assumption for multipath effects. Finally, the standard PF resampling stage is modified to include an hypothesis test based decision step

    Estimation and control of multi-object systems with high-fidenlity sensor models: A labelled random finite set approach

    Get PDF
    Principled and novel multi-object tracking algorithms are proposed, that have the ability to optimally process realistic sensor data, by accommodating complex observational phenomena such as merged measurements and extended targets. Additionally, a sensor control scheme based on a tractable, information theoretic objective is proposed, the goal of which is to optimise tracking performance in multi-object scenarios. The concept of labelled random finite sets is adopted in the development of these new techniques
    corecore