5 research outputs found

    Vastasyntyneen ja imeväisikäisen vauvan unenaikaisen hengitys- ja syketaajuuden tarkkailu puettavalla liikeanturilla

    Get PDF
    Vastasyntyneelle ja imeväisikäiselle nukkuminen on elintärkeä toiminto, ja se on välttämätöntä aivoverkkojen kehitykselle. Tiedetään, että huono unenlaatu aiheuttaa pitkällä tähtäimellä muun muassa kasvun hidastumista ja käyttäytymisongelmia. Imeväisikäisillä melko yleisesti esiintyvät unihäiriöt, kuten yöheräily ja nukahtamisvaikeudet aiheuttavat merkittävää rasitusta ja huolta vanhemmille. Objektiivisen mittausmenetelmän puutteen vuoksi ei ole kuitenkaan voitu selvittää imeväisikäisen unen kehittymistä kotiolosuhteissa. Tässä tutkimuksessa tarkasteltiin puettaviin pöksyihin kiinnitetyn liikeanturin ja EKG-kangaselektrodien soveltuvuutta vastasyntyneiden ja imeväisikäisten vauvojen unenaikaisen hengityksen ja sykkeen tarkkailuun. Tutkimuksen ensimmäisessä vaiheessa päiväaikaisten uni-EEG-tutkimuksien yhteydessä verrattiin liikeanturin mittauskanavien rekisteröimiä mittauskäyriä pietsoanturilla varustettuun hengitysvyöhön. Saatujen tutkimustuloksien perusteella liikeanturin gyroskooppi osoittautui tarkimmaksi hengitystaajuutta mittaavaksi parametriksi, kun taas anturin välittämä EKG-signaali oli tulkintakelpoisin osin luotettavaa. Tutkimuksen toisessa vaiheessa vauvaperheille annettiin unipöksyt ja älypuhelimet kotiin arvioidaksemme yön yli kestävää kotikäyttöä. Tutkimustulokset viittaavat siihen, että eri unitilojen tunnistaminen hengityksen vaihtelusta olisi todennäköisesti mahdollista gyroskooppisignaalista. Vanhemmilta saadun palautteen perusteella unipöksyjä pidettiin käytännöllisinä ja helppokäyttöisinä. Tulevissa tutkimuksissa tulisi keskittyä liikeanturin validointiin kliinisesti hyväksyttyjen mittausparametrien avulla, jotta algoritmeja voisi opettaa tunnistamaan eri uni-valve rytmejä automaattisesti. Näin puettava liikeanturi voisi tarjota tietoa vauvan luonnollisen unirakenteen kehittymisestä pitkällä aikavälillä. Lisäksi anturin kliininen validointi voisi mahdollistaa imeväisikäisten kardiorespiratoristen ongelmien ja liikehäiriöiden diagnostisen lisätyökalun kehittämisen.Sleep is one of the most vital functions of newborns and infants, and it is essential for neuronal network development. Therefore, long-term sleep disturbances have been associated with growth delays and behavioral disorders. Commonly reported infant sleep disturbances, such as night awakenings and difficulties falling asleep, cause distress to parents. Yet, the development of infant sleep in the home environment has not been fully elucidated due to lack of objective measurement parameters. In the current study, we assessed the feasibility of a motion sensor, attached to wearable pants, and ECG textile electrodes to monitor sleep-related respiration and heart rate of newborns and infants. First, we compared signals recorded by the motion sensor’s measurement channels to the standard respiratory piezo effort belt’s signal during daytime EEG recordings. According to our results, the motion sensor’s gyroscope proved to measure respiratory rate most accurately, while the ECG signal transmitted by the sensor was reliable in interpretable sections. We then provided wearable garments and smartphones to families with infants to assess overnight home-use. Our results indicate that different sleep states could likely be identified based on respiration fluctuation visible in the gyroscope’s signals. Moreover, the wearable system was considered practical and easy to use by the parents. Future studies should focus on validating the sensor with clinically approved measures, in order to train the algorithms to automatically identify different sleep-wake states. By doing so, the wearable sensor could provide information on natural infant sleep structure development over long time periods. Additionally, clinical validation of the sensor may result in the development of a companion diagnostic tool for infant cardiorespiratory and movement disorders

    Assessment of breathing parameters using an inertial measurement unit (IMU)-based system

    Get PDF
    Breathing frequency (f B ) is an important vital sign that—if appropriately monitored—may help to predict clinical adverse events. Inertial sensors open the door to the development of low-cost, wearable, and easy-to-use breathing-monitoring systems. The present paper proposes a new posture-independent processing algorithm for breath-by-breath extraction of breathing temporal parameters from chest-wall inclination change signals measured using inertial measurement units. An important step of the processing algorithm is dimension reduction (DR) that allows the extraction of a single respiratory signal starting from 4-component quaternion data. Three different DR methods are proposed and compared in terms of accuracy of breathing temporal parameter estimation, in a group of healthy subjects, considering different breathing patterns and different postures; optoelectronic plethysmography was used as reference system. In this study, we found that the method based on PCA-fusion of the four quaternion components provided the best f B estimation performance in terms of mean absolute errors (<2 breaths/min), correlation (r > 0.963) and Bland–Altman Analysis, outperforming the other two methods, based on the selection of a single quaternion component, identified on the basis of spectral analysis; particularly, in supine position, results provided by PCA-based method were even better than those obtained with the ideal quaternion component, determined a posteriori as the one providing the minimum estimation error. The proposed algorithm and system were able to successfully reconstruct the respiration-induced movement, and to accurately determine the respiratory rate in an automatic, position-independent manner

    A Medical Cloud-Based Platform for Respiration Rate Measurement and Hierarchical Classification of Breath Disorders

    No full text
    The measurement of human respiratory signals is crucial in cyberbiological systems. A disordered breathing pattern can be the first symptom of different physiological, mechanical, or psychological dysfunctions. Therefore, a real-time monitoring of the respiration patterns, as well as respiration rate is a critical need in medical applications. There are several methods for respiration rate measurement. However, despite their accuracy, these methods are expensive and could not be integrated in a body sensor network. In this work, we present a real-time cloud-based platform for both monitoring the respiration rate and breath pattern classification, remotely. The proposed system is designed particularly for patients with breathing problems (e.g., respiratory complications after surgery) or sleep disorders. Our system includes calibrated accelerometer sensor, Bluetooth Low Energy (BLE) and cloud-computing model. We also suggest a procedure to improve the accuracy of respiration rate for patients at rest positions. The overall error in the respiration rate calculation is obtained 0.53% considering SPR-BTA spirometer as the reference. Five types of respiration disorders, Bradapnea, Tachypnea, Cheyn-stokes, Kaussmal, and Biot’s breathing are classified based on hierarchical Support Vector Machine (SVM) with seven different features. We have evaluated the performance of the proposed classification while it is individualized to every subject (case 1) as well as considering all subjects (case 2). Since the selection of kernel function is a key factor to decide SVM’s performance, in this paper three different kernel functions are evaluated. The experiments are conducted with 11 subjects and the average accuracy of 94.52% for case 1 and the accuracy of 81.29% for case 2 are achieved based on Radial Basis Function (RBF). Finally, a performance evaluation has been done for normal and impaired subjects considering sensitivity, specificity and G-mean parameters of different kernel functions

    A novel acquisition platform for long-term breathing frequency monitoring based on inertial measurement units

    Full text link
    [EN] Continuous monitoring of breathing frequency (f(B)) could foster early prediction of adverse clinical effects and exacerbation of medical conditions. Current solutions are invasive or obtrusive and thus not suitable for prolonged monitoring outside the clinical setting. Previous studies demonstrated the feasibility of deriving f(B) by measuring inclination changes due to breathing using accelerometers or inertial measurement units (IMU). Nevertheless, few studies faced the problem of motion artifacts that limit the use of IMU-based systems for continuous monitoring. Moreover, few attempts have been made to move towards real portability and wearability of such devices. This paper proposes a wearable IMU-based device that communicates via Bluetooth with a smartphone, uploading data on a web server to allow remote monitoring. Two IMU units are placed on thorax and abdomen to record breathing-related movements, while a third IMU unit records body/trunk motion and is used as reference. The performance of the proposed system was evaluated in terms of long-acquisition-platform reliability showing good performances in terms of duration and data loss amount. The device was preliminarily tested in terms of accuracy in breathing temporal parameter measurement, in static condition, during postural changes, and during slight indoor activities showing favorable comparison against the reference methods (mean error breathing frequency < 5%). Graphical abstract Proof of concept of a wearable, wireless, modular respiratory Holter based on inertial measurement units (IMUS) for the continuous breathing pattern monitoring through the detection of chest wall breathing-related movements.The authors thank "Fondazione per la Ricerca Scientifica Termale grants" for the financial support and all the participants. A special thanks to Davide Redaelli for the support in the realization of the housing boxes, from CAD modeling to 3D printing. We also want to thank Prof.ssa Galli and Dr. Nicola Cau, of the "Posture and Movement Analysis Laboratory "Luigi Divieti" of the Department of Bioengineering of the Politecnico di Milano, for their willingness and kindness to lend us the K5 Cosmed system and assist us during the acquisitionsCesareo, A.; Biffi, E.; Cuesta Frau, D.; D'angelo, MG.; Aliverti, A. (2020). A novel acquisition platform for long-term breathing frequency monitoring based on inertial measurement units. Medical & Biological Engineering & Computing. 58:785-804. https://doi.org/10.1007/s11517-020-02125-9S78580458Aliverti A, Pedotti A (2002) Opto-electronic Plethysmography. In: Aliverti A, Brusasco V, Macklem PT, Pedotti A (eds) Mechanics of breathing. Springer, Milano, pp 47–59. https://doi.org/10.1007/978-88-470-2916-3_5Aliverti A, Dellaca R, Pelosi P, Chiumello D, Pedotti A, Gattinoni L (2000) Optoelectronic plethysmography in intensive care patients. Am J Respir Crit Care Med 161:1546–1552. https://doi.org/10.1164/ajrccm.161.5.9903024Aliverti A, Dellacà R, Pelosi P, Chiumello D, Gattinoni L, Pedotti A (2001) Compartmental analysis of breathing in the supine and prone positions by optoelectronic plethysmography. Ann Biomed Eng 29:60–70. https://doi.org/10.1114/1.1332084Aliverti A, Stevenson N, Dellaca R, Mauro AL, Pedotti A, Calverley P (2004) Regional chest wall volumes during exercise in chronic obstructive pulmonary disease. Thorax 59:210–216. https://doi.org/10.1136/thorax.2003.011494Aliverti A, Uva B, Laviola M, Bovio D, Mauro AL, Tarperi C, Colombo E, Loomas B, Pedotti A, Similowski T (2010) Concomitant ventilatory and circulatory functions of the diaphragm and abdominal muscles. J Appl Physiol 109:1432–1440. https://doi.org/10.1152/japplphysiol.00576.2010Altman DG, Bland JM (1983) Measurement in medicine: the analysis of method comparison studies. Statistician:307–317Bates A, Ling MJ, Mann J, DK Arvind 2010 Respiratory rate and flow waveform estimation from tri-axial accelerometer data. 2010 International Conference on Body Sensor Networks. IEEE:144–150. DOI: https://doi.org/10.1109/BSN.2010.50Bergese SD, Mestek ML, Kelley SD, McIntyre R Jr, Uribe AA, Sethi R, Watson JN, Addison PS (2017) Multicenter study validating accuracy of a continuous respiratory rate measurement derived from pulse oximetry: a comparison with capnography. Anesth Analg 124:1153–1159. https://doi.org/10.1213/ANE.0000000000001852Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307–310Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160. https://doi.org/10.1177/096228029900800204Breteler MJ, Huizinga E, van Loon K, Leenen LP, Dohmen DA, Kalkman CJ, Blokhuis TJ (2018) Reliability of wireless monitoring using a wearable patch sensor in high-risk surgical patients at a step-down unit in the Netherlands: a clinical validation study. BMJ Open 8:e020162. https://doi.org/10.1136/bmjopen-2017-020162Buch P, Friberg J, Scharling H, Lange P, Prescott E (2003) Reduced lung function and risk of atrial fibrillation in the Copenhagen City Heart Study. Eur Respir J 21:1012–1016. https://doi.org/10.1183/09031936.03.00051502Castagna J, Weil MH, Shubin H (1974) Factors determining survival in patients with cardiac arrest. Chest 65:527–529. https://doi.org/10.1378/chest.65.5.527Cesareo A, Previtali Y, Biffi E, Aliverti A (2019) Assessment of breathing parameters using an inertial measurement unit (IMU)-based system. Sensors 19:88. https://doi.org/10.3390/s19010088Charlton PH, Bonnici T, Tarassenko L, Clifton DA, Beale R, Watkinson PJ (2016) An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram. Physiol Meas 37:610–626. https://doi.org/10.1088/0967-3334/37/4/610Craig JJ (2009) Introduction to robotics: mechanics and control, 3/E. Pearson education international, 2005Cretikos MA, Bellomo R, Hillman K, Chen J, Finfer S, Flabouris A (2008) Respiratory rate: the neglected vital sign. Med J Aust 188:657. https://doi.org/10.5694/j.1326-5377.2008.tb01825.xDingli K, Coleman EL, Vennelle M, Finch SP, Wraith PK, Mackay TW, Douglas NJ (2003) Evaluation of a portable device for diagnosing the sleep apnoea/hypopnoea syndrome. Eur Respir J 21:253–259. https://doi.org/10.1183/09031936.03.00298103Fekr AR, Janidarmian M, Radecka K, Zilic Z (2014) A medical cloud-based platform for respiration rate measurement and hierarchical classification of breath disorders. Sensors 14:11204–11224. https://doi.org/10.3390/s140611204Fekr AR, Radecka K, Zilic Z (2014) Design of an E-health respiration and body posture monitoring system and its application for rib cage and abdomen synchrony analysis. IEEE Int Conf Bioinforma Bioeng:141–148. https://doi.org/10.1109/BIBE.2014.67Fieselmann JF, Hendryx MS, Helms CM, Wakefield DS (1993) Respiratory rate predicts cardiopulmonary arrest for internal medicine inpatients. J Gen Intern Med 8:354–360. https://doi.org/10.1007/bf02600071Gaidhani A, Moon KS, Ozturk Y, Lee SQ, Youm W (2017) Extraction and analysis of respiratory motion using wearable inertial sensor system during trunk motion. Sensors 17:2932. https://doi.org/10.3390/s17122932Gollee H, Chen W (2007) Real-time detection of respiratory activity using an inertial measurement unit. Conf Proc IEEE Eng Med Biol Soc 2007:2230–2233. https://doi.org/10.1109/IEMBS.2007.4352768Hung DP, Bonnet S, Guillemaud R, Castelli E, Pham Thi NY (2008, 2008) Estimation of respiratory waveform using an accelerometer. Conf Proc IEEE Eng Med Biol Soc:1493–1496. https://doi.org/10.1109/IEMBS.2008.4650316Iandelli I, Aliverti A, Kayser B, Dellacà R, Cala SJ, Duranti R, Kelly S, Scano G, Sliwinski P, Yan S (2002) Determinants of exercise performance in normal men with externally imposed expiratory flow limitation. J Appl Physiol 92:1943–1952. https://doi.org/10.1152/japplphysiol.00393.2000Jin A, Yin B, Morren G, Duric H, Aarts RM (2009) Performance evaluation of a tri-axial accelerometry-based respiration monitoring for ambient assisted living. Conf Proc IEEE Eng Med Biol Soc 2009:5677–5680. https://doi.org/10.1109/IEMBS.2009.5333116Kenyon C, Cala S, Yan S, Aliverti A, Scano G, Duranti R, Pedotti A, Macklem PT (1997) Rib cage mechanics during quiet breathing and exercise in humans. J Appl Physiol 83:1242–1255. https://doi.org/10.1152/jappl.1997.83.4.1242Konno K, Mead J (1967) Measurement of the separate volume changes of rib cage and abdomen during breathing. J Appl Physiol 22:407–422. https://doi.org/10.1152/jappl.1967.22.3.407Kontaxis S, Lazaro J, Corino VD, Sandberg F, Bailón R, Laguna P, Sörnmo L (2019, 2019) ECG-derived respiratory rate in atrial fibrillation. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2019.2923587Kuipers JB (1999) Quaternions and rotation sequences. Princeton university press PrincetonLapi S, Lavorini F, Borgioli G, Calzolai M, Masotti L, Pistolesi M, Fontana GA (2014) Respiratory rate assessment using a dual-accelerometer device. Respir Physiol Neurobiol 191:60–66. https://doi.org/10.1016/j.resp.2013.11.003Layton AM, Moran SL, Garber CE, Armstrong HF, Basner RC, Thomashow BM, Bartels MN (2013) Optoelectronic plethysmography compared to spirometry during maximal exercise. Respir Physiol Neurobiol 185:362–368. https://doi.org/10.1016/j.resp.2012.09.004Liu G, Guo Y, Zhu Q, Huang B, Wang L (2011) Estimation of respiration rate from three-dimensional acceleration data based on body sensor network. Telemed J E Health 17:705–711. https://doi.org/10.1089/tmj.2011.0022Madgwick SO, Harrison AJ, Vaidyanathan A (2011) Estimation of IMU and MARG orientation using a gradient descent algorithm. IEEE Int Conf Rehabil Robot 2011:1–7. https://doi.org/10.1109/ICORR.2011.5975346Mann J, Rabinovich R, Bates A, Giavedoni S, MacNee W, Arvind DK (2011) Simultaneous activity and respiratory monitoring using an accelerometer. Int Conf Body Sens Netw 2011:139–143. https://doi.org/10.1109/BSN.2011.26Marins JL, Yun X, Bachmann ER,. McGhee RB, Zyda MJ (2001) An extended Kalman filter for quaternion-based orientation estimation using MARG sensors. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium. 2001: 2003-2011. DOI: https://doi.org/10.1109/IROS.2001.976367McCaughey E, McLachlan A, Gollee H (2014) Non-intrusive real-time breathing pattern detection and classification for automatic abdominal functional electrical stimulation. Med Eng Phys 36:1057–1061. https://doi.org/10.1016/j.medengphy.2014.04.005Moody GB, Mark RG, Bump MA, Weinstein JS, Berman AD, Mietus JE, Goldberger AL (1986) Clinical validation of the ECG-derived respiration (EDR) technique. Comput Cardiol 13:507–510Kundan Nepal, Eric Biegeleisen and Ning T 2002 Apnea detection and respiration rate estimation through parametric modelling. Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference (IEEE Cat. No.02CH37342), 2002: 277-278.DOI: https://doi.org/10.1109/NEBC.2002.999573Priori R, Aliverti A, Albuquerque AL, Quaranta M, Albert P, Calverley PM (2013) The effect of posture on asynchronous chest wall movement in COPD. J Appl Physiol 114:1066–1075. https://doi.org/10.1152/japplphysiol.00414.2012Reinvuo T, Hannula M, Sorvoja H, Alasaarela E, Myllyla R (2006) Measurement of respiratory rate with high-resolution accelerometer and EMFit pressure sensor proceedings of the 2006 IEEE Sensors Applications Symposium, 2006: 192–195. DOI: https://doi.org/10.1109/SAS.2006.1634270Selvaraj N (2014) Long-term remote monitoring of vital signs using a wireless patch sensor. IEEE Healthc Innov Conf (HIC) 2014:83–86. https://doi.org/10.1109/HIC.2014.7038880Staats BA, Bonekat HW, Harris CD, Offord KP (1984) Chest wall motion in sleep apnea. Am Rev Respir Dis 130:59–63. https://doi.org/10.1164/arrd.1984.130.1.59Stevenson IH, Teichtahl H, Cunnington D, Ciavarella S, Gordon I, Kalman JM (2008) Prevalence of sleep disordered breathing in paroxysmal and persistent atrial fibrillation patients with normal left ventricular function. Eur Heart J 29:1662–1669. https://doi.org/10.1093/eurheartj/ehn214Storck K, Karlsson M, Ask P, Loyd D (1996) Heat transfer evaluation of the nasal thermistor technique. IEEE Trans Biomed Eng 43:1187–1191. https://doi.org/10.1109/10.544342Subbe C, Davies R, Williams E, Rutherford P, Gemmell L (2003) Effect of introducing the modified early warning score on clinical outcomes, cardio-pulmonary arrests and intensive care utilisation in acute medical admissions. Anaesthesia 58:797–802. https://doi.org/10.1046/j.1365-2044.2003.03258.xTerzano C, Romani S, Conti V, Paone G, Oriolo F, Vitarelli A (2014) Atrial fibrillation in the acute, hypercapnic exacerbations of COPD. Eur Rev Med Pharmacol Sci 18:2908–2917Tobin MJ, Yang K (1990) Weaning from mechanical ventilation. Crit Care Clin 6:725–747Torres A, Fiz JA, Galdiz B, Gea J, Morera J, Jané R (2004) Assessment of respiratory muscle effort studying diaphragm movement registered with surface sensors. Animal model (dogs). Conf Proc IEEE Eng Med Biol Soc 2004:3917–3920. https://doi.org/10.1109/IEMBS.2004.1404095van Loon K, Peelen LM, van de Vlasakker EC, Kalkman CJ, van Wolfswinkel L, van Zaane B (2018) Accuracy of remote continuous respiratory rate monitoring technologies intended for low care clinical settings: a prospective observational study. Can J Anaesth 65:1324–1332. https://doi.org/10.1007/s12630-018-1214-zVieira DS, Hoffman M, Pereira DA, Britto RR, Parreira VF (2013) Optoelectronic plethysmography: intra-rater and inter-rater reliability in healthy subjects. Respir Physiol Neurobiol 189:473–476. https://doi.org/10.1016/j.resp.2013.08.023Werthammer J, Krasner J, DiBenedetto J, Stark AR (1983) Apnea monitoring by acoustic detection of airflow. Pediatrics 71:53–55Yadollahi A, Moussavi ZM (2006) A robust method for estimating respiratory flow using tracheal sounds entropy. IEEE Trans Biomed Eng 53:662–668. https://doi.org/10.1109/TBME.2006.870231Yoon J, Noh Y, Kwon Y, Kim W, Yoon H (2014) Improvement of dynamic respiration monitoring through sensor fusion of accelerometer and gyro-sensor. J Electr Eng Technol 9:334–343. https://doi.org/10.5370/JEET.2014.9.1.33
    corecore