30,731 research outputs found

    Two-Bit Gates are Universal for Quantum Computation

    Full text link
    A proof is given, which relies on the commutator algebra of the unitary Lie groups, that quantum gates operating on just two bits at a time are sufficient to construct a general quantum circuit. The best previous result had shown the universality of three-bit gates, by analogy to the universality of the Toffoli three-bit gate of classical reversible computing. Two-bit quantum gates may be implemented by magnetic resonance operations applied to a pair of electronic or nuclear spins. A ``gearbox quantum computer'' proposed here, based on the principles of atomic force microscopy, would permit the operation of such two-bit gates in a physical system with very long phase breaking (i.e., quantum phase coherence) times. Simpler versions of the gearbox computer could be used to do experiments on Einstein-Podolsky-Rosen states and related entangled quantum states.Comment: 21 pages, REVTeX 3.0, two .ps figures available from author upon reques

    Computable functions, quantum measurements, and quantum dynamics

    Get PDF
    We construct quantum mechanical observables and unitary operators which, if implemented in physical systems as measurements and dynamical evolutions, would contradict the Church-Turing thesis which lies at the foundation of computer science. We conclude that either the Church-Turing thesis needs revision, or that only restricted classes of observables may be realized, in principle, as measurements, and that only restricted classes of unitary operators may be realized, in principle, as dynamics.Comment: 4 pages, REVTE

    Some Thoughts on Hypercomputation

    Full text link
    Hypercomputation is a relatively new branch of computer science that emerged from the idea that the Church--Turing Thesis, which is supposed to describe what is computable and what is noncomputable, cannot possible be true. Because of its apparent validity, the Church--Turing Thesis has been used to investigate the possible limits of intelligence of any imaginable life form, and, consequently, the limits of information processing, since living beings are, among others, information processors. However, in the light of hypercomputation, which seems to be feasibly in our universe, one cannot impose arbitrary limits to what intelligence can achieve unless there are specific physical laws that prohibit the realization of something. In addition, hypercomputation allows us to ponder about aspects of communication between intelligent beings that have not been considered befor

    Kirchhoff's Rule for Quantum Wires. II: The Inverse Problem with Possible Applications to Quantum Computers

    Full text link
    In this article we continue our investigations of one particle quantum scattering theory for Schroedinger operators on a set of connected (idealized one-dimensional) wires forming a graph with an arbitrary number of open ends. The Hamiltonian is given as minus the Laplace operator with suitable linear boundary conditions at the vertices (the local Kirchhoff law). In ``Kirchhoff's rule for quantum wires'' [J. Phys. A: Math. Gen. 32, 595 - 630 (1999)] we provided an explicit algebraic expression for the resulting (on-shell) S-matrix in terms of the boundary conditions and the lengths of the internal lines and we also proved its unitarity. Here we address the inverse problem in the simplest context with one vertex only but with an arbitrary number of open ends. We provide an explicit formula for the boundary conditions in terms of the S-matrix at a fixed, prescribed energy. We show that any unitary n×nn\times n matrix may be realized as the S-matrix at a given energy by choosing appropriate (unique) boundary conditions. This might possibly be used for the design of elementary gates in quantum computing. As an illustration we calculate the boundary conditions associated to the unitary operators of some elementary gates for quantum computers and raise the issue whether in general the unitary operators associated to quantum gates should rather be viewed as scattering operators instead of time evolution operators for a given time associated to a quantum mechanical Hamiltonian.Comment: 16 page
    • …
    corecore