2,225 research outputs found

    A Wearable RFID-Based Navigation System for the Visually Impaired

    Full text link
    Recent studies have focused on developing advanced assistive devices to help blind or visually impaired people. Navigation is challenging for this community; however, developing a simple yet reliable navigation system is still an unmet need. This study targets the navigation problem and proposes a wearable assistive system. We developed a smart glove and shoe set based on radio-frequency identification technology to assist visually impaired people with navigation and orientation in indoor environments. The system enables the user to find the directions through audio feedback. To evaluate the device's performance, we designed a simple experimental setup. The proposed system has a simple structure and can be personalized according to the user's requirements. The results identified that the platform is reliable, power efficient, and accurate enough for indoor navigation.Comment: 6 pages, 6 figures, 3 table

    Optimising hospital designs and processes to improve efficiency and enhance the user experience

    Get PDF
    The health sector is facing increasing pressure to provide effective, efficient, and affordable care to the population it serves. The National Health Service (NHS) of the United Kingdom (UK) has regularly faced scrutiny with NHS England being issued a number of challenges in recent years to improve operational efficiency, reduce wasted space, and cut expenditure. The most recent challenge issued to NHS England has seen a requirement to save ÂŁ5bn per annum by 2020, while reducing wasted space from 4.4% to 2.5% across the NHS estate. Similarly, satisfaction in the health service is also under scrutiny as staff retention and patient experiences are used in determining the performance of facilities. [Continues.

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Wearable Urban Mobility Assistive Device for Visually Impaired Pedestrians Using a Smartphone and a Tactile-Foot Interface

    Get PDF
    This paper reports on the progress of a wearable assistive technology (AT) device designed to enhance the independent, safe, and efficient mobility of blind and visually impaired pedestrians in outdoor environments. Such device exploits the smartphone’s positioning and computing capabilities to locate and guide users along urban settings. The necessary navigation instructions to reach a destination are encoded as vibrating patterns which are conveyed to the user via a foot-placed tactile interface. To determine the performance of the proposed AT device, two user experiments were conducted. The first one requested a group of 20 voluntary normally sighted subjects to recognize the feedback provided by the tactile-foot interface. The results showed recognition rates over 93%. The second experiment involved two blind voluntary subjects which were assisted to find target destinations along public urban pathways. Results show that the subjects successfully accomplished the task and suggest that blind and visually impaired pedes-trians might find the AT device and its concept approach useful, friendly, fast to master, and easy to use
    • 

    corecore