5,937 research outputs found

    Advancing Healthcare Security: A Cutting-Edge Zero-Trust Blockchain Solution for Protecting Electronic Health Records

    Get PDF
    The effective management of electronic health records (EHRs) is vital in healthcare. However, traditional systems often need help handling data inconsistently, providing limited access, and coordinating poorly across facilities. This study aims to tackle these issues using blockchain technology to improve EHR systems' data security, privacy, and interoperability. By thoroughly analyzing blockchain's applications in healthcare, we propose an innovative solution that leverages blockchain's decentralized and immutable nature, combined with advanced encryption techniques such as the Advanced Encryption Standard and Zero Knowledge Proof Protocol, to fortify EHR systems. Our research demonstrates that blockchain can effectively overcome significant EHR challenges, including fragmented data and interoperability problems, by facilitating secure and transparent data exchange, leading to enhanced coordination, care quality, and cost-efficiency across healthcare facilities. This study offers practical guidelines for implementing blockchain technology in healthcare, emphasizing a balanced approach to interoperability, privacy, and security. It represents a significant advancement over traditional EHR systems, boosting security and affording patients greater control over their health records. Doi: 10.28991/HIJ-2023-04-03-012 Full Text: PD

    Enhancing Confidentiality and Privacy Preservation in e-Health to Enhanced Security

    Get PDF
    Electronic health (e-health) system use is growing, which has improved healthcare services significantly but has created questions about the privacy and security of sensitive medical data. This research suggests a novel strategy to overcome these difficulties and strengthen the security of e-health systems while maintaining the privacy and confidentiality of patient data by utilising machine learning techniques. The security layers of e-health systems are strengthened by the comprehensive framework we propose in this paper, which incorporates cutting-edge machine learning algorithms. The suggested framework includes data encryption, access control, and anomaly detection as its three main elements. First, to prevent unauthorised access during transmission and storage, patient data is secured using cutting-edge encryption technologies. Second, to make sure that only authorised staff can access sensitive medical records, access control mechanisms are strengthened using machine learning models that examine user behaviour patterns. This research's inclusion of machine learning-based anomaly detection is its most inventive feature. The technology may identify variations from typical data access and usage patterns, thereby quickly spotting potential security breaches or unauthorised activity, by training models on past e-health data. This proactive strategy improves the system's capacity to successfully address new threats. Extensive experiments were carried out employing a broad dataset made up of real-world e-health scenarios to verify the efficacy of the suggested approach. The findings showed a marked improvement in the protection of confidentiality and privacy, along with a considerable decline in security breaches and unauthorised access events

    Blockchain inspired secure and reliable data exchange architecture for cyber-physical healthcare system 4.0

    Get PDF
    A cyber-physical system is considered to be a collection of strongly coupled communication systems and devices that poses numerous security trials in various industrial applications including healthcare. The security and privacy of patient data is still a big concern because healthcare data is sensitive and valuable, and it is most targeted over the internet. Moreover, from the industrial perspective, the cyber-physical system plays a crucial role in the exchange of data remotely using sensor nodes in distributed environments. In the healthcare industry, Blockchain technology offers a promising solution to resolve most securities-related issues due to its decentralized, immutability, and transparency properties. In this paper, a blockchain-inspired secure and reliable data exchange architecture is proposed in the cyber-physical healthcare industry 4.0. The proposed system uses the BigchainDB, Tendermint, Inter-Planetary-File-System (IPFS), MongoDB, and AES encryption algorithms to improve Healthcare 4.0. Furthermore, blockchain-enabled secure healthcare architecture for accessing and managing the records between Doctors and Patients is introduced. The development of a blockchain-based Electronic Healthcare Record (EHR) exchange system is purely patient-centric, which means the entire control of data is in the owner's hand which is backed by blockchain for security and privacy. Our experimental results reveal that the proposed architecture is robust to handle more security attacks and can recover the data if 2/3 of nodes are failed. The proposed model is patient-centric, and control of data is in the patient's hand to enhance security and privacy, even system administrators can't access data without user permission

    Checking and Enforcing Security through Opacity in Healthcare Applications

    Full text link
    The Internet of Things (IoT) is a paradigm that can tremendously revolutionize health care thus benefiting both hospitals, doctors and patients. In this context, protecting the IoT in health care against interference, including service attacks and malwares, is challenging. Opacity is a confidentiality property capturing a system's ability to keep a subset of its behavior hidden from passive observers. In this work, we seek to introduce an IoT-based heart attack detection system, that could be life-saving for patients without risking their need for privacy through the verification and enforcement of opacity. Our main contributions are the use of a tool to verify opacity in three of its forms, so as to detect privacy leaks in our system. Furthermore, we develop an efficient, Symbolic Observation Graph (SOG)-based algorithm for enforcing opacity

    KBD-Share: Key Aggregation, Blockchain, and Differential Privacy based Secured Data Sharing for Multi-User Cloud Computing

    Get PDF
    In today's era of widespread cloud computing and data sharing, the demand for secure and privacy-preserving techniques to facilitate multi-user data sharing is rapidly increasing. However, traditional approaches struggle to effectively address the twin objectives of ensuring privacy protection while preserving the utility of shared data. This predicament holds immense significance due to the pivotal role data sharing plays in diverse domains and applications. However, it also brings about significant privacy vulnerabilities. Consequently, innovative approaches are imperative to achieve a harmonious equilibrium between the utility of shared data and the protection of privacy in scenarios involving multiple users. This paper presents KBD-Share, an innovative framework that addresses the intricacies of ensuring data security and privacy in the context of sharing data among multiple users in cloud computing environments. By seamlessly integrating key aggregation, blockchain technology, and differential privacy techniques, KBD-Share offers an efficient and robust solution to protect sensitive data while facilitating seamless sharing and utilization. Extensive experimental evaluations convincingly establish the superiority of KBD-Share in aspects of data privacy preservation and utility, outperforming existing approaches. This approach achieves the highest R2 value of 0.9969 exhibiting best data utility, essential for multi-user data sharing in diverse cloud computing applications

    An Efficient Method to Enhance Health Care Big Data Security in Cloud Computing Using the Combination of Euclidean Neural Network And K-Medoids Based Twin Fish Cipher Cryptographic Algorithm

    Get PDF
    Big data is a phrase that refers to the large volumes of digital data that are being generated as a consequence of technology improvements in the health care industry, e-commerce, and research, among other fields. It is impossible to analyze Big Data using typical analytic tools since traditional data storage systems do not have the capacity to deal with such a large volume of data. Cloud computing has made it more easier for people to store and process data remotely in recent years. By distributing large data sets over a network of cloudlets, cloud computing can address the challenges of managing, storing, and analyzing this new breed of data It's possible for private data to be leaked when it is kept in the cloud, as users have no control over it. This paper proposes a framework for a secure data storage by using the K-medoids-based twin fish cipher cryptographic algorithm. We first normalize the data using the Filter splash Z normalization and then apply the Euclidean neural network to compute similarity, which ensures data correctness and reduces computational cost. As a result, the suggested encryption strategy is used to encrypt and decode the outsourced data, thereby protecting private information from being exposed. The whole experiment was conducted using health data from a large metropolis from the Kaggle database. Using the recommended encryption method, users will be able to maintain their privacy while saving time and money by storing their large amounts of data on the cloud

    A review of Generative Adversarial Networks for Electronic Health Records: applications, evaluation measures and data sources

    Full text link
    Electronic Health Records (EHRs) are a valuable asset to facilitate clinical research and point of care applications; however, many challenges such as data privacy concerns impede its optimal utilization. Deep generative models, particularly, Generative Adversarial Networks (GANs) show great promise in generating synthetic EHR data by learning underlying data distributions while achieving excellent performance and addressing these challenges. This work aims to review the major developments in various applications of GANs for EHRs and provides an overview of the proposed methodologies. For this purpose, we combine perspectives from healthcare applications and machine learning techniques in terms of source datasets and the fidelity and privacy evaluation of the generated synthetic datasets. We also compile a list of the metrics and datasets used by the reviewed works, which can be utilized as benchmarks for future research in the field. We conclude by discussing challenges in GANs for EHRs development and proposing recommended practices. We hope that this work motivates novel research development directions in the intersection of healthcare and machine learning

    Comprehensive survey on big data privacy protection

    Get PDF
    In recent years, the ever-mounting problem of Internet phishing has been threatening the secure propagation of sensitive data over the web, thereby resulting in either outright decline of data distribution or inaccurate data distribution from several data providers. Therefore, user privacy has evolved into a critical issue in various data mining operations. User privacy has turned out to be a foremost criterion for allowing the transfer of confidential information. The intense surge in storing the personal data of customers (i.e., big data) has resulted in a new research area, which is referred to as privacy-preserving data mining (PPDM). A key issue of PPDM is how to manipulate data using a specific approach to enable the development of a good data mining model on modified data, thereby meeting a specified privacy need with minimum loss of information for the intended data analysis task. The current review study aims to utilize the tasks of data mining operations without risking the security of individuals’ sensitive information, particularly at the record level. To this end, PPDM techniques are reviewed and classified using various approaches for data modification. Furthermore, a critical comparative analysis is performed for the advantages and drawbacks of PPDM techniques. This review study also elaborates on the existing challenges and unresolved issues in PPDM.Published versio
    • …
    corecore