36,391 research outputs found

    Updates in metabolomics tools and resources: 2014-2015

    Get PDF
    Data processing and interpretation represent the most challenging and time-consuming steps in high-throughput metabolomic experiments, regardless of the analytical platforms (MS or NMR spectroscopy based) used for data acquisition. Improved machinery in metabolomics generates increasingly complex datasets that create the need for more and better processing and analysis software and in silico approaches to understand the resulting data. However, a comprehensive source of information describing the utility of the most recently developed and released metabolomics resources—in the form of tools, software, and databases—is currently lacking. Thus, here we provide an overview of freely-available, and open-source, tools, algorithms, and frameworks to make both upcoming and established metabolomics researchers aware of the recent developments in an attempt to advance and facilitate data processing workflows in their metabolomics research. The major topics include tools and researches for data processing, data annotation, and data visualization in MS and NMR-based metabolomics. Most in this review described tools are dedicated to untargeted metabolomics workflows; however, some more specialist tools are described as well. All tools and resources described including their analytical and computational platform dependencies are summarized in an overview Table

    Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics.

    Get PDF
    Novel metabolites distinct from canonical pathways can be identified through the integration of three cheminformatics tools: BinVestigate, which queries the BinBase gas chromatography-mass spectrometry (GC-MS) metabolome database to match unknowns with biological metadata across over 110,000 samples; MS-DIAL 2.0, a software tool for chromatographic deconvolution of high-resolution GC-MS or liquid chromatography-mass spectrometry (LC-MS); and MS-FINDER 2.0, a structure-elucidation program that uses a combination of 14 metabolome databases in addition to an enzyme promiscuity library. We showcase our workflow by annotating N-methyl-uridine monophosphate (UMP), lysomonogalactosyl-monopalmitin, N-methylalanine, and two propofol derivatives

    A comparison of collision cross section values obtained via travelling wave ion mobility-mass spectrometry and ultra high performance liquid chromatography-ion mobility-mass spectrometry : application to the characterisation of metabolites in rat urine

    Get PDF
    A comprehensive Collision Cross Section (CCS) library was obtained via Travelling Wave Ion Guide mobility measurements through direct infusion (DI). The library consists of CCS and Mass Spectral (MS) data in negative and positive ElectroSpray Ionisation (ESI) mode for 463 and 479 endogenous metabolites, respectively. For both ionisation modes combined, TWCCSN2 data were obtained for 542 non-redundant metabolites. These data were acquired on two different ion mobility enabled orthogonal acceleration QToF MS systems in two different laboratories, with the majority of the resulting TWCCSN2 values (from detected compounds) found to be within 1% of one another. Validation of these results against two independent, external TWCCSN2 data sources and predicted TWCCSN2 values indicated to be within 1-2% of these other values. The same metabolites were then analysed using a rapid reversed-phase ultra (high) performance liquid chromatographic (U(H)PLC) separation combined with IM and MS (IM-MS) thus providing retention time (tr), m/z and TWCCSN2 values (with the latter compared with the DI-IM-MS data). Analytes for which TWCCSN2 values were obtained by U(H)PLC-IM-MS showed good agreement with the results obtained from DI-IM-MS. The repeatability of the TWCCSN2 values obtained for these metabolites on the different ion mobility QToF systems, using either DI or LC, encouraged the further evaluation of the U(H)PLC-IM-MS approach via the analysis of samples of rat urine, from control and methotrexate-treated animals, in order to assess the potential of the approach for metabolite identification and profiling in metabolic phenotyping studies. Based on the database derived from the standards 63 metabolites were identified in rat urine, using positive ESI, based on the combination of tr, TWCCSN2 and MS data.</p

    Innovative solutions for enhanced illicit drugs profiling using comprehensive two-dimensional gas chromatography and mass spectrometry technologies

    Get PDF
    This project aimed to determine whether comprehensive two-dimensional gas chromatography is suitable for routine use in a forensic laboratory for profiling illicit substances. Abstract Analytical gas chromatographic methods usually rely upon a single dimension (ie single column) high-resolution capillary GC column to provide separation of target analyses. When a matrix is especially complex, the ability of the column to provide adequate resolution is severely compromised. Often, mass spectrometry may provide the ability to uniquely measure the target compounds, but if the matrix generates similar ions to the target compounds, this can lead to confounded analysis. Mass spectrometry offers many potential solutions to the lack of resolution of GC; however, this usually involves selected ion monitoring or similar approaches. This removes the important opportunity to use a full-scan spectrum to match with a database library. In the present project, high-resolution GC analysis using the multidimensional separation method of comprehensive two-dimensional gas chromatography (GCxGC) was used to provide sufficient resolution to allow full-scan acquisition with library confirmation of illicit drug identity. It was shown that the WADA criteria for a selection of test steroid compounds could be suitably met under this new high-resolution environment. In addition, analysis of samples of ecstasy were profiled and all synthetic residues involved in the synthesis of ecstasy could be fully resolved and located in the 2D separation space with excellent library matches, even though the underlying matrix was very complicated and would have strongly interfered in a 1D separation analysis. This will allow facile profiling of the reaction procedure for ecstasy synthesis

    Systemic Metabolomic Changes in Blood Samples of Lung Cancer Patients Identified by Gas Chromatography Time-of-Flight Mass Spectrometry.

    Get PDF
    Lung cancer is a leading cause of cancer deaths worldwide. Metabolic alterations in tumor cells coupled with systemic indicators of the host response to tumor development have the potential to yield blood profiles with clinical utility for diagnosis and monitoring of treatment. We report results from two separate studies using gas chromatography time-of-flight mass spectrometry (GC-TOF MS) to profile metabolites in human blood samples that significantly differ from non-small cell lung cancer (NSCLC) adenocarcinoma and other lung cancer cases. Metabolomic analysis of blood samples from the two studies yielded a total of 437 metabolites, of which 148 were identified as known compounds and 289 identified as unknown compounds. Differential analysis identified 15 known metabolites in one study and 18 in a second study that were statistically different (p-values &lt;0.05). Levels of maltose, palmitic acid, glycerol, ethanolamine, glutamic acid, and lactic acid were increased in cancer samples while amino acids tryptophan, lysine and histidine decreased. Many of the metabolites were found to be significantly different in both studies, suggesting that metabolomics appears to be robust enough to find systemic changes from lung cancer, thus showing the potential of this type of analysis for lung cancer detection
    • …
    corecore