8 research outputs found

    A Macro-Level Order Metric for Self-Organizing Adaptive Systems

    Get PDF
    Analyzing how agent interactions affect macro-level self-organized behaviors can yield a deeper understanding of how complex adaptive systems work. The dynamic nature of complex systems makes it difficult to determine if, or when, a system has reached a state of equilibrium or is about to undergo a major transition reflecting the appearance of self-organized states. Using the notion of local neighborhood entropy, this paper presents a metric for evaluating the macro-level order of a system. The metric is tested in two dissimilar complex adaptive systems with self-organizing properties: An autonomous swarm searching for multiple dynamic targets and Conway\u27s Game of Life. In both domains, the proposed metric is able to graphically capture periods of increasing and decreasing self-organization (i.e. changes in macro-level order), equilibrium and points of criticality; displaying its general applicability in identifying these behaviors in complex adaptive systems. Abstract © 2018 IEEE

    Improving the Expected Performance of Self-Organization in a Collective Adaptive System of Drones using Stochastic Multiplayer Games

    Get PDF
    The Internet-of-Things (IoT) domain will be one of the most important domains of research in the coming decades. Paradigms continue to emerge that can employ self-organization to capitalize on the sheer number and variety of devices in the market. In this paper, we combine the use of stochastic multiplayer games (SMGs) and negotiation within two collective adaptive systems of drones tasked with locating and surveilling intelligence caches. We assess the use of an ordinary least squares (OLS) regression model that is trained on the SMG’s output. The SMG is augmented to incorporate the OLS model to evaluate integration configurations during negotiation. The augmented SMG is compared to the base SMG where drones always integrate. Our results show that the incorporation of the OLS model improves the expected performance of the drones while significantly reducing the number of failed surveillance tasks which result in the loss of drones

    Air Force Institute of Technology Research Report 2019

    Get PDF
    This Research Report presents the FY19 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document

    Academic Year 2019-2020 Faculty Excellence Showcase, AFIT Graduate School of Engineering & Management

    Get PDF
    An excerpt from the Dean\u27s Message: There is no place like the Air Force Institute of Technology (AFIT). There is no academic group like AFIT’s Graduate School of Engineering and Management. Although we run an educational institution similar to many other institutions of higher learning, we are different and unique because of our defense-focused graduate-research-based academic programs. Our programs are designed to be relevant and responsive to national defense needs. Our programs are aligned with the prevailing priorities of the US Air Force and the US Department of Defense. Our faculty team has the requisite critical mass of service-tested faculty members. The unique composition of pure civilian faculty, military faculty, and service-retired civilian faculty makes AFIT truly unique, unlike any other academic institution anywhere

    Emergent Behavior Development and Control in Multi-Agent Systems

    Get PDF
    Emergence in natural systems is the development of complex behaviors that result from the aggregation of simple agent-to-agent and agent-to-environment interactions. Emergence research intersects with many disciplines such as physics, biology, and ecology and provides a theoretical framework for investigating how order appears to spontaneously arise in complex adaptive systems. In biological systems, emergent behaviors allow simple agents to collectively accomplish multiple tasks in highly dynamic environments; ensuring system survival. These systems all display similar properties: self-organized hierarchies, robustness, adaptability, and decentralized task execution. However, current algorithmic approaches merely present theoretical models without showing how these models actually create hierarchical, emergent systems. To fill this research gap, this dissertation presents an algorithm based on entropy and speciation - defined as morphological or physiological differences in a population - that results in hierarchical emergent phenomena in multi-agent systems. Results show that speciation creates system hierarchies composed of goal-aligned entities, i.e. niches. As niche actions aggregate into more complex behaviors, more levels emerge within the system hierarchy, eventually resulting in a system that can meet multiple tasks and is robust to environmental changes. Speciation provides a powerful tool for creating goal-aligned, decentralized systems that are inherently robust and adaptable, meeting the scalability demands of current, multi-agent system design. Results in base defense, k-n assignment, division of labor and resource competition experiments, show that speciated populations create hierarchical self-organized systems, meet multiple tasks and are more robust to environmental change than non-speciated populations
    corecore