12 research outputs found

    A dual-loop tracking control approach to precise nanopositioning

    Get PDF
    The author(s) received no financial support for the research, authorship, and/or publication of this article.Peer reviewedPostprin

    Two-degrees-of-freedom PI2D controller for precise nanopositioning in the presence of hardware-induced constant time delay

    Get PDF
    This work was supported in part by the Spanish Agencia Estatal de Investigacion (AEI) under Project DPI2016-80547-R (Ministerio de Economia y Competitividad) and in part by the European Social Fund (FEDER, EU), and in part by the Spanish FPU12/00984 Program (Ministerio de Educacion, Cultura y Deporte).Peer reviewedPostprin

    Improvement in the Imaging Performance of Atomic Force Microscopy: A Survey

    Get PDF
    Nanotechnology is the branch of science which deals with the manipulation of matters at an extremely high resolution down to the atomic level. In recent years, atomic force microscopy (AFM) has proven to be extremely versatile as an investigative tool in this field. The imaging performance of AFMs is hindered by: 1) the complex behavior of piezo materials, such as vibrations due to the lightly damped low-frequency resonant modes, inherent hysteresis, and creep nonlinearities; 2) the cross-coupling effect caused by the piezoelectric tube scanner (PTS); 3) the limited bandwidth of the probe; 4) the limitations of the conventional raster scanning method using a triangular reference signal; 5) the limited bandwidth of the proportional-integral controllers used in AFMs; 6) the offset, noise, and limited sensitivity of position sensors and photodetectors; and 7) the limited sampling rate of the AFM's measurement unit. Due to these limitations, an AFM has a high spatial but low temporal resolution, i.e., its imaging is slow, e.g., an image frame of a living cell takes up to 120 s, which means that rapid biological processes that occur in seconds cannot be studied using commercially available AFMs. There is a need to perform fast scans using an AFM with nanoscale accuracy. This paper presents a survey of the literature, presents an overview of a few emerging innovative solutions in AFM imaging, and proposes future research directions.This work was supported in part by the Australian Research Council (ARC) under Grant FL11010002 and Grant DP160101121 and the UNSW Canberra under a Rector's Visiting Fellowshi

    Design and application of a data driven controller using the small-gain constraint for positioning control of a nano-positioner

    Get PDF
    In this paper, the design of a data driven controller using a small-gain theorem approach for improving the positioning accuracy of a piezoelectric tube scanner (PTS) is demonstrated. Open-loop frequency responses of both the X-PTS and Y-PTS are measured using a band-limited sweep sine signal and are used as primary data for this control design. The frequency response of the controllers is synthesized by the application of the small-gain theorem constraints over the entire frequency range for both the axes. The experimental implementation of this feedback data driven controller provides significant vibration reduction, with 19 dB and 15 dB damping at the resonance frequencies of the X and Y-axes of the PTS, respectively. A comparison between the open-loop and closed-loop tracking performance for triangular signals shows significant improvement up to the scanning frequency of 150 Hz. Moreover, the design of this data driven controller is less complex than conventional controller design methods as it does not need a system model.This work was supported by the Australian Research Council under grant DP160101121

    Negative Imaginary Control Using Hybrid Integrator-Gain Systems: Application to MEMS Nanopositioner

    Full text link
    In this paper, we propose a new approach to address the control problem for negative imaginary (NI) systems by using hybrid integrator-gain systems (HIGS). We investigate the single HIGS of its original form and its two variations, including a multi-HIGS and the serial cascade of two HIGS. A single HIGS is shown to be a nonlinear negative imaginary system, and so is the multi-HIGS and the cascade of two HIGS. We show that these three types of HIGS can be used as controllers to asymptotically stabilize linear NI systems. The results of this paper are then illustrated in a real-world experiment where a 2-DOF microelectromechanical system nanopositioner is stabilized by a multi-HIGS.Comment: 13 pages, 9 figures. Accepted for publication as a Full Paper in the IEEE Transactions on Control Systems Technology (TCST

    Fractional Repetitive Control of Nanopositioning Stages for High-Speed Scanning Using Low-Pass FIR Variable Fractional Delay Filter

    Get PDF
    This work was supported by the National Natural Science Foundation of China under Grant 51975375, the Binks Trust Visiting Research Fellowship (2018) (University of Aberdeen, UK) awarded to Dr. Sumeet S. Aphale and the SJTU overseas study grant awarded to Linlin Li. The authors would like to thank Mr. Wulin Yan for his assistance with the experiments.Peer reviewedPostprin

    A monolithic MEMS position sensor for closed-loop high-speed atomic force microscopy

    Get PDF
    The accuracy and repeatability of atomic force microscopy (AFM) imaging significantly depend on the accuracy of the piezoactuator. However, nonlinear properties of piezoactuators can distort the image, necessitating sensor-based closed-loop actuators to achieve high accuracy AFM imaging. The advent of high-speed AFM has made the requirements on the position sensors in such a system even more stringent, requiring higher bandwidths and lower sensor mass than traditional sensors can provide. In this paper, we demonstrate a way for high-speed, high-precision closed-loop AFM nanopositioning using a novel, miniaturized micro-electro-mechanical system position sensor in conjunction with a simple PID controller. The sensor was developed to respond to the need for small, lightweight, high-bandwidth, long-range and sub-nm-resolution position measurements in high-speed AFM applications. We demonstrate the use of this sensor for closed-loop operation of conventional as well as high-speed AFM operation to provide distortion-free images. The presented implementation of this closed-loop approach allows for positioning precision down to 2.1 Å, reduces the integral nonlinearity to below 0.2%, and allows for accurate closed loop imaging at line rates up to 300 Hz

    Dynamics and Control of Flexure-based Large Range Nanopositioning Systems.

    Full text link
    The objective of this thesis is to demonstrate desktop-size and cost-effective flexure-based multi-axis nanopositioning capability over a motion range of several millimeters per axis. Increasing the motion range will overcome one of the main drawbacks of existing nanopositioning systems, thereby significantly improving the coverage area in nanometrology and nanomanufacturing applications. A single-axis nanopositioning system, comprising a symmetric double parallelogram flexure bearing and a traditional-architecture moving magnet actuator, is designed, fabricated, and tested. A figure of merit for the actuator is derived and shown to directly impact the system-level trade-offs in terms of range, resolution, bandwidth, and temperature rise. While linear feedback controllers provide good positioning performance for point-to-point commands, the tracking error for dynamic commands prove to be inadequate due to the nonlinearities in the actuator and its driver. To overcome this, an iterative learning controller is implemented in conjunction with linear feedback to reduce the periodic component of the tracking error by more than two orders of magnitude. Experimental results demonstrate 10 nm RMS tracking error over 8 mm motion range in response to a 2 Hz bandlimited triangular command. For the XY nanopositioning system, a lumped-parameter model of an existing XY flexure bearing is developed in order to understand the unexplained variation observed in the transfer function zeros over the operating range of motion. It is shown that the kinematic coupling, due to geometric nonlinearities in the beam mechanics, and small dimensional asymmetry, due to manufacturing tolerances, may conspire to produce complex-conjugate nonminimum phase zeros at certain operating points in the system's workspace. This phenomenon significantly restricts the overall performance of the feedback control system. After intentional use of large asymmetry is employed to overcome this problem, independent feedback and iterative learning controllers are implemented along each axis. Experimental results demonstrate 20 nm RMS radial tracking error while traversing a 2 mm diameter circle at 2 Hz.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107086/1/parmar_1.pd

    Dynamics and Control of Smart Structures for Space Applications

    Get PDF
    Smart materials are one of the key emerging technologies for a variety of space systems ranging in their applications from instrumentation to structural design. The underlying principle of smart materials is that they are materials that can change their properties based on an input, typically a voltage or current. When these materials are incorporated into structures, they create smart structures. This work is concerned with the dynamics and control of three smart structures: a membrane structure with shape memory alloys for control of the membrane surface flatness, a flexible manipulator with a collocated piezoelectric sensor/actuator pair for active vibration control, and a piezoelectric nanopositioner for control of instrumentation. Shape memory alloys are used to control the surface flatness of a prototype membrane structure. As these actuators exhibit a hysteretic nonlinearity, they need their own controller to operate as required. The membrane structures surface flatness is then controlled by the shape memory alloys, and two techniques are developed: genetic algorithm and proportional-integral controllers. This would represent the removal of one of the main obstacles preventing the use of membrane structures in space for high precision applications, such as a C-band synthetic aperture radar antenna. Next, an adaptive positive position feedback law is developed for control of a structure with a collocated piezoelectric sensor/actuator pair, with unknown natural frequencies. This control law is then combined with the input shaping technique for slew maneuvers of a single-link flexible manipulator. As an alternative to the adaptive positive position feedback law, genetic algorithms are investigated as both system identification techniques and as a tool for optimal controller design in vibration suppression. These controllers are all verified through both simulation and experiments. The third area of investigation is on the nonlinear dynamics and control of piezoelectric actuators for nanopositioning applications. A state feedback integral plus double integral synchronization controller is designed to allow the piezoelectrics to form the basis of an ultra-precise 2-D Fabry-Perot interferometer as the gap spacing of the device could be controlled at the nanometer level. Next, an output feedback linear integral control law is examined explicitly for the piezoelectric actuators with its nonlinear behaviour modeled as an input nonlinearity to a linear system. Conditions for asymptotic stability are established and then the analysis is extended to the derivation of an output feedback integral synchronization controller that guarantees global asymptotic stability under input nonlinearities. Experiments are then performed to validate the analysis. In this work, the dynamics and control of these smart structures are addressed in the context of their three applications. The main objective of this work is to develop effective and reliable control strategies for smart structures that broaden their applicability to space systems

    Bilateral control: a sliding mode control approach

    Get PDF
    Bilateral control is bi-directional control of force-position between two systems connected by a communication link. It is typically used for teleoperation with forcefeedback, such that the master system is handled by an operator. Motions of the operator are fed forward to the slave system, generally remote to the operator and forces encountered are fed back to the master system, enabling a telepresence of the operator in the remote environment. The necessity of bilateral control lies in its applicability to the tasks that cannot be handled by autonomous manipulators and/or reached by human beings. Main issues of consideration for bilateral control, namely transparency, scaling and time delay, are addressed and two discrete-time sliding-mode approaches are presented as solutions to highly transparent bilateral controllers that support scaling. First approach has a force-hybrid architecture, where the cascaded sliding mode hybrid force/position controller on the slave side reacts to the external forces directly. Therefore, it provides a protection (reflex) mechanism on the slave side to large external forces, that the operator cannot respond in time due to the time delay. Second approach has a decentralized nature. Virtual systems are devised by a linear transformation from the plant space to the task space and sliding mode control has been applied to those virtual systems, hence sides of bilateral control are interchangable. The decentralized structure of the controller makes it possible to generalize the problem to a coordination and/or cooperation of more than two plants. High precision has been achieved on experiments for both approaches designed and discussed in detail
    corecore