20 research outputs found

    Maximum flow is approximable by deterministic constant-time algorithm in sparse networks

    Full text link
    We show a deterministic constant-time parallel algorithm for finding an almost maximum flow in multisource-multitarget networks with bounded degrees and bounded edge capacities. As a consequence, we show that the value of the maximum flow over the number of nodes is a testable parameter on these networks.Comment: 8 page

    Random local algorithms

    Full text link
    Consider the problem when we want to construct some structure on a bounded degree graph, e.g. an almost maximum matching, and we want to decide about each edge depending only on its constant radius neighbourhood. We show that the information about the local statistics of the graph does not help here. Namely, if there exists a random local algorithm which can use any local statistics about the graph, and produces an almost optimal structure, then the same can be achieved by a random local algorithm using no statistics.Comment: 9 page

    Π‘ΡƒΠ±Π»Ρ–Π½Ρ–ΠΉΠ½ΠΈΠΉ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΠΉ Π½Π°Π±Π»ΠΈΠΆΠ΅Π½ΠΈΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Ρ€Π΅ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ— для Π·Π°Π΄Π°Ρ‡Ρ– ΠΏΡ€ΠΎ ΠΌΡ–Π½Ρ–ΠΌΠ°Π»ΡŒΠ½Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π½Π΅ покриття Π³Ρ€Π°Ρ„Π°

    Get PDF
    Π—Π° Π½Π°Π±Π»ΠΈΠΆΠ΅Π½ΠΎΠ³ΠΎ розв’язання дискрСтних Π·Π°Π΄Π°Ρ‡ ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ— Π²ΠΈΠ½ΠΈΠΊΠ°Ρ” Ρ‚Π°ΠΊΠ° iдСя: Ρ‡ΠΈ ΠΌΠΎΠΆΠ½Π°, виходячи Π· Ρ–Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–Ρ— ΠΏΡ€ΠΎ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΠΉ розв’язок СкзСмпляра Π·Π°Π΄Π°Ρ‡Ρ– (Π°Π±ΠΎ близького Π΄ΠΎ нього), використовувати Ρ†ΡŽ Ρ–Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–ΡŽ для знаходТСння ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ (Π°Π±ΠΎ близького Π΄ΠΎ нього) розв’язку СкзСмпляра Π·Π°Π΄Π°Ρ‡Ρ–, ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎΠ³ΠΎ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚i Π½Π΅Π·Π½Π°Ρ‡Π½ΠΈΡ… Π»ΠΎΠΊΠ°Π»ΡŒΠ½ΠΈΡ… ΠΌΠΎΠ΄ΠΈΡ„iΠΊΠ°Ρ†iΠΉ Π²ΠΈΡ…iΠ΄Π½ΠΎΠ³ΠΎ СкзСмпляра. Π¦Π΅ΠΉ ΠΏiΠ΄Ρ…iΠ΄, Π½Π°Π·Π²Π°Π½ΠΈΠΉ Ρ€Π΅ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ”ΡŽ, дозволяє Π² дСяких Π²ΠΈΠΏΠ°Π΄ΠΊΠ°Ρ… ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ ΠΊΡ€Π°Ρ‰Ρƒ якiΡΡ‚ΡŒ наблиТСння (якС Π²ΠΈΠ·Π½Π°Ρ‡Π°Ρ”Ρ‚ΡŒΡΡ як Π²iдношСння значСння Π½Π°Π±Π»ΠΈΠΆΠ΅Π½ΠΎΠ³ΠΎ розв’язку Π΄ΠΎ Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ i Π½Π°Π·ΠΈΠ²Π°Ρ”Ρ‚ΡŒΡΡ Π²iдношСнням апроксимацiΡ—) Ρƒ локально ΠΌΠΎΠ΄ΠΈΡ„iΠΊΠΎΠ²Π°Π½ΠΈΡ… СкзСмплярах, Π½iΠΆ Ρƒ Π²ΠΈΡ…iΠ΄Π½ΠΈΡ…. Π―ΠΊΡ‰ΠΎ для дСяких ΠΎΠΏΡ‚ΠΈΠΌiΠ·Π°Ρ†iΠΉΠ½ΠΈΡ… Π·Π°Π΄Π°Ρ‡ Π²iдношСння апроксимацiΡ— Π½Π΅ ΠΌΠΎΠΆΠ½Π° ΠΏΠΎΠΊΡ€Π°Ρ‰ΠΈΡ‚ΠΈ (Π½Π°ΠΏΡ€ΠΈΠΊΠ»Π°Π΄, Ρƒ класi всiΡ… Π½Π°Π±Π»ΠΈΠΆΠ΅Π½ΠΈΡ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌiΠ² Ρ–Π· ΠΏΠΎΠ»iΠ½ΠΎΠΌiальною складнiΡΡ‚ΡŽ), Ρ‚ΠΎ Ρ‚Π°ΠΊΠ΅ Π²iдношСння Π½Π°Π·ΠΈΠ²Π°ΡŽΡ‚ΡŒ ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΈΠΌ Π°Π±ΠΎ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΠΌ (Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Π½Π° якому Π΄ΠΎΡΡΠ³Π°Ρ”Ρ‚ΡŒΡΡ Ρ†Π΅ Π²iдношСння Ρ‚Π°ΠΊΠΎΠΆ Π½Π°Π·ΠΈΠ²Π°ΡŽΡ‚ΡŒ ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΈΠΌ Π°Π±ΠΎ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΠΌ). Π‘ΠΊΠ»Π°Π΄Π½Ρ–ΡΡ‚ΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ–Π² ΠΎΡ†Ρ–Π½ΡŽΡ”Ρ‚ΡŒΡΡ ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŽ Π·Π²Π΅Ρ€Π½Π΅Π½ΡŒ (Π·Π°ΠΏΠΈΡ‚Ρ–Π²) Π΄ΠΎ ΡΠΏΠ΅Ρ†Ρ–Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ€Π°ΠΊΡƒΠ»Ρƒ. Для Ρ€Π΅ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ— Π·Π°Π΄Π°Ρ‡Ρ– ΠΏΡ€ΠΎ ΠΌΡ–Π½Ρ–ΠΌΠ°Π»ΡŒΠ½Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π½Π΅ покриття Π³Ρ€Π°Ρ„Π° (Π·Π° добавлСння ΠΎΠ΄Π½Ρ–Ρ”Ρ— Π²Π΅Ρ€ΡˆΠΈΠ½ΠΈ Ρ– дСякої ΠΌΠ½ΠΎΠΆΠΈΠ½ΠΈ Ρ€Π΅Π±Π΅Ρ€) ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΠΉ (3/2)-Π½Π°Π±Π»ΠΈΠΆΠ΅Π½ΠΈΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Ρ–Π· Π°Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΎΡŽ помилкою Π· ΡΡƒΠ±Π»Ρ–Π½Ρ–ΠΉΠ½ΠΎΡŽ (ΠΊΠΎΠ½ΡΡ‚Π°Π½Ρ‚Π½ΠΎΡŽ) ΡΠΊΠ»Π°Π΄Π½Ρ–ΡΡ‚ΡŽ. Показано, Ρ‰ΠΎ Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½Ρ апроксимації 3/2 Ρ” ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΈΠΌ Ρƒ класі Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ–Π² Ρ–Π· ΠΊΠΎΠ½ΡΡ‚Π°Π½Ρ‚Π½ΠΎΡŽ ΡΠΊΠ»Π°Π΄Π½Ρ–ΡΡ‚ΡŽ.ΠŸΡ€ΠΈ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ дискрСтных Π·Π°Π΄Π°Ρ‡ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ такая идСя: ΠΌΠΎΠΆΠ½ΠΎ Π»ΠΈ, исходя ΠΈΠ· ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΎΠ± ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ экзСмпляра Π·Π°Π΄Π°Ρ‡ΠΈ (ΠΈΠ»ΠΈ Π±Π»ΠΈΠ·ΠΊΠΎΠ³ΠΎ ΠΊ Π½Π΅ΠΌΡƒ), ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ эту ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ для нахоТдСния ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ (ΠΈΠ»ΠΈ Π±Π»ΠΈΠ·ΠΊΠΎΠ³ΠΎ ΠΊ Π½Π΅ΠΌΡƒ) Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ экзСмпляра Π·Π°Π΄Π°Ρ‡ΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΉ исходного экзСмпляра. Π”Π°Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄, Π½Π°Π·Π²Π°Π½Π½Ρ‹ΠΉ Ρ€Π΅ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ, позволяСт, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π»ΡƒΡ‡ΡˆΠ΅Π΅ качСство приблиТСния (ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ опрСдСляСтся ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊ Ρ‚ΠΎΡ‡Π½ΠΎΠΌΡƒ ΠΈ называСтся ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ аппроксимации) Π² локально ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… экзСмплярах, Ρ‡Π΅ΠΌ Π² исходных. Если для Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ аппроксимации нСльзя ΡƒΠ»ΡƒΡ‡ΡˆΠΈΡ‚ΡŒ (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π² классС всСх ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½Ρ‹Ρ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² с полиномиальной ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ), Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²Ρ‹ΠΌ ΠΈΠ»ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ (Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ достигаСтся это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²Ρ‹ΠΌ ΠΈΠ»ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ). Π‘Π»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² оцСниваСтся количСством ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½ΠΈΠΉ (запросов) ΠΊ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ ΠΎΡ€Π°ΠΊΡƒΠ»Ρƒ. Для Ρ€Π΅ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΎ минимальном Π²Π΅Ρ€ΡˆΠΈΠ½Π½ΠΎΠΌ ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΈ Π³Ρ€Π°Ρ„Π° (ΠΏΡ€ΠΈ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΎΠ΄Π½ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ мноТСства Ρ€Π΅Π±Π΅Ρ€) ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ (3/2)-ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ с Π°Π΄Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΎΠΉ ошибкой с сублинСйной (константной) ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ. Показано, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ аппроксимации 3/2 являСтся ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²Ρ‹ΠΌ Π² классС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² с константной ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ.With the approximate solution of discrete optimization problems such idea arises: is it possible, taking into account the information about the optimal solution of an instance (or close to it), use this information to find the optimal (or close to it) solution of instance problem obtained as a result of minor local modifications of the initial instance. This approach, called reoptimization, allows, for example, in some cases, getting the best quality of approximation (which is defined as the ratio between the value of an approximate solution to the exact ratio and called approximation ratio) in locally modified instances than at initials. If for some tasks approximation ratio can not be improved (e.g. in class of all approximation algorithms with polynomial complexity), the ratio is called the threshold or optimal (algorithm which achieved this ratio is also called the threshold or optimal). The complexity of the algorithms is estimated by the number of hits (queries) to a special oracle. For reoptimization of minimum vertex cover problem (with addition of one vertex and some set of edges) (3/2)-approximation algorithm with additive error and sublinear (constant) complexity is received. It is shown that the approximation ratio of 3/2 is the threshold in the class of algorithms with constant complexity

    Lower Bounds on Query Complexity for Testing Bounded-Degree CSPs

    Full text link
    In this paper, we consider lower bounds on the query complexity for testing CSPs in the bounded-degree model. First, for any ``symmetric'' predicate P:0,1kβ†’0,1P:{0,1}^{k} \to {0,1} except \equ where kβ‰₯3k\geq 3, we show that every (randomized) algorithm that distinguishes satisfiable instances of CSP(P) from instances (∣Pβˆ’1(0)∣/2kβˆ’Ο΅)(|P^{-1}(0)|/2^k-\epsilon)-far from satisfiability requires Ξ©(n1/2+Ξ΄)\Omega(n^{1/2+\delta}) queries where nn is the number of variables and Ξ΄>0\delta>0 is a constant that depends on PP and Ο΅\epsilon. This breaks a natural lower bound Ξ©(n1/2)\Omega(n^{1/2}), which is obtained by the birthday paradox. We also show that every one-sided error tester requires Ξ©(n)\Omega(n) queries for such PP. These results are hereditary in the sense that the same results hold for any predicate QQ such that Pβˆ’1(1)βŠ†Qβˆ’1(1)P^{-1}(1) \subseteq Q^{-1}(1). For EQU, we give a one-sided error tester whose query complexity is O~(n1/2)\tilde{O}(n^{1/2}). Also, for 2-XOR (or, equivalently E2LIN2), we show an Ξ©(n1/2+Ξ΄)\Omega(n^{1/2+\delta}) lower bound for distinguishing instances between Ο΅\epsilon-close to and (1/2βˆ’Ο΅)(1/2-\epsilon)-far from satisfiability. Next, for the general k-CSP over the binary domain, we show that every algorithm that distinguishes satisfiable instances from instances (1βˆ’2k/2kβˆ’Ο΅)(1-2k/2^k-\epsilon)-far from satisfiability requires Ξ©(n)\Omega(n) queries. The matching NP-hardness is not known, even assuming the Unique Games Conjecture or the dd-to-11 Conjecture. As a corollary, for Maximum Independent Set on graphs with nn vertices and a degree bound dd, we show that every approximation algorithm within a factor d/\poly\log d and an additive error of Ο΅n\epsilon n requires Ξ©(n)\Omega(n) queries. Previously, only super-constant lower bounds were known

    Optimal Constant-Time Approximation Algorithms and (Unconditional) Inapproximability Results for Every Bounded-Degree CSP

    Full text link
    Raghavendra (STOC 2008) gave an elegant and surprising result: if Khot's Unique Games Conjecture (STOC 2002) is true, then for every constraint satisfaction problem (CSP), the best approximation ratio is attained by a certain simple semidefinite programming and a rounding scheme for it. In this paper, we show that similar results hold for constant-time approximation algorithms in the bounded-degree model. Specifically, we present the followings: (i) For every CSP, we construct an oracle that serves an access, in constant time, to a nearly optimal solution to a basic LP relaxation of the CSP. (ii) Using the oracle, we give a constant-time rounding scheme that achieves an approximation ratio coincident with the integrality gap of the basic LP. (iii) Finally, we give a generic conversion from integrality gaps of basic LPs to hardness results. All of those results are \textit{unconditional}. Therefore, for every bounded-degree CSP, we give the best constant-time approximation algorithm among all. A CSP instance is called Ο΅\epsilon-far from satisfiability if we must remove at least an Ο΅\epsilon-fraction of constraints to make it satisfiable. A CSP is called testable if there is a constant-time algorithm that distinguishes satisfiable instances from Ο΅\epsilon-far instances with probability at least 2/32/3. Using the results above, we also derive, under a technical assumption, an equivalent condition under which a CSP is testable in the bounded-degree model

    Hereditary properties of permutations are strongly testable

    Get PDF
    We show that for every hereditary permutation property and every ∊0 > 0, there exists an integer M such that if a permutation Ο€ is ∊o-far from in the Kendall's tau distance, then a random subpermutation of Ο€ of order M has the property P with probability at most ∊0. This settles an open problem whether hereditary permutation properties are strongly testable, i.e., testable with respect to the Kendall's tau distance, which is considered to be the edit distance for permutations. Our method also yields a proof of a conjecture of Hoppen, Kohayakawa, Moreira and Sampaio on the relation of the rectangular distance and the Kendall's tau distance of a permutation from a hereditary property
    corecore