3 research outputs found

    Uncertainty Propagation of Initial Conditions in Thermal Models

    Full text link
    The operation of machine tools often demands a highly accurate knowledge of the tool center point's (TCP) position. The displacement of the TCP over time can be inferred from thermal models, which comprise a set of geometrically coupled heat equations. Each of these equations represents the temperature in part of the machine, and they are often formulated on complicated geometries. The accuracy of the TCP prediction depends highly on the accuracy of the model parameters, such as heat exchange parameters, and the initial temperature. Thus it is of utmost interest to determine the influence of these parameters on the TCP displacement prediction. In turn, the accuracy of the parameter estimate is essentially determined by the measurement accuracy and the sensor placement. Determining the accuracy of a given sensor configuration is a key prerequisite of optimal sensor placement. We develop here a thermal model for a particular machine tool. On top of this model we propose two numerical algorithms to evaluate any given thermal sensor configuration with respect to its accuracy. We compute the posterior variances from the posterior covariance matrix with respect to an uncertain initial temperature field. The full matrix is dense and potentially very large, depending on the model size. Thus, we apply a low-rank method to approximate relevant entries, i.e. the variances on its diagonal. We first present a straightforward way to compute this approximation which requires computation of the model sensitivities with with respect to the initial values. Additionally, we present a low-rank tensor method which exploits the underlying system structure. We compare the efficiency of both algorithms with respect to runtime and memory requirements and discuss their respective advantages with regard to optimal sensor placement problems

    Low-rank Tensor Methods for PDE-constrained Optimization

    No full text
    Optimierungsaufgaben unter Partiellen Differentialgleichungen (PDGLs) tauchen in verschiedensten Anwendungen der Wissenschaft und Technik auf. Wenn wir ein PDGL Problem formulieren, kann es aufgrund seiner Größe unmöglich werden, das Problem mit konventionellen Methoden zu lösen. Zusätzlich noch eine Optimierung auszuführen birgt zusätzliche Schwierigkeiten. In vielen Fällen können wir das PDGL Problem in einem kompakteren Format formulieren indem wir der zugrundeliegenden Kronecker-Produkt Struktur zwischen Raum- und Zeitdimension Aufmerksamkeit schenken. Wenn die PDGL zusätzlich mit Isogeometrischer Analysis diskretisiert wurde, können wir zusätlich eine Niedrig-Rang Approximation zwischen den einzelnen Raumdimensionen erzeugen. Diese Niedrig-Rang Approximation lässt uns die Systemmatrizen schnell und speicherschonend aufstellen. Das folgende PDGL-Problem lässt sich als Summe aus Kronecker-Produkten beschreiben, welche als eine Niedrig-Rang Tensortrain Formulierung interpretiert werden kann. Diese kann effizient im Niedrig-Rang Format gelöst werden. Wir illustrieren dies mit unterschiedlichen, anspruchsvollen Beispielproblemen.:Introduction Tensor Train Format Isogeometric Analysis PDE-constrained Optimization Bayesian Inverse Problems A low-rank tensor method for PDE-constrained optimization with Isogeometric Analysis A low-rank matrix equation method for solving PDE-constrained optimization problems A low-rank tensor method to reconstruct sparse initial states for PDEs with Isogeometric Analysis Theses and Summary BibilographyOptimization problems governed by Partial Differential Equations (PDEs) arise in various applications of science and engineering. If we formulate a discretization of a PDE problem, it may become infeasible to treat the problem with conventional methods due to its size. Solving an optimization problem on top of the forward problem poses additional difficulties. Often, we can formulate the PDE problem in a more compact format by paying attention to the underlying Kronecker product structure between the space and time dimension of the discretization. When the PDE is discretized with Isogeometric Analysis we can additionally formulate a low-rank representation with Kronecker products between its individual spatial dimensions. This low-rank formulation gives rise to a fast and memory efficient assembly for the system matrices. The PDE problem represented as a sum of Kronecker products can then be interpreted as a low-rank tensor train formulation, which can be efficiently solved in a low-rank format. We illustrate this for several challenging PDE-constrained problems.:Introduction Tensor Train Format Isogeometric Analysis PDE-constrained Optimization Bayesian Inverse Problems A low-rank tensor method for PDE-constrained optimization with Isogeometric Analysis A low-rank matrix equation method for solving PDE-constrained optimization problems A low-rank tensor method to reconstruct sparse initial states for PDEs with Isogeometric Analysis Theses and Summary Bibilograph
    corecore