322 research outputs found

    A numerical comparison of solvers for large-scale, continuous-time algebraic Riccati equations and LQR problems

    Full text link
    In this paper, we discuss numerical methods for solving large-scale continuous-time algebraic Riccati equations. These methods have been the focus of intensive research in recent years, and significant progress has been made in both the theoretical understanding and efficient implementation of various competing algorithms. There are several goals of this manuscript: first, to gather in one place an overview of different approaches for solving large-scale Riccati equations, and to point to the recent advances in each of them. Second, to analyze and compare the main computational ingredients of these algorithms, to detect their strong points and their potential bottlenecks. And finally, to compare the effective implementations of all methods on a set of relevant benchmark examples, giving an indication of their relative performance

    Tuned preconditioners for the eigensolution of large SPD matrices arising in engineering problems

    Get PDF
    In this paper, we study a class of tuned preconditioners that will be designed to accelerate both the DACG-Newton method and the implicitly restarted Lanczos method for the computation of the leftmost eigenpairs of large and sparse symmetric positive definite matrices arising in large-scale scientific computations. These tuning strategies are based on low-rank modifications of a given initial preconditioner. We present some theoretical properties of the preconditioned matrix. We experimentally show how the aforementioned methods benefit from the acceleration provided by these tuned/deflated preconditioners. Comparisons are carried out with the Jacobi-Davidson method onto matrices arising from various large realistic problems arising from finite element discretization of PDEs modeling either groundwater flow in porous media or geomechanical processes in reservoirs. The numerical results show that the Newton-based methods (which includes also the Jacobi-Davidson method) are to be preferred to the - yet efficiently implemented - implicitly restarted Lanczos method whenever a small to moderate number of eigenpairs is required. \ua9 2016 John Wiley & Sons, Ltd

    Convergence of Newton-MR under Inexact Hessian Information

    Full text link
    Recently, there has been a surge of interest in designing variants of the classical Newton-CG in which the Hessian of a (strongly) convex function is replaced by suitable approximations. This is mainly motivated by large-scale finite-sum minimization problems that arise in many machine learning applications. Going beyond convexity, inexact Hessian information has also been recently considered in the context of algorithms such as trust-region or (adaptive) cubic regularization for general non-convex problems. Here, we do that for Newton-MR, which extends the application range of the classical Newton-CG beyond convexity to invex problems. Unlike the convergence analysis of Newton-CG, which relies on spectrum preserving Hessian approximations in the sense of L\"{o}wner partial order, our work here draws from matrix perturbation theory to estimate the distance between the subspaces underlying the exact and approximate Hessian matrices. Numerical experiments demonstrate a great degree of resilience to such Hessian approximations, amounting to a highly efficient algorithm in large-scale problems.Comment: 32 pages, 10 figure

    Scalable iterative methods for sampling from massive Gaussian random vectors

    Full text link
    Sampling from Gaussian Markov random fields (GMRFs), that is multivariate Gaussian ran- dom vectors that are parameterised by the inverse of their covariance matrix, is a fundamental problem in computational statistics. In this paper, we show how we can exploit arbitrarily accu- rate approximations to a GMRF to speed up Krylov subspace sampling methods. We also show that these methods can be used when computing the normalising constant of a large multivariate Gaussian distribution, which is needed for both any likelihood-based inference method. The method we derive is also applicable to other structured Gaussian random vectors and, in particu- lar, we show that when the precision matrix is a perturbation of a (block) circulant matrix, it is still possible to derive O(n log n) sampling schemes.Comment: 17 Pages, 4 Figure
    • …
    corecore