10 research outputs found

    Design of a Radiation-Hardened Optical Transceiver

    Get PDF
    Reliable and efficient communication links are vital in harsh environments where ionizing radiation is present. Optical links specifically are necessary to support the growing need for higher data rates and faster signal processing requirements of devices in these environments. For many years, radiation hardness in electronics has been achieved via specialized manufacturing processes in dedicated foundries. These techniques have failed to scale at the rate of commercial CMOS processes, disallowing for faster and more efficient circuits. One strategy to create radiation tolerant circuits while still retaining the benefits of commercial fabrication is a hard-by-design methodology. Techniques such as enclosed layout (EL) and triple modular redundancy (TMR) can be used to design circuitry tolerant to ionizing radiation. This thesis demonstrates an optical transceiver in a 180nm CMOS process based on a transmit vertical-cavity surface-emitting laser (VCSEL) and a receive photo-detector (PD) with radiation-hardened circuitry. The transceiver has been characterized electrically and comparisons between the radiation hardened and non radiation-hardened versions were performed in the Texas A&M Cyclotron Institute and Nuclear Engineering & Science Center (NESC)

    Integrated Circuit Design for Hybrid Optoelectronic Interconnects

    Get PDF
    This dissertation focuses on high-speed circuit design for the integration of hybrid optoelectronic interconnects. It bridges the gap between electronic circuit design and optical device design by seamlessly incorporating the compact Verilog-A model for optical components into the SPICE-like simulation environment, such as the Cadence design tool. Optical components fabricated in the IME 130nm SOI CMOS process are characterized. Corresponding compact Verilog-A models for Mach-Zehnder modulator (MZM) device are developed. With this approach, electro-optical co-design and hybrid simulation are made possible. The developed optical models are used for analyzing the system-level specifications of an MZM based optoelectronic transceiver link. Link power budgets for NRZ, PAM-4 and PAM-8 signaling modulations are simulated at system-level. The optimal transmitter extinction ratio (ER) is derived based on the required receiver\u27s minimum optical modulation amplitude (OMA). A limiting receiver is fabricated in the IBM 130 nm CMOS process. By side- by-side wire-bonding to a commercial high-speed InGaAs/InP PIN photodiode, we demonstrate that the hybrid optoelectronic limiting receiver can achieve the bit error rate (BER) of 10-12 with a -6.7 dBm sensitivity at 4 Gb/s. A full-rate, 4-channel 29-1 length parallel PRBS is fabricated in the IBM 130 nm SiGe BiCMOS process. Together with a 10 GHz phase locked loop (PLL) designed from system architecture to transistor level design, the PRBS is demonstrated operating at more than 10 Gb/s. Lessons learned from high-speed PCB design, dealing with signal integrity issue regarding to the PCB transmission line are summarized

    Photonic and Electronic Co-integration for Millimetre-Wave Hybrid Photonic-Wireless Links

    Get PDF

    Photonic and Electronic Co-integration for Millimetre-Wave Hybrid Photonic-Wireless Links

    Get PDF

    Towards the Design of Robust High-Speed and Power Efficient Short Reach Photonic Links

    Get PDF
    In 2014, approximately eight trillion transistors were fabricated every second thanks to improvements in integration density and fabrication processes. This increase in integration and functionality has also brought about the possibility of system on chip (SoC) and high-performance computing (HPC). Electrical interconnects presently dominate the very-short reach interconnect landscape (< 5 cm) in these applications. This, however, is expected to change. These interconnects' downfall will be caused by their need for impedance matching, limited pin-density and frequency dependent loss leading to intersymbol interference. In an attempt to solve this, researchers have increasingly explored integrated silicon photonics as it is compatible with current CMOS processes and creates many possibilities for short-reach applications. Many see optical interconnects as the high-speed link solution for applications ranging from intra-data center (~200 m) down to module or even chip scales (< 2 cm). The attractive properties of optical interconnects, such as low loss and multiplexing abilities, will enable such things as Exascale high-performance computers of the future (equal to 10^18 calculations per second). In fact, forecasts predict that by 2025 photonics at the smallest levels of the interconnect hierarchy will be a reality. This thesis presents three novel research projects, which all work towards increasing robustness and cost-efficiency in short-reach optical links. It discusses three parts of the optical link: the interconnect, the receiver and the photodiode. The first topic of this thesis is exploratory work on the use of an optical multiplexing technique, mode-division multiplexing (MDM), to carry multiple data lanes along with a forwarded clock for very short-reach applications. The second topic discussed is a novel reconfigurable CMOS receiver proposed as a method to map a clock signal to an interconnect lane in an MDM source-synchronous link with the lowest optical crosstalk. The receiver is designed as a method to make electronic chips that suit the needs of optical ones. By leveraging the more robust electronic integrated circuit, link solutions can be tuned to meet the needs of photonic chips on a die by die basis. The third topic of this thesis proposes a novel photodetector which uses photonic grating couplers to redirect vertical incident light to the horizontal direction. With this technique, the light is applied along the entire length of a p-n junction to improve the responsivity and speed of the device. Experimental results for this photodetector at 35 Gb/s are published, showing it to be the fastest all-silicon based photodetector reported in the literature at the time of publication

    Modeling and Design of High-Speed CMOS Receivers for Short-Reach Photonic Links

    Get PDF
    This dissertation presents several research outcomes towards designing high-speed CMOS optical receivers for energy-efficient short-reach optical links. First, it provides a wide survey of recently published equalizer-based receivers and presents a novel methodology to accurately calculate their noise. The proposed methodology is then used to find the receiver that achieves the best sensitivity. Second, the trade-off between sensitivity and power dissipation of the receiver is optimized to reduce the energy consumption per bit of the overall link. Design trade-offs for the receiver, transmitter, and the overall link are presented, and comparisons are made to study how much receiver sensitivity can be sacrificed to save its power dissipation before this power reduction is outpaced by the transmitter’s increase in power. Unlike conventional wisdom, our results show that energy-efficient links require low-power receivers with input capacitance much smaller than that required for noise-optimum performance. Third, the thesis presents a novel equalization technique for optical receivers. A linear equalizer (LE) is realized by adding a pole in the feedback paths of an active feedback-based wideband amplifier. By embedding the peaking in the main amplifier (MA), the front-end meets the sensitivity and gain of conventional LE-based receivers with better energy efficiency by eliminating the standalone equalizer stage(s). Electrical measurements are presented to demonstrate the capability of the proposed technique in restoring the bandwidth and improving the performance over the conventional design
    corecore