8,880 research outputs found

    redicting dynamic specifications of ADCs with a low-quality digital input signal

    Get PDF
    A new method is presented to test dynamic parameters of Analogue-to-Digital Converters (ADC). A noisy and nonlinear pulse is applied as the test stimulus, which is suitable for a multi-site test environment. The dynamic parameters are predicted using a machine-learning-based approach. A training step is required in order to build the mapping function using alternate signatures and the conventional test parameters, all measured on a set of converters. As a result, for industrial testing, only a simple signature-based test is performed on the Devices-Under-Test (DUTs). The signature measurements are provided to the mapping function that is used to predict the conventional dynamic parameters. The method is validated by simulation on a 12-bit 80 Ms/s pipelined ADC with a pulse wave input signal of 3 LSB noise and 7-bit nonlinear rising and falling edges. The final results show that the estimated mean error is less than 4% of the full range of the dynamic specifications

    Improved method for SNR prediction in machine-learning-based test

    Get PDF
    This paper applies an improved method for testing the signal-to-noise ratio (SNR) of Analogue-to-Digital Converters (ADC). In previous work, a noisy and nonlinear pulse signal is exploited as the input stimulus to obtain the signature results of ADC. By applying a machine-learning-based approach, the dynamic parameters can be predicted by using the signature results. However, it can only estimate the SNR accurately within a certain range. In order to overcome this limitation, an improved method based on work is applied in this work. It is validated on the Labview model of a 12-bit 80 Ms/s pipelined ADC with a pulse- wave input signal of 3 LSB noise and 7-bit nonlinear rising and falling edges

    Built-In Self-Test Methodology for A/D Converters

    Get PDF
    A (partial) Built-in Self-Test (BIST) methodology is proposed for analog to digital (A/D) converters. In this methodology the number of bits of the A/D converter that needs to be monitored externally in a test is reduced. This reduction depends, among other things, on the frequency of the applied test signal. At low test signal frequencies only the least significant bit (LSB) needs to be monitored and a "full" BIST becomes feasible. An analysis is made of the trade-off between the size of the on-chip test circuitry and the accuracy of this BIST techniqu

    [Report of] Specialist Committee V.4: ocean, wind and wave energy utilization

    No full text
    The committee's mandate was :Concern for structural design of ocean energy utilization devices, such as offshore wind turbines, support structures and fixed or floating wave and tidal energy converters. Attention shall be given to the interaction between the load and the structural response and shall include due consideration of the stochastic nature of the waves, current and wind

    The test ability of an adaptive pulse wave for ADC testing

    Get PDF
    In the conventional ADC production test method, a high-quality analogue sine wave is applied to the Analogue-to-Digital Converter (ADC), which is expensive to generate. Nowadays, an increasing number of ADCs are integrated into a system-on-chip (SoC) platform design, which usually contains a digital embedded processor. In such a platform, a digital pulse wave is obviously less expensive to generate than an accurate analogue sine wave. As a result, the usage of a digital pulse wave has been investigated to test ADCs as the test stimulus. In this paper, the ability of a digital adaptive pulse wave for ADC testing is presented via the measurement results. Instead of the conventional FFT analysis, a time-domain analysis is exploited for post-processing, from which a signature result can be obtained. This signature can distinguish between faulty devices and the fault-free devices. It is also used in the machine-learning-based test method to predict the dynamic specifications of the ADC. The experimental results of a 12-bit 80 M/s pipelined ADC are shown to evaluate the sensitivity and accuracy of using a pulse wave to test an ADC

    Evaluation Of 28nm 10 Bit Adc Using Ramp And Sinusoidal Histogram Methodologies

    Get PDF
    ADC production testing has become more challenging due to more stringent test procedure for new generation of ADC. The trend for silicon cost is going down while the cost of test is going up. Therefore, to reduce the cost of test and preserve the test accuracy is essential for high volume testing in production. This research is conducted for accurate ADC testing using histogram methodologies. Histogram methodology is the most common test procedure used in high volume production testing. In the past there were a lot of studies on testing the ADC but there were no emphasizing on various histogram methodologies for high volume testing. This research objective is to develop test solutions for 28nm 10 bit ADC using histogram methodologies. The outcome from this research has clearly shows that the test program that has been developed is able to segregate the good and bad devices. 98.18% of the devices are able to pass the ADC testing while remaining 1.82% fail the ADC test. It was found that Ramp Histogram and Sinusoidal Histogram method has achieved this research objective as both methodologies shows similar result based on comparison that has been made. It was known that accurate ADC testing requires large sample size. This research found that multi-site testing was able to compensate the drawback in histogram methodologies. The result shows that multi-site testing is 63.72% more efficient in term of ADC testing time

    Expert system based switched mode power supply design

    Get PDF
    • 

    corecore