6 research outputs found

    Optical Gaze Tracking with Spatially-Sparse Single-Pixel Detectors

    Get PDF
    Gaze tracking is an essential component of next generation displays for virtual reality and augmented reality applications. Traditional camera-based gaze trackers used in next generation displays are known to be lacking in one or multiple of the following metrics: power consumption, cost, computational complexity, estimation accuracy, latency, and form-factor. We propose the use of discrete photodiodes and light-emitting diodes (LEDs) as an alternative to traditional camera-based gaze tracking approaches while taking all of these metrics into consideration. We begin by developing a rendering-based simulation framework for understanding the relationship between light sources and a virtual model eyeball. Findings from this framework are used for the placement of LEDs and photodiodes. Our first prototype uses a neural network to obtain an average error rate of 2.67{\deg} at 400Hz while demanding only 16mW. By simplifying the implementation to using only LEDs, duplexed as light transceivers, and more minimal machine learning model, namely a light-weight supervised Gaussian process regression algorithm, we show that our second prototype is capable of an average error rate of 1.57{\deg} at 250 Hz using 800 mW.Comment: 10 pages, 8 figures, published in IEEE International Symposium on Mixed and Augmented Reality (ISMAR) 202

    A Regression-based User Calibration Framework for Real-time Gaze Estimation

    Get PDF
    Eye movements play a very significant role in human computer interaction (HCI) as they are natural and fast, and contain important cues for human cognitive state and visual attention. Over the last two decades, many techniques have been proposed to accurately estimate the gaze. Among these, video-based remote eye trackers have attracted much interest since they enable non-intrusive gaze estimation. To achieve high estimation accuracies for remote systems, user calibration is inevitable in order to compensate for the estimation bias caused by person-specific eye parameters. Although several explicit and implicit user calibration methods have been proposed to ease the calibration burden, the procedure is still cumbersome and needs further improvement. In this paper, we present a comprehensive analysis of regression-based user calibration techniques. We propose a novel weighted least squares regression-based user calibration method together with a real-time cross-ratio based gaze estimation framework. The proposed system enables to obtain high estimation accuracy with minimum user effort which leads to user-friendly HCI applications. Experimental results conducted on both simulations and user experiments show that our framework achieves a significant performance improvement over the state-of-the-art user calibration methods when only a few points are available for the calibration

    Regression Based Gaze Estimation with Natural Head Movement

    Get PDF
    This thesis presents a non-contact, video-based gaze tracking system using novel eye detection and gaze estimation techniques. The objective of the work is to develop a real-time gaze tracking system that is capable of estimating the gaze accurately under natural head movement. The system contains both hardware and software components. The hardware of the system is responsible for illuminating the scene and capturing facial images for further computer analysis, while the software implements the core technique of gaze tracking which consists of two main modules, i.e., eye detection subsystem and gaze estimation subsystem. The proposed gaze tracking technique uses image plane features, namely, the inter-pupil vector (IPV) and the image center-inter pupil center vector (IC-IPCV) to improve gaze estimation precision under natural head movement. A support vector regression (SVR) based estimation method using image plane features along with traditional pupil center-cornea reflection (PC-CR) vector is also proposed to estimate the gaze. The designed gaze tracking system can work in real-time and achieve an overall estimation accuracy of 0.84º with still head and 2.26º under natural head movement. By using the SVR method for off-line processing, the estimation accuracy with head movement can be improved to 1.12º while providing a tolerance of 10cm×8cm×5cm head movement

    Um Estudo de Mapeamento Sistemático sobre Metodologias de Avaliação em Interação Humano-Computador voltadas à Tecnologia Assistiva com foco em Pessoas com Deficiência Motora

    Get PDF
    A proposição de uma Tecnologia Assistiva (TA) para a interação com o computador é ainda um grande desafio, uma vez que os dispositivos de interação precisam estar adaptados às necessidades e habilidades dos usuários. Este desafio é atualmente abordado pela área de Interação Humano-Computador (IHC), que explora o projeto, implementação e avaliação de sistemas informáticos computacionais interativos. No caso da avaliação de um dispositivo voltado para TA é ela que, além de outros fatores de performance, irá validar se a TA é realmente voltada para o público alvo. Este trabalho explora metodologias de avaliação em IHC com foco em pessoas com deficiência motora nos membros superiores, resultado de um mapeamento sistemático da literatura. Por fim, este trabalho incluí uma proposta de taxonomia de como estes dispositivos de TA são classificados quanto às suas formas de captação de dados.

    Robust Eye Tracking Based on Adaptive Fusion of Multiple Cameras

    Get PDF
    Eye and gaze movements play an essential role in identifying individuals' emotional states, cognitive activities, interests, and attention among other behavioral traits. Besides, they are natural, fast, and implicitly reflect the targets of interest, which makes them a highly valuable input modality in human-computer interfaces. Therefore, tracking gaze movements, in other words, eye tracking is of great interest to a large number of disciplines, including human behaviour research, neuroscience, medicine, and human-computer interaction. Tracking gaze movements accurately is a challenging task, especially under unconstrained conditions. Over the last two decades, significant advances have been made in improving the gaze estimation accuracy. However, these improvements have been achieved mostly under controlled settings. Meanwhile, several concerns have arisen, such as the complexity, inflexibility and cost of the setups, increased user effort, and high sensitivity to varying real-world conditions. Despite various attempts and promising enhancements, existing eye tracking systems are still inadequate to overcome most of these concerns, which prevent them from being widely used. In this thesis, we revisit these concerns and introduce a novel multi-camera eye tracking framework. The proposed framework achieves a high estimation accuracy while requiring a minimal user effort and a non-intrusive flexible setup. In addition, it provides improved robustness to large head movements, illumination changes, use of eye wear, and eye type variations across users. We develop a novel real-time gaze estimation framework based on adaptive fusion of multiple single-camera systems, in which the gaze estimation relies on projective geometry. Besides, to ease the user calibration procedure, we investigate several methods to model the subject-specific estimation bias, and consequently, propose a novel approach based on weighted regularized least squares regression. The proposed method provides a better calibration modeling than state-of-the-art methods, particularly when using low-resolution and limited calibration data. Being able to operate with low-resolution data also enables to utilize a large field-of-view setup, so that large head movements are allowed. To address aforementioned robustness concerns, we propose to leverage multiple eye appearances simultaneously acquired from various views. In comparison with conventional single view approach, the main benefit of our approach is to more reliably detect gaze features under challenging conditions, especially when they are obstructed due to large head pose or movements, or eye glasses effects. We further propose an adaptive fusion mechanism to effectively combine the gaze outputs obtained from multi-view appearances. To this effect, our mechanism firstly determines the estimation reliability of each gaze output and then performs a reliability-based weighted fusion to compute the overall point of regard. In addition, to address illumination and eye type robustness, the setup is built upon active illumination and robust feature detection methods are developed. The proposed framework and methods are validated through extensive simulations and user experiments featuring 20 subjects. The results demonstrate that our framework provides not only a significant improvement in gaze estimation accuracy but also a notable robustness to real-world conditions, making it suitable for a large spectrum of applications
    corecore