22,981 research outputs found

    Information-theoretic Physical Layer Security for Satellite Channels

    Full text link
    Shannon introduced the classic model of a cryptosystem in 1949, where Eve has access to an identical copy of the cyphertext that Alice sends to Bob. Shannon defined perfect secrecy to be the case when the mutual information between the plaintext and the cyphertext is zero. Perfect secrecy is motivated by error-free transmission and requires that Bob and Alice share a secret key. Wyner in 1975 and later I.~Csisz\'ar and J.~K\"orner in 1978 modified the Shannon model assuming that the channels are noisy and proved that secrecy can be achieved without sharing a secret key. This model is called wiretap channel model and secrecy capacity is known when Eve's channel is noisier than Bob's channel. In this paper we review the concept of wiretap coding from the satellite channel viewpoint. We also review subsequently introduced stronger secrecy levels which can be numerically quantified and are keyless unconditionally secure under certain assumptions. We introduce the general construction of wiretap coding and analyse its applicability for a typical satellite channel. From our analysis we discuss the potential of keyless information theoretic physical layer security for satellite channels based on wiretap coding. We also identify system design implications for enabling simultaneous operation with additional information theoretic security protocols

    Extinction calculations of multi-sphere polycrystalline graphitic clusters - A comparison with the 2175 AA peak and between a rigorous solution and discrete-dipole approximations

    Get PDF
    Certain dust particles in space are expected to appear as clusters of individual grains. The morphology of these clusters could be fractal or compact. In this paper we study the light scattering by compact and fractal polycrystalline graphitic clusters consisting of touching identical spheres. We compare three general methods for computing the extinction of the clusters in the wavelength range 0.1 - 100 micron, namely, a rigorous solution (Gerardy & Ausloos 1982) and two different discrete-dipole approximation methods -- MarCODES (Markel 1998) and DDSCAT (Draine & Flatau 1994). We consider clusters of N = 4, 7, 8, 27,32, 49, 108 and 343 particles of radii either 10 nm or 50 nm, arranged in three different geometries: open fractal (dimension D = 1.77), simple cubic and face-centred cubic. The rigorous solution shows that the extinction of the fractal clusters, with N < 50 and particle radii 10 nm, displays a peak within 2% of the location of the observed interstellar extinction peak at ~4.6 inverse micron; the smaller the cluster, the closer its peak gets to this value. By contrast, the peak in the extinction of the more compact clusters lie more than 4% from 4.6 inverse micron. At short wavelengths (0.1 - 0.5 micron), all the methods show that fractal clusters have markedly different extinction from those of non-fractal clusters. At wavelengths > 5 micron, the rigorous solution indicates that the extinction from fractal and compact clusters are of the same order of magnitude. It was only possible to compute fully converged results of the rigorous solution for the smaller clusters, due to computational limitations, however, we find that both discrete-dipole approximation methods overestimate the computed extinction of the smaller fractal clusters.Comment: Corrections added in accordance with suggestions by the referee. 12 pages, 12 figures. Accepted for publication in Astronomy & Astrophysic

    Irregular polar coding for complexity-constrained lightwave systems

    Get PDF
    Next-generation fiber-optic communications call for ultra-reliable forward error correction codes that are capable of low-power and low-latency decoding. In this paper, we propose a new class of polar codes, whose polarization units are irregularly pruned to reduce computational complexity and decoding latency without sacrificing error correction performance. We then experimentally demonstrate that the proposed irregular polar codes can outperform state-of-the-art low-density parity-check (LDPC) codes, while decoding complexity and latency can be reduced by at least 30% and 70%, respectively, versus regular polar codes, while also obtaining a marginal performance improvement

    The 2D Continuum Radiative Transfer Problem: Benchmark Results for Disk Configurations

    Get PDF
    We present benchmark problems and solutions for the continuum radiative transfer (RT) in a 2D disk configuration. The reliability of three Monte-Carlo and two grid-based codes is tested by comparing their results for a set of well-defined cases which differ for optical depth and viewing angle. For all the configurations, the overall shape of the resulting temperature and spectral energy distribution is well reproduced. The solutions we provide can be used for the verification of other RT codes.We also point out the advantages and disadvantages of the various numerical techniques applied to solve the RT problem.Comment: 13 pages, 10 figures, To appear in Astronomy and Astrophysic

    Imperfect Digital Fibre Optic Link Based Cooperative Distributed Antennas with Fractional Frequency Reuse in Multicell Multiuser Networks

    No full text
    The achievable throughput of the entire cellular area is investigated, when employing fractional frequency reuse techniques in conjunction with realistically modelled imperfect optical fibre aided distributed antenna systems (DAS) operating in a multicell multiuser scenario. Given a fixed total transmit power, a substantial improvement of the cell-edge area's throughput can be achieved without reducing the cell-centre's throughput. The cell-edge's throughput supported in the worst-case direction is significantly enhanced by the cooperative linear transmit processing technique advocated. Explicitly, a cell-edge throughput of η=5\eta=5 bits/s/Hz may be maintained for an imperfect optical fibre model, regardless of the specific geographic distribution of the users
    corecore