4 research outputs found

    Geographical forwarding algorithm based video content delivery scheme for internet of vehicles (IoV)

    Get PDF
    This is an accepted manuscript of an article published by IEEE Multimedia Communications Technical Committee in MMTC Communications ā€“ Frontiers on 31/07/2020, available online: https://mmc.committees.comsoc.org/files/2020/07/MMTC_Communication_Frontier_July_2020.pdf The accepted version of the publication may differ from the final published version.An evolved form of Vehicular Ad hoc Networks (VANET) has recently emerged as the Internet of Vehicles (IoV). Though, there are still some challenges that need to be addressed in support IoV applications. The objective of this research is to achieve an efficient video content transmission over vehicular networks. We propose a balanced video-forwarding algorithm for delivering video-based content delivery scheme. The available neighboring vehicles will be ranked to the vehicle in forwarding progress before transmitting the video frames using proposed multi-score function. Considering the current beacon reception rate, forwarding progress and direction to destination, in addition to residual buffer length; the proposed algorithm can elect the best candidate to forward the video frames to the next highest ranked vehicles in a balanced way taking in account their residual buffer lengths. To facilitate the proposed video content delivery scheme, an approach of H.264/SVC was improvised to divide video packets into various segments, to be delivered into three defined groups. These created segments can be encoded and decoded independently and integrated back to produce the original packet sent by source vehicle. Simulation results demonstrate the efficiency of our proposed algorithm in improving the perceived video quality compared with other approache

    Video Streaming over Vehicular Ad Hoc Networks: A Comparative Study and Future Perspectives

    Get PDF
    VehicularĀ  Ad Hoc NetworkĀ  (VANET) is emerged as an important research area that providesĀ ubiquitous short-range connectivity among moving vehicles. Ā This network enables efficient traffic safety and infotainment applications. One of the promising applications is video transmission in vehicle-to-vehicle or vehicle-to-infrastructure environments.Ā  But, video streaming over vehicular environment is a daunting task due to high movement of vehicles. This paper presents a survey on state-of-arts of video streaming over VANET. Furthermore, taxonomy of vehicular video transmission is highlighted in this paper with special focus on significant applications and their requirements with challenges, video content sharing, multi-source video streaming and video broadcast services. The comparative study of the paper compares the video streaming schemes based on type of error resilient technique, objective of study, summary of their study, the utilized simulator and the type of video sharing.Ā  Lastly, we discussed the open issues and research directions related to video communication over VANET

    Adaptive Content Frame Skipping for Wynerā€“Ziv-Based Light Field Image Compression

    Full text link
    Light field (LF) imaging introduces attractive possibilities for digital imaging, such as digital focusing, post-capture changing of the focal plane or view point, and scene depth estimation, by capturing both spatial and angular information of incident light rays. However, LF image compression is still a great challenge, not only due to light field imagery requiring a large amount of storage space and a large transmission bandwidth, but also due to the complexity requirements of various applications. In this paper, we propose a novel LF adaptive content frame skipping compression solution by following a Wynerā€“Ziv (WZ) coding approach. In the proposed coding approach, the LF image is firstly converted into a four-dimensional LF (4D-LF) data format. To achieve good compression performance, we select an efficient scanning mechanism to generate a 4D-LF pseudo-sequence by analyzing the content of the LF image with different scanning methods. In addition, to further explore the high frame correlation of the 4D-LF pseudo-sequence, we introduce an adaptive frame skipping algorithm followed by decision tree techniques based on the LF characteristics, e.g., the depth of field and angular information. The experimental results show that the proposed WZ-LF coding solution achieves outstanding rate distortion (RD) performance while having less computational complexity. Notably, a bit rate saving of 53% is achieved compared to the standard high-efficiency video coding (HEVC) Intra codec.</jats:p

    An Energy-efficient Live Video Coding and Communication over Unreliable Channels

    Get PDF
    In the ļ¬eld of multimedia communications there exist many important applications where live or real-time video data is captured by a camera, compressed and transmitted over the channel which can be very unreliable and, at the same time, computational resources or battery capacity of the transmission device are very limited. For example, such scenario holds for video transmission for space missions, vehicle-to-infrastructure video delivery, multimedia wireless sensor networks, wireless endoscopy, video coding on mobile phones, high deļ¬nition wireless video surveillance and so on. Taking into account such restrictions, a development of eļ¬ƒcient video coding techniques for these applications is a challenging problem. The most popular video compression standards, such as H.264/AVC, are based on the hybrid video coding concept, which is very eļ¬ƒcient when video encoding is performed oļ¬€-line or non real-time and the pre-encoded video is played back. However, the high computational complexity of the encoding and the high sensitivity of the hybrid video bit stream to losses in the communication channel constitute a signiļ¬cant barrier of using these standards for the applications mentioned above. In this thesis, as an alternative to the standards, a video coding based on three-dimensional discrete wavelet transform (3-D DWT) is considered as a candidate to provide a good trade-oļ¬€ between encoding eļ¬ƒciency, computational complexity and robustness to channel losses. Eļ¬ƒcient tools are proposed to reduce the computational complexity of the 3-D DWT codec. These tools cover all levels of the codecā€™s development such as adaptive binary arithmetic coding, bit-plane entropy coding, wavelet transform, packet loss protection based on error-correction codes and bit rate control. These tools can be implemented as end-to-end solution and directly used in real-life scenarios. The thesis provides theoretical, simulation and real-world results which show that the proposed 3-D DWT codec can be more preferable than the standards for live video coding and communication over highly unreliable channels and or in systems where the video encoding computational complexity or power consumption plays a critical role
    corecore