15 research outputs found

    A 0.45pJ/conv-step 1.2Gs/s 6b full-Nyquist non-calibrated flash ADC in 45nm CMOS and its scaling behavior

    Get PDF
    A 6-bit 1.2 Gs/s non-calibrated flash ADC in a standard 45nm CMOS process, that achieves 0.45pJ/conv-step at full Nyquist bandwidth, is presented. Power efficient operation is achieved by a full optimization of amplifier blocks, and by innovations in the comparator and encoding stage. The performance of a non-calibrated flash ADC is directly related to device properties;\ud a scaling analysis of our ADC in and across CMOS technologies gives insight into the excellent usability of 45nm technology for AD converter design

    The impact of CMOS scaling projected on a 6b full-Nyquist non-calibrated flash ADC

    Get PDF
    A 6-bit 1.2 Gs/s non-calibrated flash ADC in a standard 45nm CMOS process, that achieves 0.45pJ/conv-step at full Nyquist bandwidth, is presented. Power efficient operation is achieved by a full optimization of amplifier blocks, and by innovations in the comparator and encoding stage. The performance of a non-calibrated flash ADC is directly related to device properties; a scaling analysis of our ADC in and across CMOS technologies gives insight into the excellent usability of 45nm technology for AD converter design

    Implementation on Low Power Design Using Comparator for VLSI Design Circuit

    Get PDF
    ABSTRACT: A 8-bit 5GS/s streak simple to-advanced converter (ADC) is composed and reproduced in a 0.18μm CMOS innovation. Low-swing operation both in the simple and the computerized hardware brings about fast low power operation. The ADC disperses 30mW force from a 3.2V supply while working at 5GHz. Balanced averaging is utilized to minimize the impact of comparator balances. The estimation of greatest differential and indispensable nonlinearities (DNL and INL) of the Flash ADC are 0.2 LSB and 0.5 LSB separately. Simple to-advanced converter (ADC) has ended up fundamental structure for the vast majority of the hardware and correspondence frameworks. Comparator constitutes the fundamental part in simple to computerized transformation (ADC). It is essentially the first stage in ADC, which changes over the sign from simple to computerized space. KEYWORD: Variable switching voltage, threshold inverter quantization, comparator, Flash ADC . I. INTRODUCTION The Flash ADC is the speediest ADC among a wide range of accessible ADC architectures. A N-Bit Flash ADC utilizes the 2N-1 comparators for information change. Nonetheless, these comparators devour substantial power as they work at the same time in parallel manner. The Streak ADC additionally obliges resistor stepping stool circuit or capacitor exhibit circuit for reference voltage era II. RELATED RESEARCH WORK To minimize the force utilization and enhance the execution grids of ADC, the scrutinizes essentially concentrate on the streamlining of the comparator circuit. In this area, the exploration work under dialog contains just Flash ADC outline utilizing edge voltage scaling of the comparator. In [5], a static inverter circuit has been investigated as programmable intelligent cradle circuit and it has been proposed that the rationale limit voltage of CMOS inverter can be modified to diverse particular coherent voltages. These variable coherent voltages can be assessed numerically. In Propelled by the limit voltage scaling, a decreased kickback comparator has been reported in writin

    A low power serial output flash ADC in 0,18 μm CMOS process

    Get PDF
    U radu se predlaže jednostavan projekt impulsno analogno-digitalnog pretvarača (ADC) u 0,18 μm CMOS tehnologiji. Taj bi se pretvarač trebao koristiti u senzoru temperature, koji daje izlaz analognih podataka u rasponu od 360 mV do 560 mV. Sustav se sastoji od tri glavna bloka: threshold inverter quantization (TIQ) - komparatora, kodnog uređaja (kodera) i parallel input serial output (PISO) registra. Svrha je projekta dobiti impulsni ADC s malim gubitkom energije, malih dimenzija i kompatibilnim sa senzorima temperature. Ovom bi se metodom trebala podesiti dužina svakog kanala tranzistora u svrhu pronalaženja razlike u ulaznom naponu pretvarača na TIQ komparatoru. Projektom se predviđa ulazni raspon od 285 do 600 mV i izlaz rezolucije 6-bita. Površina čipa projektiranog ADC je 844,48 × 764,77 μm2 a gubitak energije iznosi 0,162 μW uz napajanje od 1,6 V.This paper proposes a simple design of a flash analog-to-digital converter (ADC) in 0,18 μm CMOS technology. This ADC is expected to be used within a temperature sensor, which provides analog data output having a range of 360 mV to 560 mV. This system consists of three main blocks: the threshold inverter quantization (TIQ)-comparator, encoder and parallel input serial output (PISO) register. The design goal is to get a flash ADC with low power dissipation, small size and compatible with the temperature sensors. The method is proposed to set each of the transistor channel length, for finding out the threshold voltage difference of the inverter each on the TIQ comparator. The design has an input range of 285 to 600 mV and 6-bit resolution output. The chip area of the designed ADC is 844,48 × 764,77 μm2 and the power dissipation is 0,162 μW with 1,6 V supply voltage

    Design and implementation of a high speed and low power flash ADC with fully dynamic comparators

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Aportaciones al diseño de ADCs en tecnologías nanométricas y para entornos de alta radiación

    Get PDF
    El trabajo presentado a lo largo de esta Tesis Doctoral está intrínsecamente relacionado con la evolución del diseño de circuitos integrados analógicos y de señal mixta empleando tecnologías nanométricas. En los últimos años, el desarrollo de dichas tecnologías ha posibilitado un avance gigantesco en cuanto a funcionalidad y velocidad de los sistemas de comunicaciones, provocando un gran auge en los sistemas de comunicaciones, con especial relevancia de los estándares inalámbricos. No obstante, también han surgido nuevos retos a nivel arquitectural y de diseño derivados, en gran medida, de los efectos del escalado tecnológico, que obligan a la búsqueda de nuevas soluciones para adecuarse a unas restricciones cada vez más exigentes. En la presente Tesis Doctoral se han realizado aportaciones en dos ámbitos destinados a aplicaciones de interés para el diseño microelectrónico analógico en tecnologías nanométricas: 1. Diseño de convertidores Analógico-Digital de muy alta velocidad. Los nuevos estándares de comunicaciones de banda ancha o la mayor velocidad de lectura de los soportes de almacenamiento de información incrementan la necesidad de mayor velocidad de conversión en el diseño de convertidores Analógico-Digital (A/D). Los convertidores con arquitectura flash o de conversión directa suelen ser los más utilizados para este tipo de aplicaciones. Sin embargo, la resolución de dichos convertidores se ve seriamente comprometida por el error de offset de los comparadores utilizados, que en tecnologías nanométricas resulta especialmente sensible a las variaciones de procesos. Las prestaciones de las técnicas tradicionales se ven afectadas por los efectos del escalado, siendo necesario emplear nuevas técnicas que permitan alcanzar los requerimientos con un consumo energético eficiente. 2. Diseño robusto de circuitos analógicos para aplicaciones espaciales y nucleares. Las frecuencias de trabajo cada vez más elevadas y dimensiones de los transistores más y más pequeñas hacen que la influencia de los Efectos de Eventos Singulares (SEE) sea cada vez más crítica, tanto en los circuitos digitales como analógicos. La evolución de las tecnologías CMOS ha contribuido a incrementar los riesgos de errores críticos en circuitos en entornos de alta radiación, donde la interacción de iones pesados con los componentes analógicos puede dar lugar a variaciones transitorias o permanentes en su comportamiento. Por una parte, las frecuencias de funcionamiento cada vez más altas pueden incrementar la sensibilidad ante la captura de Eventos Singulares Transitorios (SET), aumentando el riesgo de propagación de errores. Además, los SET son fuertemente dependientes de la configuración eléctrica de los dispositivos, pudiendo afectar muy seriamente al rendimiento e incluso a la funcionalidad de los circuitos. Es por ello que el estudio de estos impactos y su influencia en circuitos analógicos ha adquirido en los últimos años una enorme relevancia, ya que un análisis de las posibles vulnerabilidades puede proporcionar información clave para el diseño de sistemas robustos contra la radiación. Dentro del primer ámbito de investigación se ha diseñado un convertidor A/D de 6 bits de tipo flash para el estándar de comunicaciones Ultra-WideBand (UWB). En primer lugar, se han estudiado de las limitaciones que imponen las tecnologías nanométricas con vistas a su aplicación al diseño microelectrónico en convertidores de alta velocidad y bajo consumo. Se ha determinado que el comportamiento de los convertidores A/D de tipo flash está limitado por errores causados por las mayores variaciones en los procesos. Mediante el análisis de la literatura, se han estudiado e identificado diferentes técnicas y tendencias seguidas por la comunidad científica en los últimos años con el objetivo de incrementar la eficiencia energética en el ámbito considerado. En concreto, se han descrito y referido numerosas técnicas de compensación, interpolación, submuestreo y simplificación de la circuitería analógica. Como principal aportación original en este campo, se propone una técnica novedosa de calibración para compensación de offset y mismatch en el dominio analógico. Sobre la topología básica de un convertidor flash, se emplean técnicas de interpolación capacitiva para disminuir el número de amplificadores, mejorando las prestaciones en consumo sobre esquemas tradicionales. El esquema propuesto no usa capacidades a la entrada del convertidor, reduciendo así la carga en la misma y disminuyendo el consumo de los bloques anteriores. Además, la técnica presentada requiere de una única fase de reloj, disponiendo los amplificadores de más tiempo de trabajo en cada ciclo, resultando en una menor exigencia en sus prestaciones y ahorro en consumo. En el ámbito del diseño microelectrónico para aplicaciones en entornos de alta radiación, la principal aportación de esta Tesis Doctoral ha sido el desarrollo de un nuevo software de ayuda al diseño de circuitos robusto a radiación: AFTU (Analog Fault Tolerant University of Seville Debugging System). En el contexto considerado y en el marco de proyectos financiados por la Agencia Espacial Europea (Cosmic Vision, FTU2), se constata la necesidad de seguir una estricta metodología de evaluación y test de los circuitos diseñados para asegurar el correcto funcionamiento en entornos de alta radiación. El conocimiento de las partes más vulnerables a los efectos de la radiación es un punto crítico para el diseño tolerante a fallos de circuitos microelectrónicos en aplicaciones para el espacio, y se requiere una herramienta que permita un análisis rápido de vulnerabilidades en etapas tempranas de diseño. A lo largo de esta Tesis, se describe la arquitectura de la herramienta desarrollada, así como las principales características, parámetros de interés y ejemplos que permitan conocer su uso y potencialidad. Para evaluar y depurar el funcionamiento de la misma se ha evaluado la sensibilidad a SET de diferentes circuitos reales, empleando tanto diseños propios como ajenos analizados en colaboración con empresas. Esta evaluación ha permitido tanto depurar los errores detectados en el prototipo inicial, como definir nuevas heurísticas para el análisis de sensibilidad, así como incorporar paulatinamente nuevas tecnologías sobre las que poder realizar el análisis de sensibilidad ante SEE. Se incluyen en esta Tesis Doctoral algunos ejemplos de circuitos analizados, como muestra del potencial de la herramienta desarrollada

    A highly digital, reconfigurable and voltage scalable SAR ADC

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 109-112).Micropower sensor networks have a broad range of applications which include military surveillance, environmental monitoring, chemical detection and more recently, medical monitoring systems. Each node of the sensor network requires energy efficient circuits powered off small batteries or harvested energy. In such systems, a single reconfigurable analog-to-digital converter (ADC) is needed to digitize a wide range of signals with varying bandwidth and resolution requirements. This thesis describes the design of an ADC whose power scales exponentially with resolution and linearly with frequency to maximize the system lifetime. The proposed ADC has reconfigurable resolution from 5 to 10-bits and a scalable sample rate from 0 to 1-MS/s. The successive approximation register (SAR) architecture was chosen for its highly digital nature which enables low voltage operation. The supply voltage can be scaled from 1V down to 0.4V such that the ADC maintains a constant energy efficiency across all modes of operation when normalized with respect to sample rate and resolution. A capacitive digital-to -analog converter (DAC) in a split capacitor topology with a sub-DAC is used to minimize the DAC power and area. Top plate switches are used to decouple the MSB capacitors as resolution is scaled to avoid parasitic loading of the DAC. The DAC capacitors are laid out in a common-centroid configuration with edge effects minimized at each resolution mode to improve matching. A fully dynamic latched comparator is used to avoid static bias currents.(cont.) Power gating of the digital logic is used to reduce leakage power at low sample rates. Reconfigurability between single-ended or differential modes enables a power versus performance trade-off. Lastly, programmable sampling duration and internal bootstrapping is used to maintain sampling linearity at low voltages. The ADC has been submitted for fabrication in a low power 65nm digital CMOS process and simulation results are presented.by Marcus Yip.S.M

    Design of Analog & Mixed Signal Circuits in Continuous-Time Sigma-Delta Modulators for System-on-Chip applications

    Get PDF
    Software-defined radio receivers (SDRs) have become popular to accommodate multi-standard wireless services using a single chip-set solution in mobile telecommunication systems. In SDRs, the signal is down-converted to an intermediate frequency and then digitalized. This approach relaxes the specifications for most of the analog front-end building blocks by performing most of the signal processing in the digital domain. However, since the analog-to-digital converter (ADC) is located as close as possible to the antenna in SDR architectures, the ADC specification requirements are very stringent because a large amount of interference signals are present at the ADC input due to the removal of filtering blocks, which particularly affects the dynamic range (DR) specification. Sigma-delta (ΣΔ) ADCs have several benefits such as low implementation cost, especially when the architecture contains mostly digital circuits. Furthermore, continuous-time (CT) ΣΔ ADCs allow elimination of the anti‐aliasing filter because input signals are sampled after the integrator. The bandwidth requirements for the amplifiers in CT ΣΔ ADCs can be relaxed due to the continuous operation without stringing settling time requirements. Therefore, they are suitable for high‐speed and low‐power applications. In addition, CT ΣΔ ADCs achieve high resolution due to the ΣΔ modulator’s noise shaping property. However, the in-band quantization noise is shaped by the analog loop filter and the distortions of the analog loop filter directly affect the system output. Hence, highly linear low-noise loop filters are required for high-performance ΣΔ modulators. The first task in this research focused on using CMOS 90 nm technology to design and fabricate a 5^(TH)–order active-RC loop filter with a cutoff frequency of 20 MHz for a low pass (LP) CT ΣΔ modulator. The active-RC topology was selected because of the high DR requirement in SDR applications. The amplifiers in the first stage of the loop filter were implemented with linearization techniques employing anti-parallel cancellation and source degeneration in the second stage of the amplifiers. These techniques improve the third-order intermodulation (IM3) by approximately 10 dB; while noise, area, and power consumption do not increase by more than 10%. Second, a current-mode adder-flash ADC was also fabricated as part of a LP CT ΣΔ modulator. The new current-mode operation developed through this research makes possible a 53% power reduction. The new technology also lessens existing problems associated with voltage-mode flash ADCs, which are mainly related to voltage headroom restrictions, speed of operation, offsets, and power efficiency of the latches. The core of the current-mode adder-flash ADC was fabricated in CMOS 90 nm technology with 1.2 V supply; it dissipates 3.34 mW while operating at 1.48 GHz and consumes a die area of 0.0276 mm^(2). System-on chip (SoC) solutions are becoming more popular in mobile telecommunication systems to improve the portability and competitiveness of products. Since the analog/RF and digital blocks often share the same external power supply in SoC solutions, the on-chip generation of clean power supplies is necessary to avoid system performance degradation due to supply noises. Finally, the critical design issues for external capacitor-less low drop-out (LDO) regulators for SoC applications are addressed in this dissertation, especially the challenges related to power supply rejection at high frequencies as well as loop stability and transient response. The paths of the power supply noise to the LDO output were analyzed, and a power supply noise cancellation circuit was developed. The power supply rejection (PSR) performance was improved by using a replica circuit that tracks the main supply noise under process-voltage-temperature variations and all operating conditions. Fabricated in a 0.18 μm CMOS technology with 1.8 V supply, the entire proposed LDO consumes 55 μA of quiescent current while in standby operation, and it has a drop-out voltage of 200 mV when providing 50 mA to the load. Its active core chip area is 0.14 mm2. Compared to a conventional uncompensated LDO, the proposed architecture presents a PSR improvement of 34 dB and 25 dB at 1 MHz and 4 MHz, respectively
    corecore