3,942 research outputs found

    Energy-Efficient Low-Complexity Algorithm in 5G Massive MIMO Systems

    Get PDF
    Energy efficiency (EE) is a critical design when taking into account circuit power consumption (CPC) in fifth-generation cellular networks. These problems arise because of the increasing number of antennas in massive multiple-input multiple-output (MIMO) systems, attributable to inter-cell interference for channel state information. Apart from that, a higher number of radio frequency (RF) chains at the base station and active users consume more power due to the processing activities in digital-to-analogue converters and power amplifiers. Therefore, antenna selection, user selection, optimal transmission power, and pilot reuse power are important aspects in improving energy efficiency in massive MIMO systems. This work aims to investigate joint antenna selection, optimal transmit power and joint user selection based on deriving the closed-form of the maximal EE, with complete knowledge of large-scale fading with maximum ratio transmission. It also accounts for channel estimation and eliminating pilot contamination as antennasM→∞. This formulates the optimization problem of joint optimal antenna selection, transmits power allocation and joint user selection to mitigate inter-cellinterference in downlink multi-cell massiveMIMO systems under minimized reuse of pilot sequences based on a novel iterative low-complexity algorithm (LCA) for Newton’s methods and Lagrange multipliers. To analyze the precise power consumption, a novel power consumption scheme is proposed for each individual antenna, based on the transmit power amplifier and CPC. Simulation results demonstrate that the maximal EE was achieved using the iterative LCA based on reasonable maximum transmit power, in the case the noise power is less than the received power pilot. The maximum EE was achieved with the desired maximum transmit power threshold by minimizing pilot reuse, in the case the transmit power allocation ρd = 40 dBm, and the optimal EE=71.232 Mb/j

    Wideband receive spatial modulation with time domain pre-equalizer for large MIMO systems

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksReceive spatial modulation (RSM) schemes are promising for massive multiple-input-multiple-output (MIMO) systems at millimeter wave (mmWave) bands because they require reduced complexity and low consumption hardware at the user terminal and exploit the receive spatial dimension to attain high spectral efficiency. To the best of our knowledge, these schemes have been developed for narrowband transmission. In this paper, we adapt RSM schemes for outdoor wideband mmWave massive MIMO systems. We consider the downlink of a single user system operating with single carrier RSM and design a low complexity time-domain finite impulse response pre-equalizer to combat the intersymbol interference caused by the wideband transmission, assuming imperfect channel knowledge. We show that receive antenna selection (RAS) is necessary for attaining high spectral efficiency and we suggest fast and efficient RAS algorithm. Simulation results show that the proposed RSM scheme achieves comparable spectral efficiency to the fully digital orthogonal frequency division multiplexing MIMO system with superior energy efficiency.Peer ReviewedPostprint (author's final draft

    Sum-rate Maximizing in Downlink Massive MIMO Systems with Circuit Power Consumption

    Full text link
    The downlink of a single cell base station (BS) equipped with large-scale multiple-input multiple-output (MIMO) system is investigated in this paper. As the number of antennas at the base station becomes large, the power consumed at the RF chains cannot be anymore neglected. So, a circuit power consumption model is introduced in this work. It involves that the maximal sum-rate is not obtained when activating all the available RF chains. Hence, the aim of this work is to find the optimal number of activated RF chains that maximizes the sum-rate. Computing the optimal number of activated RF chains must be accompanied by an adequate antenna selection strategy. First, we derive analytically the optimal number of RF chains to be activated so that the average sum-rate is maximized under received equal power. Then, we propose an efficient greedy algorithm to select the sub-optimal set of RF chains to be activated with regards to the system sum-rate. It allows finding the balance between the power consumed at the RF chains and the transmitted power. The performance of the proposed algorithm is compared with the optimal performance given by brute force search (BFS) antenna selection. Simulations allow to compare the performance given by greedy, optimal and random antenna selection algorithms.Comment: IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob 2015

    Employing Antenna Selection to Improve Energy-Efficiency in Massive MIMO Systems

    Get PDF
    Massive MIMO systems promise high data rates by employing large number of antennas, which also increases the power usage of the system as a consequence. This creates an optimization problem which specifies how many antennas the system should employ in order to operate with maximal energy efficiency. Our main goal is to consider a base station with a fixed number of antennas, such that the system can operate with a smaller subset of antennas according to the number of active user terminals, which may vary over time. Thus, in this paper we propose an antenna selection algorithm which selects the best antennas according to the better channel conditions with respect to the users, aiming at improving the overall energy efficiency. Then, due to the complexity of the mathematical formulation, a tight approximation for the consumed power is presented, using the Wishart theorem, and it is used to find a deterministic formulation for the energy efficiency. Simulation results show that the approximation is quite tight and that there is significant improvement in terms of energy efficiency when antenna selection is employed.Comment: To appear in Transactions on Emerging Telecommunications Technologies, 12 pages, 8 figures, 2 table

    On the Total Energy Efficiency of Cell-Free Massive MIMO

    Get PDF
    We consider the cell-free massive multiple-input multiple-output (MIMO) downlink, where a very large number of distributed multiple-antenna access points (APs) serve many single-antenna users in the same time-frequency resource. A simple (distributed) conjugate beamforming scheme is applied at each AP via the use of local channel state information (CSI). This CSI is acquired through time-division duplex operation and the reception of uplink training signals transmitted by the users. We derive a closed-form expression for the spectral efficiency taking into account the effects of channel estimation errors and power control. This closed-form result enables us to analyze the effects of backhaul power consumption, the number of APs, and the number of antennas per AP on the total energy efficiency, as well as, to design an optimal power allocation algorithm. The optimal power allocation algorithm aims at maximizing the total energy efficiency, subject to a per-user spectral efficiency constraint and a per-AP power constraint. Compared with the equal power control, our proposed power allocation scheme can double the total energy efficiency. Furthermore, we propose AP selections schemes, in which each user chooses a subset of APs, to reduce the power consumption caused by the backhaul links. With our proposed AP selection schemes, the total energy efficiency increases significantly, especially for large numbers of APs. Moreover, under a requirement of good quality-of-service for all users, cell-free massive MIMO outperforms the colocated counterpart in terms of energy efficiency
    corecore