4 research outputs found

    Resource and thermal management in 3D-stacked multi-/many-core systems

    Full text link
    Continuous semiconductor technology scaling and the rapid increase in computational needs have stimulated the emergence of multi-/many-core processors. While up to hundreds of cores can be placed on a single chip, the performance capacity of the cores cannot be fully exploited due to high latencies of interconnects and memory, high power consumption, and low manufacturing yield in traditional (2D) chips. 3D stacking is an emerging technology that aims to overcome these limitations of 2D designs by stacking processor dies over each other and using through-silicon-vias (TSVs) for on-chip communication, and thus, provides a large amount of on-chip resources and shortens communication latency. These benefits, however, are limited by challenges in high power densities and temperatures. 3D stacking also enables integrating heterogeneous technologies into a single chip. One example of heterogeneous integration is building many-core systems with silicon-photonic network-on-chip (PNoC), which reduces on-chip communication latency significantly and provides higher bandwidth compared to electrical links. However, silicon-photonic links are vulnerable to on-chip thermal and process variations. These variations can be countered by actively tuning the temperatures of optical devices through micro-heaters, but at the cost of substantial power overhead. This thesis claims that unearthing the energy efficiency potential of 3D-stacked systems requires intelligent and application-aware resource management. Specifically, the thesis improves energy efficiency of 3D-stacked systems via three major components of computing systems: cache, memory, and on-chip communication. We analyze characteristics of workloads in computation, memory usage, and communication, and present techniques that leverage these characteristics for energy-efficient computing. This thesis introduces 3D cache resource pooling, a cache design that allows for flexible heterogeneity in cache configuration across a 3D-stacked system and improves cache utilization and system energy efficiency. We also demonstrate the impact of resource pooling on a real prototype 3D system with scratchpad memory. At the main memory level, we claim that utilizing heterogeneous memory modules and memory object level management significantly helps with energy efficiency. This thesis proposes a memory management scheme at a finer granularity: memory object level, and a page allocation policy to leverage the heterogeneity of available memory modules and cater to the diverse memory requirements of workloads. On the on-chip communication side, we introduce an approach to limit the power overhead of PNoC in (3D) many-core systems through cross-layer thermal management. Our proposed thermally-aware workload allocation policies coupled with an adaptive thermal tuning policy minimize the required thermal tuning power for PNoC, and in this way, help broader integration of PNoC. The thesis also introduces techniques in placement and floorplanning of optical devices to reduce optical loss and, thus, laser source power consumption.2018-03-09T00:00:00

    High-Level Modelling of Optical Integrated Networks-Based Systems with the Provision of a Low Latency Controller

    Get PDF
    RÉSUMÉ La tendance du marché dans la conception des architectures multiprocesseurs de la prochaine génération consiste à intégrer de plus en plus de cœurs dans la même puce. Cette concentra-tion des cœurs dans la même puce exige l’amélioration des politiques d’intercommunication. L’une des solutions proposées dans ce contexte consiste à utiliser les réseaux sur puce vu qu’ils présentent une amélioration considérable en termes de la bande passante, l’évolutivité et de l’extensibilité. Néanmoins, vu la croissance exponentielle en nombres de cœurs sur puce, les interconnexions électriques dans les réseaux sur puce peuvent devenir un goulet d’étranglement dans la performance du système. Par conséquent, des nouvelles techniques et technologies doivent être adoptées pour remédier à ces problèmes. Les réseaux optiques intégrés (OIN venant de l’anglais Optical Integrated Networks) sont actuellement considérés comme l’un des paradigmes les plus prometteurs dans ce contexte. Les OINs o˙rent une plus grande bande passante, une plus faible consommation d’énergie et moins de latence lors de l’échange des données. Plusieurs travaux récents démontrent la faisabilité des OIN avec les technologies de fabrication disponibles et compatibles avec CMOS. Cependant, les concepteurs des OINs font face à plusieurs défis : Actuellement, les contrôleurs représentent le principal goulot d’étranglement de la com-munication et présentent l’un des facteurs minimisant l’eÿcacité des OINs. Alors, la proposition des nouvelles solutions de contrôle à faible latence est de plus en plus pri-mordiale pour en tirer profit. Le manque d’outils de modélisation et de validation des OINs. La plupart des travaux se concentrent sur la conception des dispositifs et l’amélioration des performances des composants de base, tout en laissant le système sans assistance. Dans ce contexte, afin de faciliter le déploiement de systèmes basés sur les OINs, cette thèse se focalise sur les trois contributions majeures suivantes: (1) le développement d’un ensemble de méthodes précises de modélisation qui va permettre par la suite de réaliser une plateforme de simulation au niveau du système ; (2) la définition et le développement d’une approche de contrôle eÿcace pour les systèmes basés sur les OINs; (3) l’évaluation de l’approche de contrôle proposée.----------ABSTRACT Design trends for next-generation Multi-Processor Systems point to the integration of a large number of processing cores, requiring high-performance interconnects. One solution being applied to improve the communication infrastructure in such systems is the usage of Networks-on-Chip as they present considerable improvement in the bandwidth and scaleabil-ity. Still as the number of integrated cores continues to increase and the system scales, the metallic interconnects in Networks-on-Chip can become a performance bottleneck. As a result, a new strategy must be adopted in order for those issues to be remedied. Optical Integrated Networks (OINs) are currently considered to be one of the most promising paradigm in this design context: they present higher bandwidth, lower power consumption and lower latency to broadcast information. Also, the latest work demonstrates the feasibility of OINs with their fabrication technologies being available and CMOS compatible. However, OINs’ designers face several challenges: Currently, controllers represent the main communication bottleneck and are one of the factors limiting the usage of OINs. Therefore, new controlling solutions with low latency are required. Designers lack tools to model and validate OINs. Most research nowadays is focused on designing devices and improving basic components performance, leaving system unattended. In this context, in order to ease the deployment of OIN-based systems, this PhD project focuses on three main contributions: (1) the development of accurate system-level modelling study to realize a system-level simulation platform; (2) the definition and development of an eÿcient control approach for OIN-based systems, and; (3) the system-level evaluation of the proposed control approach using the defined modelling
    corecore