64,436 research outputs found

    LOGICAL AND PSYCHOLOGICAL PARTITIONING OF MIND: DEPICTING THE SAME MAP?

    Get PDF
    The aim of this paper is to demonstrate that empirically delimited structures of mind are also differentiable by means of systematic logical analysis. In the sake of this aim, the paper first summarizes Demetriou's theory of cognitive organization and growth. This theory assumes that the mind is a multistructural entity that develops across three fronts: the processing system that constrains processing potentials, a set of specialized structural systems (SSSs) that guide processing within different reality and knowledge domains, and a hypecognitive system that monitors and controls the functioning of all other systems. In the second part the paper focuses on the SSSs, which are the target of our logical analysis, and it summarizes a series of empirical studies demonstrating their autonomous operation. The third part develops the logical proof showing that each SSS involves a kernel element that cannot be reduced to standard logic or to any other SSS. The implications of this analysis for the general theory of knowledge and cognitive development are discussed in the concluding part of the paper

    Lightweight Formal Verification in Classroom Instruction of Reasoning about Functional Code

    Full text link
    In college courses dealing with material that requires mathematical rigor, the adoption of a machine-readable representation for formal arguments can be advantageous. Students can focus on a specific collection of constructs that are represented consistently. Examples and counterexamples can be evaluated. Assignments can be assembled and checked with the help of an automated formal reasoning system. However, usability and accessibility do not have a high priority and are not addressed sufficiently well in the design of many existing machine-readable representations and corresponding formal reasoning systems. In earlier work [Lap09], we attempt to address this broad problem by proposing several specific design criteria organized around the notion of a natural context: the sphere of awareness a working human user maintains of the relevant constructs, arguments, experiences, and background materials necessary to accomplish the task at hand. We report on our attempt to evaluate our proposed design criteria by deploying within the classroom a lightweight formal verification system designed according to these criteria. The lightweight formal verification system was used within the instruction of a common application of formal reasoning: proving by induction formal propositions about functional code. We present all of the formal reasoning examples and assignments considered during this deployment, most of which are drawn directly from an introductory text on functional programming. We demonstrate how the design of the system improves the effectiveness and understandability of the examples, and how it aids in the instruction of basic formal reasoning techniques. We make brief remarks about the practical and administrative implications of the system’s design from the perspectives of the student, the instructor, and the grader

    Space exploration: The interstellar goal and Titan demonstration

    Get PDF
    Automated interstellar space exploration is reviewed. The Titan demonstration mission is discussed. Remote sensing and automated modeling are considered. Nuclear electric propulsion, main orbiting spacecraft, lander/rover, subsatellites, atmospheric probes, powered air vehicles, and a surface science network comprise mission component concepts. Machine, intelligence in space exploration is discussed

    On Probability and Cosmology: Inference Beyond Data?

    Get PDF
    Modern scientific cosmology pushes the boundaries of knowledge and the knowable. This is prompting questions on the nature of scientific knowledge. A central issue is what defines a 'good' model. When addressing global properties of the Universe or its initial state this becomes a particularly pressing issue. How to assess the probability of the Universe as a whole is empirically ambiguous, since we can examine only part of a single realisation of the system under investigation: at some point, data will run out. We review the basics of applying Bayesian statistical explanation to the Universe as a whole. We argue that a conventional Bayesian approach to model inference generally fails in such circumstances, and cannot resolve, e.g., the so-called 'measure problem' in inflationary cosmology. Implicit and non-empirical valuations inevitably enter model assessment in these cases. This undermines the possibility to perform Bayesian model comparison. One must therefore either stay silent, or pursue a more general form of systematic and rational model assessment. We outline a generalised axiological Bayesian model inference framework, based on mathematical lattices. This extends inference based on empirical data (evidence) to additionally consider the properties of model structure (elegance) and model possibility space (beneficence). We propose this as a natural and theoretically well-motivated framework for introducing an explicit, rational approach to theoretical model prejudice and inference beyond data

    The logical anti-psychologism of Frege and Husserl

    Full text link
    Frege and Husserl are both recognized for their significant contributions to the overthrowing of logical psychologism, at least in its 19th century forms. Between Frege's profound impact on modern logic that extended the influence of his anti-psychologism and Husserl's extensive attempts at the refutation of logical psychologism in the Prolegomena to Logical Investigations, these arguments are generally understood as successful. This paper attempts to account for the development of these two anti-psychologistic conceptions of logical objects and for some of the basic differences between them. It identifies some problems that are common to strongly anti-psychologistic conceptions of logic and compares the extent to which Frege's and Husserl's views are open to these problems. Accordingly, this paper is divided into two parts. Part I develops a conception of the problems of logical psychologism as they are distinctively understood by each philosopher, out of the explicit arguments and criticisms made against the view in the texts. This conception is in each case informed by the overall historical trajectories of each philosopher's philosophical development. Part II examines the two views in light of common problems of anti-psychologism

    Demography in a new key

    Get PDF
    The widespread opinion that demography is lacking in theory is based in part on a particular view of the nature of scientific theory, generally known as logical empiricism [or positivism]. A newer school of philosophy of science, the model-based view, provides a different perspective on demography, one that enhances its status as a scientific discipline. From this perspective, much of formal demography can be seen as a collection of substantive models of population dynamics [how populations and cohorts behave], in short, theoretical knowledge. And many theories in behavioural demography - often discarded as too old or too simplistic - can be seen as perfectly good scientific theory, useful for many purposes, although often in need of more rigorous statement.demographic models, demographic theory, methodology, philosophy of science, population theory, the structure of demographic knowledge
    • …
    corecore