149,617 research outputs found

    A logical interface description language for components

    Get PDF
    Motivated by our earlier work on the IWIM model and the Manifold language, in this paper, we attend to some of the basic issues in component-based software. We present a formal model for such systems, a formal-logic-based component interface description language that conveys the observable semantics of components, a formal system for deriving the semantics of a composite system out of the semantics of its constituent components, and the conditions under which this derivation system is sound and complete. Our main results in this paper are the theorems that formulate the notion of compositionality and the completeness of the derivation system that supports this property in a component-based system

    The Mashup Component Description Language

    Get PDF
    ABSTRACT Mashups can be seen as the result of software composition applied to the Web. One of the characteristics of mashup development is the heterogeneity of its building components in terms of logical layering (e.g., user interface, application logic, and data), access method (e.g., REST, SOAP), and composition technique (e.g., scraping vs. clipping, synchronous vs. asynchronous interaction, discrete vs. streaming). This poses a challenge towards the design of mashup tools aiming at lowering the barriers of mashup development, as this heterogeneity needs to be abstracted. In this paper, we address this challenge by proposing a new JSONbased domain-specific language for describing heterogeneous mashup components, called the Mashup Component Description Language (MCDL). MCDL lies at the core of a meta-model for mashup component modeling, and can be used for component discovery and classification but also for user-centric mashup development as it decouples the interface of a mashup component from its underlying implementation technologies

    NL4Opt Competition: Formulating Optimization Problems Based on Their Natural Language Descriptions

    Full text link
    The Natural Language for Optimization (NL4Opt) Competition was created to investigate methods of extracting the meaning and formulation of an optimization problem based on its text description. Specifically, the goal of the competition is to increase the accessibility and usability of optimization solvers by allowing non-experts to interface with them using natural language. We separate this challenging goal into two sub-tasks: (1) recognize and label the semantic entities that correspond to the components of the optimization problem; (2) generate a meaning representation (i.e., a logical form) of the problem from its detected problem entities. The first task aims to reduce ambiguity by detecting and tagging the entities of the optimization problems. The second task creates an intermediate representation of the linear programming (LP) problem that is converted into a format that can be used by commercial solvers. In this report, we present the LP word problem dataset and shared tasks for the NeurIPS 2022 competition. Furthermore, we investigate and compare the performance of the ChatGPT large language model against the winning solutions. Through this competition, we hope to bring interest towards the development of novel machine learning applications and datasets for optimization modeling

    IMAGINE Final Report

    No full text

    Forum Session at the First International Conference on Service Oriented Computing (ICSOC03)

    Get PDF
    The First International Conference on Service Oriented Computing (ICSOC) was held in Trento, December 15-18, 2003. The focus of the conference ---Service Oriented Computing (SOC)--- is the new emerging paradigm for distributed computing and e-business processing that has evolved from object-oriented and component computing to enable building agile networks of collaborating business applications distributed within and across organizational boundaries. Of the 181 papers submitted to the ICSOC conference, 10 were selected for the forum session which took place on December the 16th, 2003. The papers were chosen based on their technical quality, originality, relevance to SOC and for their nature of being best suited for a poster presentation or a demonstration. This technical report contains the 10 papers presented during the forum session at the ICSOC conference. In particular, the last two papers in the report ere submitted as industrial papers

    Development of a client interface for a methodology independent object-oriented CASE tool : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University

    Get PDF
    The overall aim of the research presented in this thesis is the development of a prototype CASE Tool user interface that supports the use of arbitrary methodology notations for the construction of small-scale diagrams. This research is part of the larger CASE Tool project, MOOT (Massey's Object Oriented Tool). MOOT is a meta-system with a client-server architecture that provides a framework within which the semantics and syntax of methodologies can be described. The CASE Tool user interface is implemented in Java so it is as portable as possible and has a consistent look and feel. It has been designed as a client to the rest of the MOOT system (which acts as a server). A communications protocol has been designed to support the interaction between the CASE Tool client and a MOOT server. The user interface design of MOOT must support all possible graphical notations. No assumptions about the types of notations that a software engineer may use can be made. MOOT therefore provides a specification language called NDL for the definition of a methodology's syntax. Hence, the MOOT CASE Tool client described in this thesis is a shell that is parameterised by NDL specifications. The flexibility provided by such a high level of abstraction presents significant challenges in terms of designing effective human-computer interaction mechanisms for the MOOT user interface. Functional and non-functional requirements of the client user interface have been identified and applied during the construction of the prototype. A notation specification that defines the syntax for Coad and Yourdon OOA/OOD has been written in NDL and used as a test case. The thesis includes the iterative evaluation and extension of NDL resulting from the prototype development. The prototype has shown that the current approach to NDL is efficacious, and that the syntax and semantics of a methodology description can successfully be separated. The developed prototype has shown that it is possible to build a simple, non-intrusive, and efficient, yet flexible, useable, and helpful interface for meta-CASE tools. The development of the CASE Tool client, through its generic, methodology independent design, has provided a pilot with which future ideas may be explored

    Introduction to Iltis: An Interactive, Web-Based System for Teaching Logic

    Full text link
    Logic is a foundation for many modern areas of computer science. In artificial intelligence, as a basis of database query languages, as well as in formal software and hardware verification --- modelling scenarios using logical formalisms and inferring new knowledge are important skills for going-to-be computer scientists. The Iltis project aims at providing a web-based, interactive system that supports teaching logical methods. In particular the system shall (a) support to learn to model knowledge and to infer new knowledge using propositional logic, modal logic and first-order logic, and (b) provide immediate feedback and support to students. This article presents a prototypical system that currently supports the above tasks for propositional logic. First impressions on its use in a second year logic course for computer science students are reported
    corecore