3,809 research outputs found

    A Framework to Quantify Network Resilience and Survivability

    Get PDF
    The significance of resilient communication networks in the modern society is well established. Resilience and survivability mechanisms in current networks are limited and domain specific. Subsequently, the evaluation methods are either qualitative assessments or context-specific metrics. There is a need for rigorous quantitative evaluation of network resilience. We propose a service oriented framework to characterize resilience of networks to a number of faults and challenges at any abstraction level. This dissertation presents methods to quantify the operational state and the expected service of the network using functional metrics. We formalize resilience as transitions of the network state in a two-dimensional state space quantifying network characteristics, from which network service performance parameters can be derived. One dimension represents the network as normally operating, partially degraded, or severely degraded. The other dimension represents network service as acceptable, impaired, or unacceptable. Our goal is to initially understand how to characterize network resilience, and ultimately how to guide network design and engineering toward increased resilience. We apply the proposed framework to evaluate the resilience of the various topologies and routing protocols. Furthermore, we present several mechanisms to improve the resilience of the networks to various challenges

    A New Paradigm in Split Manufacturing: Lock the FEOL, Unlock at the BEOL

    Full text link
    Split manufacturing was introduced as an effective countermeasure against hardware-level threats such as IP piracy, overbuilding, and insertion of hardware Trojans. Nevertheless, the security promise of split manufacturing has been challenged by various attacks, which exploit the well-known working principles of physical design tools to infer the missing BEOL interconnects. In this work, we advocate a new paradigm to enhance the security for split manufacturing. Based on Kerckhoff's principle, we protect the FEOL layout in a formal and secure manner, by embedding keys. These keys are purposefully implemented and routed through the BEOL in such a way that they become indecipherable to the state-of-the-art FEOL-centric attacks. We provide our secure physical design flow to the community. We also define the security of split manufacturing formally and provide the associated proofs. At the same time, our technique is competitive with current schemes in terms of layout overhead, especially for practical, large-scale designs (ITC'99 benchmarks).Comment: DATE 2019 (https://www.date-conference.com/conference/session/4.5

    Algorithm Diversity for Resilient Systems

    Full text link
    Diversity can significantly increase the resilience of systems, by reducing the prevalence of shared vulnerabilities and making vulnerabilities harder to exploit. Work on software diversity for security typically creates variants of a program using low-level code transformations. This paper is the first to study algorithm diversity for resilience. We first describe how a method based on high-level invariants and systematic incrementalization can be used to create algorithm variants. Executing multiple variants in parallel and comparing their outputs provides greater resilience than executing one variant. To prevent different parallel schedules from causing variants' behaviors to diverge, we present a synchronized execution algorithm for DistAlgo, an extension of Python for high-level, precise, executable specifications of distributed algorithms. We propose static and dynamic metrics for measuring diversity. An experimental evaluation of algorithm diversity combined with implementation-level diversity for several sequential algorithms and distributed algorithms shows the benefits of algorithm diversity

    Towards a Layered Architectural View for Security Analysis in SCADA Systems

    Full text link
    Supervisory Control and Data Acquisition (SCADA) systems support and control the operation of many critical infrastructures that our society depend on, such as power grids. Since SCADA systems become a target for cyber attacks and the potential impact of a successful attack could lead to disastrous consequences in the physical world, ensuring the security of these systems is of vital importance. A fundamental prerequisite to securing a SCADA system is a clear understanding and a consistent view of its architecture. However, because of the complexity and scale of SCADA systems, this is challenging to acquire. In this paper, we propose a layered architectural view for SCADA systems, which aims at building a common ground among stakeholders and supporting the implementation of security analysis. In order to manage the complexity and scale, we define four interrelated architectural layers, and uses the concept of viewpoints to focus on a subset of the system. We indicate the applicability of our approach in the context of SCADA system security analysis.Comment: 7 pages, 4 figure

    Modelling and Design of Resilient Networks under Challenges

    Get PDF
    Communication networks, in particular the Internet, face a variety of challenges that can disrupt our daily lives resulting in the loss of human lives and significant financial costs in the worst cases. We define challenges as external events that trigger faults that eventually result in service failures. Understanding these challenges accordingly is essential for improvement of the current networks and for designing Future Internet architectures. This dissertation presents a taxonomy of challenges that can help evaluate design choices for the current and Future Internet. Graph models to analyse critical infrastructures are examined and a multilevel graph model is developed to study interdependencies between different networks. Furthermore, graph-theoretic heuristic optimisation algorithms are developed. These heuristic algorithms add links to increase the resilience of networks in the least costly manner and they are computationally less expensive than an exhaustive search algorithm. The performance of networks under random failures, targeted attacks, and correlated area-based challenges are evaluated by the challenge simulation module that we developed. The GpENI Future Internet testbed is used to conduct experiments to evaluate the performance of the heuristic algorithms developed

    On the Secure and Resilient Design of Connected Vehicles: Methods and Guidelines

    Get PDF
    Vehicles have come a long way from being purely mechanical systems to systems that consist of an internal network of more than 100 microcontrollers and systems that communicate with external entities, such as other vehicles, road infrastructure, the manufacturer’s cloud and external applications. This combination of resource constraints, safety-criticality, large attack surface and the fact that millions of people own and use them each day, makes securing vehicles particularly challenging as security practices and methods need to be tailored to meet these requirements.This thesis investigates how security demands should be structured to ease discussions and collaboration between the involved parties and how requirements engineering can be accelerated by introducing generic security requirements. Practitioners are also assisted in choosing appropriate techniques for securing vehicles by identifying and categorising security and resilience techniques suitable for automotive systems. Furthermore, three specific mechanisms for securing automotive systems and providing resilience are designed and evaluated. The first part focuses on cyber security requirements and the identification of suitable techniques based on three different approaches, namely (i) providing a mapping to security levels based on a review of existing security standards and recommendations; (ii) proposing a taxonomy for resilience techniques based on a literature review; and (iii) combining security and resilience techniques to protect automotive assets that have been subject to attacks. The second part presents the design and evaluation of three techniques. First, an extension for an existing freshness mechanism to protect the in-vehicle communication against replay attacks is presented and evaluated. Second, a trust model for Vehicle-to-Vehicle communication is developed with respect to cyber resilience to allow a vehicle to include trust in neighbouring vehicles in its decision-making processes. Third, a framework is presented that enables vehicle manufacturers to protect their fleet by detecting anomalies and security attacks using vehicle trust and the available data in the cloud

    Methodologies synthesis

    Get PDF
    This deliverable deals with the modelling and analysis of interdependencies between critical infrastructures, focussing attention on two interdependent infrastructures studied in the context of CRUTIAL: the electric power infrastructure and the information infrastructures supporting management, control and maintenance functionality. The main objectives are: 1) investigate the main challenges to be addressed for the analysis and modelling of interdependencies, 2) review the modelling methodologies and tools that can be used to address these challenges and support the evaluation of the impact of interdependencies on the dependability and resilience of the service delivered to the users, and 3) present the preliminary directions investigated so far by the CRUTIAL consortium for describing and modelling interdependencies

    REMIND: A Framework for the Resilient Design of Automotive Systems

    Get PDF
    In the past years, great effort has been spent on enhancing the security and safety of vehicular systems. Current advances in information and communication technology have increased the complexity of these systems and lead to extended functionalities towards self-driving and more connectivity. Unfortunately, these advances open the door for diverse and newly emerging attacks that hamper the security and, thus, the safety of vehicular systems. In this paper, we contribute to supporting the design of resilient automotive systems. We review and analyze scientific literature on resilience techniques, fault tolerance, and dependability. As a result, we present the REMIND resilience framework providing techniques for attack detection, mitigation, recovery, and resilience endurance. Moreover, we provide guidelines on how the REMIND framework can be used against common security threats and attacks and further discuss the trade-offs when applying these guidelines
    • …
    corecore