19,353 research outputs found

    Introducing Dynamic Behavior in Amalgamated Knowledge Bases

    Full text link
    The problem of integrating knowledge from multiple and heterogeneous sources is a fundamental issue in current information systems. In order to cope with this problem, the concept of mediator has been introduced as a software component providing intermediate services, linking data resources and application programs, and making transparent the heterogeneity of the underlying systems. In designing a mediator architecture, we believe that an important aspect is the definition of a formal framework by which one is able to model integration according to a declarative style. To this purpose, the use of a logical approach seems very promising. Another important aspect is the ability to model both static integration aspects, concerning query execution, and dynamic ones, concerning data updates and their propagation among the various data sources. Unfortunately, as far as we know, no formal proposals for logically modeling mediator architectures both from a static and dynamic point of view have already been developed. In this paper, we extend the framework for amalgamated knowledge bases, presented by Subrahmanian, to deal with dynamic aspects. The language we propose is based on the Active U-Datalog language, and extends it with annotated logic and amalgamation concepts. We model the sources of information and the mediator (also called supervisor) as Active U-Datalog deductive databases, thus modeling queries, transactions, and active rules, interpreted according to the PARK semantics. By using active rules, the system can efficiently perform update propagation among different databases. The result is a logical environment, integrating active and deductive rules, to perform queries and update propagation in an heterogeneous mediated framework.Comment: Other Keywords: Deductive databases; Heterogeneous databases; Active rules; Update

    Towards Intelligent Databases

    Get PDF
    This article is a presentation of the objectives and techniques of deductive databases. The deductive approach to databases aims at extending with intensional definitions other database paradigms that describe applications extensionaUy. We first show how constructive specifications can be expressed with deduction rules, and how normative conditions can be defined using integrity constraints. We outline the principles of bottom-up and top-down query answering procedures and present the techniques used for integrity checking. We then argue that it is often desirable to manage with a database system not only database applications, but also specifications of system components. We present such meta-level specifications and discuss their advantages over conventional approaches

    Ontology-Based Data Access and Integration

    Get PDF
    An ontology-based data integration (OBDI) system is an information management system consisting of three components: an ontology, a set of data sources, and the mapping between the two. The ontology is a conceptual, formal description of the domain of interest to a given organization (or a community of users), expressed in terms of relevant concepts, attributes of concepts, relationships between concepts, and logical assertions characterizing the domain knowledge. The data sources are the repositories accessible by the organization where data concerning the domain are stored. In the general case, such repositories are numerous, heterogeneous, each one managed and maintained independently from the others. The mapping is a precise specification of the correspondence between the data contained in the data sources and the elements of the ontology. The main purpose of an OBDI system is to allow information consumers to query the data using the elements in the ontology as predicates. In the special case where the organization manages a single data source, the term ontology-based data access (ODBA) system is used

    Conceptual information processing: A robust approach to KBS-DBMS integration

    Get PDF
    Integrating the respective functionality and architectural features of knowledge base and data base management systems is a topic of considerable interest. Several aspects of this topic and associated issues are addressed. The significance of integration and the problems associated with accomplishing that integration are discussed. The shortcomings of current approaches to integration and the need to fuse the capabilities of both knowledge base and data base management systems motivates the investigation of information processing paradigms. One such paradigm is concept based processing, i.e., processing based on concepts and conceptual relations. An approach to robust knowledge and data base system integration is discussed by addressing progress made in the development of an experimental model for conceptual information processing
    • …
    corecore