8,651 research outputs found

    An algebraic generalization of Kripke structures

    Full text link
    The Kripke semantics of classical propositional normal modal logic is made algebraic via an embedding of Kripke structures into the larger class of pointed stably supported quantales. This algebraic semantics subsumes the traditional algebraic semantics based on lattices with unary operators, and it suggests natural interpretations of modal logic, of possible interest in the applications, in structures that arise in geometry and analysis, such as foliated manifolds and operator algebras, via topological groupoids and inverse semigroups. We study completeness properties of the quantale based semantics for the systems K, T, K4, S4, and S5, in particular obtaining an axiomatization for S5 which does not use negation or the modal necessity operator. As additional examples we describe intuitionistic propositional modal logic, the logic of programs PDL, and the ramified temporal logic CTL.Comment: 39 page

    Fuzzy inequational logic

    Full text link
    We present a logic for reasoning about graded inequalities which generalizes the ordinary inequational logic used in universal algebra. The logic deals with atomic predicate formulas of the form of inequalities between terms and formalizes their semantic entailment and provability in graded setting which allows to draw partially true conclusions from partially true assumptions. We follow the Pavelka approach and define general degrees of semantic entailment and provability using complete residuated lattices as structures of truth degrees. We prove the logic is Pavelka-style complete. Furthermore, we present a logic for reasoning about graded if-then rules which is obtained as particular case of the general result

    Variable sets over an algebra of lifetimes: a contribution of lattice theory to the study of computational topology

    Full text link
    A topos theoretic generalisation of the category of sets allows for modelling spaces which vary according to time intervals. Persistent homology, or more generally, persistence is a central tool in topological data analysis, which examines the structure of data through topology. The basic techniques have been extended in several different directions, permuting the encoding of topological features by so called barcodes or equivalently persistence diagrams. The set of points of all such diagrams determines a complete Heyting algebra that can explain aspects of the relations between persistent bars through the algebraic properties of its underlying lattice structure. In this paper, we investigate the topos of sheaves over such algebra, as well as discuss its construction and potential for a generalised simplicial homology over it. In particular we are interested in establishing a topos theoretic unifying theory for the various flavours of persistent homology that have emerged so far, providing a global perspective over the algebraic foundations of applied and computational topology.Comment: 20 pages, 12 figures, AAA88 Conference proceedings at Demonstratio Mathematica. The new version has restructured arguments, clearer intuition is provided, and several typos correcte

    Some relational structures with polynomial growth and their associated algebras II: Finite generation

    Get PDF
    The profile of a relational structure RR is the function φR\varphi_R which counts for every integer nn the number, possibly infinite, φR(n)\varphi_R(n) of substructures of RR induced on the nn-element subsets, isomorphic substructures being identified. If φR\varphi_R takes only finite values, this is the Hilbert function of a graded algebra associated with RR, the age algebra A(R)A(R), introduced by P.~J.~Cameron. In a previous paper, we studied the relationship between the properties of a relational structure and those of their algebra, particularly when the relational structure RR admits a finite monomorphic decomposition. This setting still encompasses well-studied graded commutative algebras like invariant rings of finite permutation groups, or the rings of quasi-symmetric polynomials. In this paper, we investigate how far the well know algebraic properties of those rings extend to age algebras. The main result is a combinatorial characterization of when the age algebra is finitely generated. In the special case of tournaments, we show that the age algebra is finitely generated if and only if the profile is bounded. We explore the Cohen-Macaulay property in the special case of invariants of permutation groupoids. Finally, we exhibit sufficient conditions on the relational structure that make naturally the age algebra into a Hopf algebra.Comment: 27 pages; submitte
    • …
    corecore