4 research outputs found

    Route Optimization System

    Get PDF
    Congestion has been the main factor for the traveler to plan their destination. The traveler needs to consider the time and even cancel their planning to one place because of this factor. With the advancement of the technology that can guides in decision making, it can solve one of the traveler problem. Route optimization system is a stand-alone system that can give the traveler the shortest route upon user request. This system can be an important resource for the traveler to reach their destination within their planning schedule. This project will highlight the usage of GIS in implementing the system. The objective of this project is focusing on the integration of Geographical Information System (GIS) and Artificial Intelligence (AI). The main purpose is to concentrate in displaying the map along with the database, searching and enable user to retrieve the shortest path. This is due to enhance the capability of the user to choose another route. The method used in this project is Rapid Application Development (RAD) methodology which consists of four stages; requirement planning, user design, construction and cutover. This research also details the study on current system that has already implemented in Europe, which with the same objective is to find the shortest path. While in Malaysia, the car manufacturer is doing this system which motivates me to do this route optimization system as well. The result from the research will be the proposed framework for route optimization system, the discussion on the GIS and AI as well as the prototype of this system. This study proved that Route Optimization System has great potential to be commercially implemented to get the shortest path as today's community is eager of getting free from congestion on the road

    Modeling and Analysis of Emergency Messaging Delay in Vehicular Ad Hoc Networks

    Get PDF
    Road crashes, occurring at a high annual rate for many years, demand improvements in transportation systems to provide a high level of on-road safety. Implanting smart sensors, communication capabilities, memory storage and information processing units in vehicles are important components of Intelligent Transportation Systems (ITS). ITS should enable the communication between vehicles and allow cooperative driving and early warnings of sudden breaks and accidents ahead. The prompt availability of the emergency information will provide the driver a time to react in order to avoid possible accidents ahead. Hence, information delivery delay is an importance quality-of-service (QoS) metric in such applications. In this thesis, we focus on modeling the delay for emergency messaging in vehicular ad hoc networks (VANETs). VANETs consist of nodes moving with very high speeds, resulting in frequent topological changes. As a result, many existing models and packet forwarding schemes designed for general purpose mobile ad hoc networks (MANETs) cannot be directly applied to VANETs. In our system model, we consider mobility and traffic density of vehicles. We focus on studying the effect of the traffic flow density on the delay of emergency message dissemination. Hence, traffic flow theories developed by civil engineers form the base of our modeling. The common way of emergency message dissemination in VANETs is broadcasting. To overcome the broadcasting storm problem and improve scalability of such large networks, we adopt a node cluster based broadcasting mechanism. This research provides a realistic mathematical model for the broadcasting delay, which accounts for the randomness in user mobility and matches the highly dynamic nature of VANETs. An investigation on the minimum cluster size that achieves acceptable message delivery latency is provided. It is shown that network control and performance parameters are dependent on the traffic density. Experimental measurement data are used to demonstrate the accuracy of the mathematical modeling

    Modeling and Analysis of Location Service Management in Vehicular Ad Hoc Networks

    Get PDF
    Recent technological advances in wireless communication and the pervasiveness of various wireless communication devices have offered novel and promising solutions to enable vehicles to communicate with each other, establishing a decentralized communication system. An emerging solution in this area is the Vehicular Ad Hoc Networks (VANETs), in which vehicles cooperate in receiving and delivering messages to each other. VANETs can provide a viable alternative in situations where existing infrastructure communication systems become overloaded, fail (due for instance to natural disaster), or inconvenient to use. Nevertheless, the success of VANETs revolves around a number of key elements, an important one of which is the way messages are routed between sources and destinations. Without an effective message routing strategy VANETs' success will continue to be limited. In order for messages to be routed to a destination effectively, the location of the destination must be determined. Since vehicles move in relatively fast and in a random manner, determining the location (hence the optimal message routing path) of (to) the destination vehicle constitutes a major challenge. Recent approaches for tackling this challenge have resulted in a number of Location Service Management Protocols. Though these protocols have demonstrated good potential, they still suffer from a number of impediments, including, signaling volume (particularly in large scale VANETs), inability to deal with network voids and inability to leverage locality for communication between the network nodes. In this thesis, a Region-based Location Service Management Protocol (RLSMP) is proposed. The protocol is a self-organizing framework that uses message aggregation and geographical clustering to minimize the volume of signalling overhead. To the best of my knowledge, RLSMP is the first protocol that uses message aggregation in both updating and querying, and as such it promises scalability, locality awareness, and fault tolerance. Location service management further addresses the issue of routing location updating and querying messages. Updating and querying messages should be exchanged between the network nodes and the location servers with minimum delay. This necessity introduces a persuasive need to support Quality of Service (QoS) routing in VANETs. To mitigate the QoS routing challenge in VANETs, the thesis proposes an Adaptive Message Routing (AMR) protocol that utilizes the network's local topology information in order to find the route with minimum end-to-end delay, while maintaining the required thresholds for connectivity probability and hop count. The QoS routing problem is formulated as a constrained optimization problem for which a genetic algorithm is proposed. The thesis presents experiments to validate the proposed protocol and test its performance under various network conditions

    Inter-vehicular communication using wireless ad-hoc networks.

    Get PDF
    This thesis proposes a new routing algorithm to allow communication in highly mobile, wireless ad-hoc networks, which in nature are wireless and infrastructureless. In motorway environments, the topology of the network changes frequently and unpredictable due to the mobility of the nodes. We investigate a new reactive routing algorithm based in location information in the context of inter-vehicular communication. In such a scenario, the originator of the communication does not know the position of its communication partner in advance. Rapid topology changes and scarce bandwidth prevent the nodes from exchanging positions regularly throughout the network. Therefore, we focus on reactive algorithms and explore several mechanisms limiting the flooding of discoveries location packets. The originator of a message uses scoped and controlled flooding to reach the destination. The receivers of the flooded message use their knowledge of the local environment to decide whether they can reach the intended destination of the message or retransmit the message to their neighbours. To evaluate our communication algorithm, we first validate it in a small scale network with the results o f a test bed. Then for large scale networks, our protocol is compared with the models of two prominent reactive routing algorithms: Ad-Hoc On-Demand Distance Vector (AODV) and Dynamic Source Routing (DSR) on a multi-lane rectangular and circular dual carriageway representative of city and motorway driving. Finally, our algorithm is analysed on a multi-lane circular carriageway representative of a six lane motorway driving with one location-based routing algorithm: Greedy Perimeter Stateless Routing (GPSR). The mobility of the vehicles on a Motorway using a Microscopic traffic model developed in OPNET has been used to evaluate the performance of each protocol in terms of: Route Discovery Time (RDT), End to End Delay (EED), Routing Overhead (RO), Overhead (O), Routing Load (RL) and Delivery Ratio (DR)
    corecore