
DEPARTMENT OF ELECTRONIC & ELECTRICAL ENGINEERING

UNIVERSITY OF SHEFFIELD

Inter-Vehicular Communication using wireless Ad-hoc
Networks

By
Mr. Raúl Aquino Santos

SUPERVISORS

Dr. Robert M. Edwards
Dr. Luke Seed

TUTOR
Dr. Peter I. Rockett

Date
05/11/2004

A b s t r a c t

This thesis proposes a new routing algorithm to allow communication in highly

mobile, wireless ad-hoc networks, which in nature are wireless and infrastructureless. In

motorway environments, the topology of the network changes frequently and

unpredictable due to the mobility of the nodes.

We investigate a new reactive routing algorithm based in location information in the

context of inter-vehicular communication. In such a scenario, the originator o f the

communication does not know the position of its communication partner in advance.

Rapid topology changes and scarce bandwidth prevent the nodes from exchanging

positions regularly throughout the network. Therefore, we focus on reactive algorithms

and explore several mechanisms limiting the flooding o f discoveries location packets.

The originator o f a message uses scoped and controlled flooding to reach the

destination. The receivers of the flooded message use their knowledge o f the local

environment to decide whether they can reach the intended destination o f the message

or retransmit the message to their neighbours.

To evaluate our communication algorithm, we first validate it in a small scale network

with the results o f a test bed. Then for large scale networks, our protocol is compared

with the models of two prominent reactive routing algorithms: Ad-Hoc On-Demand

Distance Vector (AODV) and Dynamic Source Routing (DSR) on a multi-lane

rectangular and circular dual carriageway representative o f city and motorway driving.

Finally, our algorithm is analysed on a multi-lane circular carriageway representative of

a six lane motorway driving with one location-based routing algorithm: Greedy

Perimeter Stateless Routing (GPSR).

The mobility of the vehicles on a Motorway using a Microscopic traffic model

developed in OPNET has been used to evaluate the performance o f each protocol in

terms of: Route Discovery Time (RDT), End to End Delay (EED), Routing Overhead

(RO), Overhead (O), Routing Load (RL) and Delivery Ratio (DR).

A cknowledgements

I would like to thank my supervisor, Dr. Robert Edwards, for his valuable support and

guidance through the realisation of my doctoral studies. He took a chance by accepting

me as his student, and patiently guided me throughout my research career at the

University of Sheffield. He always found time for me whenever I needed his input.

Also, I wish to thank my second supervisor, Dr. Luke Seed, for his valuable comments,

and feedback, and my tutor, Dr. Peter Rockett, for constantly providing his guidance

and support.

I want to thank Arthur Edwards for his continuous help in reviewing my thesis

writing.

I also wish to express my sincerest gratitude to department colleges, as well as a special

“thank you” to Salvador Villarreal for his help in the final process o f my thesis.

Last but not least, I would like to thank my family, especially my parents for teaching

me to believe in myself and follow my dreams, and my two sisters and brother for their

love and support.

To my wife Tania who gave me two daughters: Iritzi and Dafne my greatest treasures.

L ist of publications

Papers in conferences:

R. A. Santos, R. M. Edwards, N. L. Seed. Using the Cluster-Based Location Routing
(CBLR) Algorithm for Exchanging Information on a Motorway. Proceeding o f the
Fourth IEEE Conference on Mobile and Wireless Communication Networks (MWCN).
September 2002. Stockholm, Sweden.

R. A. Santos, R. M. Edwards, N. L. Seed. First steps towards inter-vehicular traffic of
data on Motorways using ad-hoc networks over IEEE 802.11b. Postgraduate Research
Conference in Electronics, Photonics, Communications and Software (PREP2003).
April 2003. Exeter, U.K.

R. A. Santos, R. M. Edwards, N. L. Seed. Cluster-Based Location Routing algorithm
and its application on Motorways. IASTED International Conference, Computer
Science and Technology (CST 2003). May 2003. Cancún, Mexico.

R. A. Santos, R. M. Edwards, N. L. Seed. Inter-Vehicular Data Exchange between fast
moving road traffic using an Ad-Hoc Cluster-Based Location Routing algorithm and
802.11b Direct Sequence Spread Spectrum Radio. PostGraduate Networking
Conference (PGNET 2003). June 2003. Liverpool, U.K.

R. A. Santos, R. M. Edwards, N. L. Seed. Using a Short-Term Predictive Algorithm to
Improve the Communication's Speed in Fast Mobile Ad-Hoc Networks. London
Communications Symposium (LCS 2003). September 2003.London, U.K.

R. A. Santos, R. M. Edwards, N. L. Seed. Supporting Inter-Vehicular and Vehicle-
Roadside Communications over a Cluster-Based Wireless Ad-Hoc Routing Algorithm.
Winter International Symposium on Information and Communication Technologies
(WISICT 2004). January 2004. Cancún, México.

R. A. Santos, R. M. Edwards, A. Edwards. A Novell Cluster-Based Location Routing
Algorithm for Inter-Vehicular Communication. The 15,h IEEE International Symposium
on Personal, Indoor and Mobile Radio Communications (PIMRC 2004). September 5 -
8, 2004, Barcelona, Spain.

R. A. Santos, R. M. Edwards, and A. Edwards. Cluster-Based Location Routing
Algorithm for Vehicle to Vehicle Communication. IEEE Radio &Wireless Conference:
Latest in Wireless & RF Technology (RAWCON 2004). September 19 - 22, 2004,
Atlanta, GA USA.

R. A. Santos, R. M. Edwards, and A. Edwards. Cluster-Based Location Routing
Algorithm for Inter-Vehicle Communication. IEEE Vehicular Technology Conference
(VTC-2004 Fall). September 26 - 29, Los Angeles, CA USA.

R. A. Santos, R. M. Edwards, N. L. Seed and A. Edwards. A Location-Based Routing
Algorithm for Vehicle to Vehicle Communication. The I3lh IEEE International
Conference on Computer Communication and Networks (ICCCN 2004). October I l
ls , Chicago IL, USA.

Paper in Journals:

R. A. Santos, R. M. Edwards, N. L. Seed and A. Edwards. A Reactive Location Routing
Algorithm with Cluster-Based Flooding for Inter-Vehicle Communication. Submitted to
IEEE Transaction on Mobile Computing (TMC).

R. A. Santos, R. M. Edwards, N. L. Seed and A. Edwards. Exchanging information in
Vehicular Ad-hoc Networks (VANET). Submitted to the International Journal of Ad
Hoc and Ubiquitous Computing.

R. A. Santos, R. M. Edwards and A. Edwards. Inter-vehicular Communication using
Wireless Ad-hoc Networks. Submitted to IEEE Transactions on Vehicular Technology.

List of Contents

Chapter 1: Introduction 1-16

1.1 Introduction to Wireless Local Area Networks (WLANs) 1-16
1.2 Bluetooth Technology 1-17
1.3 IEEE 802.11 WLAN Architecture 1-19

1.3.1 Physical Layer 1-20
1.3.2 Medium Access Control Sub-layer 1-21

1.4 Routing Algorithms for Wired Networks 1 -22
1.5 Origins o f Ad-Hoc Wireless Networks 1-23
1.6 People involve in Ad-hoc Network Research 1 -26
1.7 Inter-Vehicle and Vehicle to Roadside Communication 1-29
1.8 Issues Concerning Inter-Vehicle Communication using Wireless Ad-Hoc

Networks 1 -30
1.9 People involved in Inter-Vehicle Communication Research 1-32
1.10 Scope and Objectives o f the Thesis 1 -33
1.11 Outline of the Thesis 1 -34

Chapter 2: Routing Algorithms in Wireless Ad-Hoc Networks 2-35

2.1 Introduction 2-35
2.2 Proactive Routing Algorithms for Ad-Hoc Networks 2-39

2.2.1 Optimised Link State Routing Protocol (OLSR) for Ad-Hoc
Networks 2-39

2.2.2 Topology Dissemination based on Reverse-Path Forwarding
(TBRPF) 2-41

2.3 On-demand Routing Algorithms for Ad-Hoc Networks 2-42
2.3.1 Ad-Hoc On-demand Distance Vector Routing (AODV) 2-42
2.3.2 The Dynamic Source Routing Protocol for Mobile Ad-hoc Networks

(DSR) 2-44
2.3.3 Perfonnance comparison between AODV and DSR 2-46

2.4 Algorithms based on position information (Geographic Coordinates) 2-47
2.4.1 Basic principles and problems of position-based routing algorithms2-47
2.4.2 Location-Aided Routing (LAR) in mobile Ad-Hoc Networks 2-48
2.4.3 A Distance Routing Effect Algorithm for Mobility (DREAM) 2-50
2.4.4 Grid Location Service (GLS) 2-52
2.4.5 Greedy Perimeter Stateless Routing for Wireless Networks

(GPSR 2-54
2.4.5.1 Greedy Forwarding 2-54
2.4.5.2 Perimeter Forwarding 2-54

2.5 Cluster-Based Routing Algorithms for Ad-Hoc Networks 2-55
2.5.1 Clustering for transmission management 2-55

2.5.1.1 Link-Clustered Architecture 2-56
2.5.1.2 Cluster-Based Routing Protocol (CBRP) 2-57

2.5.2 Clustering for backbone formation 2-59
2.5.2.1 Near-Term Digital Radio Network 2-59

2.6 Special issues relating to inter-vehicle ad-hoc routing protocols
2.7 Conclusions

2-60
2-61

Chapter 3: Reactive Location-Based Routing Algorithm with Cluster-
Based Flooding 3-62

3.1 Introduction 3-62
3.1.1 DREAM Location Service (DLS) 3-62
3.1.2 Simple Location Service (SLS) 3-63
3.1.3 Reactive Location Service (RLS) 3-63

3.2 Routing of packets using location information 3-63
3.3 Reactive location routing algorithm with Cluster-Based Flooding

(LORA-CBF) 3-64
3.3.1 Protocol functioning 3-66

3.3.1.1 Neighbour sensing
3.3.1.2 Operation o f reactive location routing algorithm with

3-66

Cluster-Based Flooding (LORA-CBF) 3-67
3.3.1.3 Cluster formation 3-70
3.3.1.4 Location discovery process 3-71
3.3.1.5 Routing of data packets 3-73
3.3.1.6 Maintenance o f location information 3-74
3.3.1.7 Forwarding strategy 3-74

3.4 Short-term predictive algorithm 3-74
3.5 Conclusions 3-76

Chapter 4: Justification of IEEE 802.11 b Wireless Networks for Inter-
Vehicle Communication 4-78

4.1 Introduction 4-78
4.2 Large-scale Fading 4-78

4.2.1 Free-space propagation Model 4-79
4.2.2 Path Loss 4-79
4.2.3 System Operating Margin 4-80

4.3 Small-scale Fading 4-80
4.3.1 Impact o f Doppler Shift 4-80

4.3.1.1 Fast Fading 4-81
4.3.1.2 Slow Fading 4-82

4.4 Test set up and experimental details 4-83
4.5 Conclusions 4-90

Chapter 5: Microscopic Traffic Models 5-91

5.1 Introduction 5-91
5.2 introduction to Vehicular Traffic Theory 5-92
5.3 Car Following Models 5-93

5.3.1 Safe-distance models 5-93
5.3.2 Stimulus-response car-following models 5-94

5.3.3 Psycho-Physiological car following models 5-95
5.4 Microscopic Traffic Simulators 5-96

5.4.1 The Traffic Simulator MIMIC 5-96
5.4.2 The Traffic Simulator Integration 5-97
5.4.3 The Traffic Simulator AIMSUN 5-99
5.4.4 MITSIM Traffic Simulation Model 5-100

5.4.4.1 Free driving 5-100
5.4.4.2 Car-following 5-101
5.4.4.3 Emergency 5-101

5.4.5 The Microscopic Traffic Flow Model VISSIM 5-102
5.4.5.1 Following 5-104
5.4.5.2 Free driving 5-105
5.4.5.3 Closing in 5-105
5.4.5.4 Emergency regime 5-105

5.5.6 The Traffic Simulation Model Simone 2000 5-106
5.5.6.1 Distance Controller 5-108
5.5.6.2 Longitudinal Controller 5-109

5.5 Conclusions 5-110

Chapter 6: Validation of the Algorithm in a small and Large Scale Ad-
Hoc Network 6-111

6.1 Introduction 6-111
6.2 Dynamic Source Routing Protocol (DSR) 6-111

6.2.1 Basic Mechanisms o f DSR 6-111
6.2.2 Implementation Decision 6-112

6.3 Ad-Hoc On-Demand Distance Vector (AODV) 6-112
6.3.1 Basic Mechanism 6-112
6.3.2 Implementation Decision 6-113

6.4 Greedy Perimeter Stateless Routing (GPSR) 6-113
6.4.1 Implementation Decision 6-114

6.5 Methodology 6-115
6.5.1 Communication Model 6-117
6.5.2 Medium Access Mechanism 6-118

6.6 Validating the algorithm in a small-scale network 6-118
6.6.1 One-hop Validation 6-124
6.6.2 Two and Three hops Validation 6-125

6.7 Validation the Location Routing Algorithm with Cluster-Based Flooding
(LORA-CBF) in a Scale Ad-Hoc Network 6-126
6.7.1 Metrics of Simulation 6-126

6.7.1.1 A Comparison o f the algorithms LORA-CBF, AODV, and
DSR on a multi-lane rectangular dual carriageway
representative of city driving 6-127

6.7.1.2 A Comparison o f the algorithms LORA-CBF, AODV and
DSR on a multi-lane circular dual carriageway
representative o f motorway driving 6-133

6.7.1.3 A Comparison o f the algorithms LORA-CBF, AODV and
DSR on a multi-lane rectangular and circular dual

viii
. îÿÿÿW ' s

carriageway representative of a city and motorway
driving 6-139

6.8 Comparison of the algorithms LORA-CBF and GPSR on a multi-lane
circular dual carriageway representative of a six lane motorway driving 6-145

6.9 Conclusions 6-152

List of References 157

A ppendices

A. S tructures used in LO R A -C B F A lgorithm 162
B. Program C ode for LO R A -C B F 168
C. Statistical A nalysis for A d-H oc W ireless N etw orks in Inter-

V ehicu lar C om m unication 285

List of Abbreviations

ABR
AICC
AODV
AP
BSA
BSS
CCK
CDC
CF
CFP
CP
CPC
CSMA/CA
CTS
d a r p a
DBPSK
DQPSK
DCF
DLS
DREAM
DSSS
DSR
EED
FCC
FUSS
FSP
GFSK
GLS
GPS
GPSR
HR/DSSS
IARP
IERP
ILG
ITS
IVC
IVHS
ISA
ISM
LAN
LAR
LCA
LG
LORA-CBF

Associativity-Based Routing Protocol
Autonomous Intelligent Cruise Control
Ad-Hoc On-Demand Distance Vector
Access Point
Basic Service Area
Basic Service Set
Complementary Code Keying
Centralized Distance Control
Contention Free
Contention Free Period
Contention Period
Centralized Platoon Control
Carrier Sense Multiple Access with Collision Avoidance
Clear to Send
Defense Advanced Research Project Agency
Differential Binary Phase Shift Keying
Differential Quadrature Phase Shift Keying
Distribute Coordination Function
DREAM Location Service
Distance Routing Effect Algorithm for Mobility
Direct Sequence Spread Spectrum
Dynamic Source Routing
End-to-End Delay
Federal Communication Commission
Frequency Hopping Spread Spectrum
Free Space Propagation
Gaussian Frequency Shift Keying
Grid Location Service
Global Position System
Greedy Perimeter Stateless Routing
High Rate Direct Sequence Spread Spectrum
Intra-zone Routing Protocol
Inter-zone Routing Protocol
Intelligent Lateral Control
Intelligent Transportation Systems
Inter-Vehicle Communication
Intelligent Vehicle Highway System
Intelligent Speed Limit Device
Industrial, Scientific and Medical
Local Area Networks
Location-Aided Routing
Link Cluster Architecture
Lane Guidance
Location Routing Algorithm with Cluster-Based Flooding

X

.. • k- - i t ■-j, . -"-; v - A; . . . •

LREQ Location Request Packets
LREP Location Reply Packet
LPR Low-cost Packet Radio
LSA Link State Advertisement
LSU Link State Update
MAC Medium Access Control
MANET Mobile Ad-Hoc Networks
MFR Most Forward within Radius
MPDU MAC Protocol Data Unit
MPR Multipoint Relay
NAV Network Allocation Vector
NIST National Institute o f Standard and Technology
NTDR Near-Term Digital Radio
OFDM Orthogonal Frequency Division Multiplexing
OLSR Optimized Link State Routing
OSR Optimal Spine Routing
PC Point Coordinator
PCF Point Coordination Function
PDU Protocol Data Unit
PLCP Physical Layer Convergence Procedure
PRNET Packet Radio Network
PSDU PLCP Service Data Unit
PSR Partial-knowledge Spine Routing
RD Route Discovery
RF Radio Frequency
RLS Reactive Location Service
RREQ Route Request Packet
RREP Route Reply Packet
RTS Request to Send
SLS Simple Location Service
SOM System Operating Margin
SSL Static Speed Limit
SURAN Survivable Radio Network
TBRPF Topology Dissemination Based on Reverse Path Forwarding
TDMA Time Division Multiple Access
TOD TBRPF Neighbour Discovery
VANET Vehicular Ad-hoc Networks
WLANs Wireless Local Area Networks
ZRP Zone Routing Protocol

XI

»r - I id i ¿y iiSte - - *- 1

List of Figures

Figure 1.1
Figure 1.2

Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure 2.18
Figure 2.19
Figure 2.20
Figure 3.1
Figure 3.2

Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 4.1
Figure 5.1
Figure 6.1
Figure 6.2

Figure 6.3

Basic topology of a simple Piconet
General Bluetooth Piconet including active, parked slaves and standby
devices
Scatternet topology
Basic WLAN topologies: infrastructure and ad-hoc
IEEE 802.11 architecture
Inter-Vehicle Communication System using Wireless Ad-hoc Networks
Routing algorithms in mobile wireless ad-hoc networks
Diffusion of broadcast message using pure flooding
Multipoint relays (MPRs)
Example illustrating TBRPF source tree
Route Request Packet in AODV
Route Reply Packet in AODV
Route Request Packet in DSR
Route Reply Packet
LAR scheme 1
LAR scheme 2
Distance Effect in DREAM
The expected region in DREAM
Grid Location Service (GLS) Algorithm
Position Server for Node 29
The right hand rule
The Link-Clustered Architecture
Clusters’ Formation
Route Request Packet (RREQ) in CBRP
Route Reply Packet (RREP) in CBRP
The NTDR Network Architecture
Flow Diagram for LORA-CBF
Cluster formation mechanism for reactive Location Routing Algorithm
With Cluster-Based Flooding (LORA-CBF)
Gateway node in LORA-CBF algorithm
Location Request Packet (LREQ)
Location Reply Packet (LREP)
Data and acknowledgement packets being forwarding in LORA-CBF
Short-term predictive algorithm used in LORA-CBF
Worst case scenario to evaluate the impact o f Doppler shift
The different thresholds and regimes in the VISSIM model
Beaconing and Registration o f neighbours’ nodes in GPSR
Scenarios evaluated. Vehicles are considered to be arranged in an
endless loop
Test-Bed considered and replicated in OPNET

Xli

List of Graphs

Graph 4.1
Graph 4.2
Graph 4.3
Graph 4.4
Graph 4.5
Graph 4.6
Graph 4.7

Graph 6.1

Graph 6.2

Graph 6.3

Graph 6.4

Graph 6.5

Graph 6.6

Graph 6.7

Graph 6.8

Graph 6.9

Graph 6.10

Graph 6.11

Graph 6.12

Graph 6.13

Graph 6.14

Graph 6.15

Graph 6.16

Graph 6.17

Received signal power
Received signal power between transmitter and receiver
Free space loss
Free space loss between transmitter and receiver
System operating margin
Delivery ratio
Delivery ratio compared between the experimental result and results
obtained in OPNET
Results o f EED obtained from simulation using OPNET and compared
with the results o f the test-bed in one hop
Results o f EED obtained from simulation using OPNET and compared
with the results o f the test-bed in two hops
Results o f EED obtained from simulation using OPNET and compared
with the results o f the test-bed in three hops
Results of Throughput obtained from simulation using OPNET and
compared with the results o f the test-bed in one hop
Results o f Throughput obtained from simulation using OPNET and
compared with the results of the test-bed in two hops
Results of Throughput obtained from simulation using OPNET and
compared with the results of the test-bed in three hops
Delivery Ratio on a multi-lane rectangular dual carriageway
representative o f city driving (packets)
EED on a multi-lane rectangular dual carriageway representative o f city
driving (ms)
Routing overhead on a multi-lane rectangular dual carriageway
representative of city driving (packets)
Route Discovery Time on a multi-lane rectangular dual carriageway
representative of city driving (ms)
Overhead on a multi-lane rectangular dual carriageway representative o f
city driving (packets)
Routing load on a multi-lane rectangular dual carriageway representative
o f city driving (packets)
Delivery Ratio on a multi-lane circular dual carriageway
representative o f motorway driving (packets)
EED on a multi-lane circular dual carriageway representative of
motorway driving (ms)
Routing overhead on a multi-lane circular dual carriageway
representative o f motorway driving (packets)
Route Discovery Time on a multi-lane circular dual carriageway
representative o f motorway driving (ms)
Overhead on a multi-lane circular dual carriageway representative o f
motorway driving (packets)

xm

Graph 6.18

Graph 6.19

Graph 6.20

Graph 6.21

Graph 6.22

Graph 6.23

Graph 6.24

Graph 6.25

Graph 6.26

Graph 6.27

Graph 6.28

Graph 6.29

Graph 6.30

Routing load on a multi-lane circular dual carriageway representative
o f motorway driving (packets)
Delivery Ratio on a multi-lane rectangular and circular dual carriageway
representative of city and motorway driving (packets)
EED on a multi-lane rectangular and circular dual carriageway
representative of city and motorway driving (ms)
Routing overhead on a multi-lane rectangular and circular dual
carriageway representative o f city and motorway driving (packets)
Route Discovery Time on a multi-lane rectangular and circular dual
carriageway representative of city and motorway driving (ms)
Overhead on a multi-lane rectangular and circular dual carriageway
representative of city and motorway driving (packets)
Routing load on a multi-lane rectangular and circular dual carriageway
representative of city and motorway driving (packets)
Delivery Ratio on a multi-lane circular dual carriageway representative
of six lane motorway driving (packets)
EED on a multi-lane circular dual carriageway representative o f six lane
motorway driving (ms)
Routing overhead on a multi-lane circular dual carriageway
representative of six lane motorway driving (packets)
Route Discovery Time on a multi-lane circular dual carriageway
representative of six lane motorway driving (ms)
Overhead on a multi-lane circular dual carriageway representative o f six
lane motorway driving (packets)
Routing load on a multi-lane circular dual carriageway representative of
six lane motorway driving (packets)

xiv

L ist o f Ta b l e s

Table 1.1
Table 4.1

Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 6.1

Table 6.2

Table 6.3
Table 6.4

Mobile Ad-hoc Network Applications
Theoretical values specified for receiver sensitivity in Enterasys’
wireless cards
Link categories and estimated values o f the model parameters
Typical values used in AIMSUN model
Typical values used in MITSIM model
Typical values used in VISSIM model
Constant used in Simone 2000
Results of EED obtained from simulation using OPNET and compared
with the result o f the test-bed
Results of Throughput obtained from simulation using OPNET and
compared with the result o f the test-bed
Results validating LORA-CBF in one hop
Results validating LORA-CBF

xv

Chapter 1: Introduction

1.1 INTRODUCTION TO WIRELESS LOCAL AREA
NETWORKS (WLANS)

The requirements of data communication, beyond the physical link, has resulted in the

necessity of wireless networks, which have been fuelled by fabrication improvements of

digital and RF circuits, new large-scale circuit integration, and other miniaturization

technologies that make portable radio equipment smaller, cheaper, and more reliable.

Wireless Local Area Networks (WLANs) represent flexible data communications

systems that can be implemented as an extension to, or as an alternative for, a wired

LAN. Using a form of electromagnetic radiation as the network medium, most

commonly in the form of radio waves, wireless LANs transmit and recei ve data over air,

minimising the need for wired connections (cables). Thus, wireless LANs combine data

connectivity with user mobility. By combining mobile devices with wireless

communications technologies, the vision of being connected at anytime and anywhere

will soon become a reality.

Whereas today’s expensive wireless infrastructure depends on centrally deployed hub

and one hop stations, mobile ad hoc networks consist of devices that are autonomously

self-organizing in networks. In ad-hoc networks, the devices themselves comprise the

network. This advantage permits seamless communication, at low cost, in a self-

organized fashion and with easy deployment. The large degree of freedom and the self

organizing capabilities make possible ad-hoc networks completely different from any

other networking solution. For the first time, users have the opportunity to create their

own networks, which can be deployed easily and inexpensively.

Ad-hoc networks are a key step in the evolution of wireless networks. They inherits

the traditional problems of wireless and mobile communications such as bandwidth

optimization, power control and transmission quality enhancements. There are presently

two WLAN standards that define protocol architectures and network topologies:

Bluetooth, and IEEE 802.1 lb [I f

1-16

CHAPTER 1 INTRODUCTION

1.2 BLUETOOTH TECHNOLOGY

The main characteristics for Bluetooth technology are described below:

• The Bluetooth system operates in the 2.4 GHz, industrial, scientific, and medical

(ISM) band.

• This technology is optimized for short-range communications, low power

consumption and low cost.

• The higher layer reuses transport and applications protocols already developed for

similar domains, such as those used with infrared wireless communications.

Bluetooth specifies a l()m-radio range and supports up to 7 devices per piconet (Figure

Figure 1.1: Basic topology o f a simple piconet.

As noted above, a piconet can include up to seven active slaves and many more

parked slaves. In active mode, a slave essentially always listens for transmissions from

the master. Active slaves receive packets that enable them to remain synchronized with

the master and inform it when they can transmit packets back to the master. In parked

mode, a slave maintains synchronization with the master, but is no longer considered

active. Since there can be only seven active slaves in a piconet at one time, this is due to

three-bit node addressing inside piconet. The parked mode allows the master to

orchestrate communication within a piconet of more than seven devices by exchanging

active and parked slaves to maintain up to seven active connections while the remaining

slaves in the piconet are parked. Figure 1.2 shows the general view of a piconet.

1. 1) [2| [3).

1-17

CHAPTER 1 INTRODUCTION

Proximity

Figure 1.2: General Bluetooth piconet including active, parked slaves and standby
devices.

As described and illustrated above, a device may be an active or parked participant in

a piconet, or it may not be part of any piconet. In addition, it is possible for a device to

take part in more than one piconet. When two or more piconets at least partially overlap

in time and space, a scattemet is formed (Figure 1.3). All of the same principles of

piconets also apply for scattemets; each piconet has a single master and a set of slaves,

which may be active or parked. Each piconet has its own hopping pattern, which is

determined by its master. A slave can participate in multiple piconets by, in turn,

establishing connections with and synchronizing to different masters in proximity. In

fact, a single device might act as a slave in one piconet, but assume the master role in

another piconet. The scattemet topology shown in 2.3 illustrates the flexibility by which

devices can maintain multiple connections, which is especially useful for mobile

devices that frequently move into and out of proximity to other devices.

CHAPTER 1 INTRODUCTION

1.3 IEEE 802.11 WLAN ARCHITECTURE

The IEEE 802.11 was the first international standard for WLANs |4]. The basic

service set (BSS) is the fundamental building block of the IEEE 802.11 architecture. A

BSS is defined as a group of stations that are under the direct control of a single

coordination function (e.g. Direct Coordination Function (DCF) or Point Coordination

Function (PCF)), which is defined below.

The geographical area covered by the BSS is known as the basic service area (BSA),

which is analogous to a cell in a cellular communication network. Conceptually, all

stations in a BSS can communicate directly with all other stations in a BSS.

An ad-hoc network is a deliberate grouping of stations into a single BSS for the

puiposes of inter-networked communications, without the aid of an infrastructure

network. Figure 1.4 provides an illustration of an infrastructure and independent BSS.

The independent BSS is the formal name of an ad-hoc network in the IEEE 802.11

standard.

Figure 1-4: Basic WLAN topologies: infrastructure and ad-hoc.

In an ad-hoc network, any station can establish a direct communication session with

any other station in the BSS, without having to channel all traffic through a centralized

access point (AP).

CHAPTER 1 INTRODUCTION

1.3.1 Physical Layer

The IEEE specification calls for three different physical-layer implementations:

Frequency Hopping Spread Spectrum (FUSS), Direct Sequence Spread Spectrum

(DSSS), and Infrared. The FUSS utilizes the 2.4 GHz Industrial, Scientific, and Medical

(ISM) band (e.g. 2.4- 2.4835 GHz). In the United States, a maximum of 79 channels are

specified in the hopping set. The first channel has a centre frequency of 2.402 GHz, and

all subsequent channels are spaced 1 MHz apart. The 1 MHz separation is mandated by

the FCC for the 2.4 GHz ISM band. The channel separation corresponds to 1 Mb/s of

instantaneous bandwidth. Three different hopping sequence sets are established with 26

hopping sequences per set. Different hopping sequences enable multiple BSSs to

coexist in the same geographical area, which may become necessary to alleviate

congestion and maximize the total throughput in a single BSS. The minimum hop rate

permitted is 2.5 hops/seconds. The basic access rate of 1 Mb/s uses two-level Gaussian

frequency shift keying (GFSK). The enhanced access rate of 2 Mb/s uses four-level

GFSK (Figure 1.5). The DSSS also uses the 2.4 GHz ISM frequency band, where the 1

Mb/s basic rate is encoded using differential binary phase shift keying (DBPSK), and a

2 Mb/s enhanced rate uses differential quadrature phase shift keying (DQPSK). The

spreading is done by dividing the available bandwidth into 11 sub-channels, each 11

MHz wide, and using an 11-chip Barker sequence to spread each data symbol. The

maximum channel capacity is therefore (11 chips/symbol)/ (11 MHz) = 1 Mb/s if

DBPSK is used.

In October 1997, the IEEE 802 Executive Committee approved two extensions for

higher data rate transmission. The first extension, IEEE 802.1 la, defines requirements

for a PHY operating in the 5.0 GHz frequency and data rate transmission ranging from

6 Mbps to 54 Mbps. The second extension, IEEE 802.11b, defines a set of PHY

specifications operating in the 2.4 GHz frequency band up to 11 Mbps. Both PHY are

defined to operate with the existing MAC.

The IEEE 802.1 la PHY is one of the physical layer extensions of IEEE 802.11 and is

referred to as orthogonal frequency division multiplexing (OFDM) and the IEEE

802.11b is referred to as high rate direct sequence spread spectrum (HR/DSSS). The

HR/DSSS PHY provides two functions. First, the HR/DSSS extends the PSDU data

rates to 5.5 and 11 Mbps using an enhanced modulation technique, called

1-20

■

CHAPTER 1 INTRODUCTION

Complementary Code Keying (CCK). Secondly, the HR/DSSS PI IY provides a rate

shift mechanism, which allows 11 Mbps networks to fall back to 1 and 2 Mbps and

interoperates with the legacy IEEE 802.11 standard. Finally the IEEE 802.1 lg was

approved in June 2003 |5J. The IEEE 802.1 lg standard provides optional data rates

transmission of up to 54 Mbps, and requires backward compatibility with 802.11b

devices to protect the substantial investments in today’s WEAN installations. The

802.1 lg standard includes mandatory and optional components. It specifies OFDM and

CCK as the mandatory modulation schemes with 24 Mbps as the maximum mandatory

data rates, but it also provides for optional higher data rates of 36, 48 and 54 Mbps.

Figure 1.5: IEEE 802.11 architecture.

1.3.2 Medium Access Control Sub-layer

The MAC sub-layer is responsible for channel allocation procedures, protocol data

unit (PDU) addressing, frame formatting, error checking, and fragmentation and

reassembly.

The transmission medium can operate in the contention mode exclusively, requiring

all stations to contend for access to the channel for each packet transmitted. The

medium can also alternate between the contention mode, known as the contention

CHAPTER 1 INTRODUCTION

period (CP) under the Distribute Coordination Function (DCF), and a contention-free

period (CFP) under the Point Coordination Function (PCF). During the CFP, medium

usage is controlled (or mediated) by the AP, thereby eliminating the need for stations to

contend for channel access.

The DCF is the fundamental access method used to support asynchronous data

transfer on a best effort basis. The DCF operates exclusively in ad-hoc networks and is

based on carrier sense multiple access with collision avoidance (CSMA/CA). In IEEE

802.11, carrier sensing is performed at both the air interface, referred to as physical

carrier sensing and at the MAC sub-layer, referred to as virtual carrier sensing. Physical

carrier sensing detects the presence of other IEEE 802.11 WLAN users by analyzing all

detected packets and also detecting activity in the channel via relative signal strength

from other sources.

A source station performs virtual carrier sensing by sending MPDU duration

information in the header of request to send (RTS), clear to send (CTS), and data frames.

The duration field indicates the amount of time (in microseconds) after the end of the

present frame. The channel will then be utilized to complete the successful transmission

of the data or management frame. Stations in the BSS use the information in the

duration field to adjust their network allocation vector (NAV), which indicates the

amount of time that must elapse until the current transmission session is complete and

the channel can be sampled again for idle status. The channel is marked busy if either

the physical or virtual carrier sensing mechanisms indicate the channel is busy.

On the other hand, the PCF is an optional capability, which is connection-oriented,

and provides contention-free (CF) frame transfer. The PCF relies on the point

coordinator (PC) to perform polling, enabling polled stations to transmit without

contending for the channel. The function of the PC is performed by the AP within each

BSS.

1.4 ROUTING ALGORITHMS FOR WIRED NETWORKS

The most popular dynamic routing algorithms in modern computer networks are:

distance vector and link state routing |6).

Distance vector routing algorithms require each router to simply inform its neighbours

of its routing table. These tables are updated by exchanging information with the

CHAPTER 1 INTRODUCTION

neighbours. For each neighbour path, the receiving routers pick the neighbour

advertising the lowest cost, then add this entry into its routing table for re-advertisement.

The lowest cost is defined in the following terms: number of hops, time delay in

milliseconds, and total number of packets queued along the path.

The router is assumed to know the “distance” to each of its neighbours. If the metric is

hops, the distance is just one hop. If the metric is queue length, the router simply

examines each queue. If the metric is delay, the router can measure it directly with

special “Hello” packets that the receiver just timestamps and sends back as fast as it can.

On the other hand, link state routing algorithms require each router maintain at least a

partial map of the network, and must:

1. Discover its neighbours and learn their network address.

2. Measure the delay or cost to each of its neighbours.

3. Construct a packet for all it has just learned.

4. Send this packet to all other routers.

5. Compute the shortest path to every other router.

When a network link changes state (up to down, or vice versa), a notification, called a

link state advertisement (LSA), is Hooded throughout the network. All the routers note

the change and re-compute their routes accordingly. The routing algorithms mentioned

previously are not suitable for wireless networks, because they generate too much

traffic and can only accept a few topology changes per minute.

1.5 ORIGINS OF AD-HOC WIRELESS NETWORKS

Historically, mobile ad-hoc networks have primarily been used for tactical network-

related applications to improve battlefield communications and survivability. The

dynamic nature of military applications means it is not possible to rely on access to a

fixed pre-placed communication infrastructure on the battlefield. The Packet Radio

Network (PRNET), under the sponsorship of the Defense Advanced Research Project

Agency (DARPA), is considered the precursor of mobile wireless ad-hoc networks

(MANET) |7j, and its main features include:

l • Flow control over a wireless multi-hop communication route.

2. Eirror control over wireless links.

1-23

CHAPTER 1 INTRODUCTION

4.

3.

6 .

7.

5.

8 .

Deriving and maintaining network topology information.

Deriving aceurate routing information.

Mechanisms to handle router mobility.

Shared channel access by multiple users.

Processing capability of terminals.

Size and power requirements.

PRNET was the first implementation of ad-hoc wireless networks with mobile nodes.

This was primarily inspired by the efficiency of packet switching technology, such as

bandwidth sharing and store-and-forward routing and its possible applications in mobile

wireless environments.

Survivable Radio Networks (SURANs) were deployed by DARPA in 1983 to address

open issues in PRNET in the areas of network scalability, security, processing

capability, and energy management. The main objectives of this effort were to develop

network algorithms to support networks that can scale to tens of thousands of nodes and

to resist security attacks, as well as use small, low cost, low-power radio that could

support more sophisticated packet radio protocols. This effort resulted in the design of

Low-cost Packet Radio (LPR) technology in 1987, which featured a digitally controlled

DS spread spectrum radio with an integrated Intel 8086 microprocessor-based packet

switch.

Although early MANET application and deployments were military oriented, non

military applications have grown substantially since then and have become the main

focus today. This has been the case the last few years, due to rapid advances in mobile

ad-hoc networking research; mobile ad-hoc networks have attracted considerable

attention and interest from the commercial sector as well as the standards community.

The introduction of new technologies such as Bluetooth and IEEE 802.11 greatly

facilitate the deployment of ad-hoc technology outside of the military domain. As a

result, many new ad-hoc networking applications have since been conceived to help

enable new commercial and personal communication beyond the tactical networks

domain, including personal area networking, home networking, law enforcement

operations, research-and-rescue operations, commercial and educational applications,

1-24

CHAPTER 1 INTRODUCTION

sensor networks, and so on. Table 1.1 shows the classification of present and future

applications as well as the example services they provide.

Applications Description/services

Tactical networks Military communication, operations automated Battlefields

Sensor networks Collection of embedded sensor devices used to collect real

time data to automate everyday functions. Data highly

correlated in time and space, e.g. remote sensors for

weather, earth activities, sensors for manufacturing

equipment

Emergency services Search-and-rescue operations as well as disaster recovery;

early retrieval and transmission of patient data (record,

status, diagnosis) to or from the hospital

Commercial E-commerce: electronic payments from anywhere (i.e. in a

environments taxi)

Vehicular services: transmission of news, road conditions,

weather, music, local ad-hoc network with nearby vehicles

for road/accident guidance

Home and enterprise

networking

Home/office wireless networking (WLAN), e.g. shared

whiteboard application, use PDA to print anywhere

Educational applications Set up virtual classrooms or conference rooms, set up ad-

hoc communication during conferences, meetings or

lectures

Entertainment Multi-user games, Robotic pets, outdoor Internet access

Locate-aware services Follow-on services, e.g. automatic call forwarding,

transmission of the actual workspace to the current location

Table 1.1: Mobile Ad-hoc Network Applications

• i - ' • ■. •
„ \ > Ì v . ' t \ li

■ 1 .

1-25

. . . • v. v y v" : - ■ j^.". ; ■ ; U ' (• l i v e T ' i * ' : ; - L ' ' -U- ' , '

CHAPTER 1 INTRODUCTION

1.6 PEOPLE INVOLVED IN AD-HOC NETWORK
RESEARCH

Many people are involved actively in the area of ad-hoc networks. Here, we will

mention the most well-known researchers.

Charles E. Perkins is a Research Fellow at Nokia Research Center investigating mobile

wireless networking and dynamic configuration protocols. He is working on projects

involving Mobile-IP, Ad-hoc networking, IPv6 and AAA protocols. He also has worked

on projects involving miniaturization of operating systems, parallel processing and

many Unix administration systems.

C-K Toh chairs the IEEE Technical Subcommittee on Ad-hoc Mobile Wireless

Networks, and is Director of the Ad Hoc Wireless Networking Consortium. His

research interests include: Next Generation High Speed Networks, Broadband Wireless

Multimedia Networks, Satellite and Hybrid Networks, Ad-hoc Mobile Networking,

Pervasive Networks, Communication Protocols and Architectures, Power Management

and Power-efficient protocols, Sendee and resource discovery, Flow and congestion

control, application of control theory to networks, Internet Protocols, Quality of Service

Assurance and Adaptation, Location and Context Aware Systems, Mobile Computing

and Network Security.

Mohammad Ilyas is a professor of computer science and engineering at Florida Atlantic

University, Boca Raton, Florida. His doctoral research was about switching and How

control techniques in computer communication networks. He has conducted successful

research in various areas including traffic management and congestion control in

broadband/high-speed communication networks, traffic characterization, wireless

communication networks, performance modelling and simulation.

Giuseppe Anastasi is currently an associate professor of Computer Engineering at the

Department of Information Engineering of the University of Pisa, Italy. His research

interests include architectures and protocols for mobile computing, energy management,

QoS in mobile networks, and ad-hoc networks.

Elizabeth M. Belding-Royer is an assistant professor in the Department of Computer

Science at the University of California, Santa Barbara. Her research focuses on mobile

networking, specifically routing protocols, security, scalability and adaptability.

CHAPTER 1 INTRODUCTION

Luciano Bononi is a researcher at the Department of Computer Science of the

University of Bologna. His research interests include wireless and mobile ad-hoc

networks, network protocols, power saving, modelling and simulation of wireless

systems, discrete-event simulation, and parallel and distributed simulations.

Azzedine Boukerche is Canada Research chair and an associate professor of Computer

Sciences at the School of Information Technology and Engineering (SITE), University

of Ottawa, Canada. His current research interests include ad-hoc networks, mobile

computing, wireless networks, parallel simulation, distributed computing and large-

scale distributed interactive simulation.

Raffaele Bruno is currently a junior researcher at the Iff Institute of the Italian

National Research Council (CNR). His research interests are in the area of wireless and

mobile networks with emphasis on efficient wireless MAC protocols, scheduling and

scatternet formation algorithms for Bluetooth networks.

Sajal K. Das is a professor of Computer Science and Engineering and also the founding

director of the Center for Research in Wireless Mobility and Networking (CReWMaN)

at the University of Texas, Arlington (UTA). Dr. Das’ current research includes

resource and mobility management in wireless networks, mobile and pervasive

computing, wireless multimedia and QoS provisioning, sensor networks, mobile

internet architectures and protocols, parallel processing, grid computing, performance

modelling and simulation.

Andr&s Far a¡*6 is a professor of Computer Science at the University of Texas, Dallas.

His main research interests include the development and analysis of algorithms,

network protocols and modelling of communication networks.

Laura Marie Feeney has been a member of the Computer and Network Architecture

Laboratory at the Swedish Institute of Computer Science in Kista, Sweden, since 1999.

Her research includes topics in energy efficient routing and quality of service for

wireless networks, especially ad-hoc and sensor networks.

Enrico Gregori is the deputy director of the institute for Informatics and Telematics

(III) of the CNR (Italian National Research Council). His current research interests

include ad-hoc networks, sensor networks, wireless LANs, quality of service in packet

switching networks and evolution of TCP/IP protocols.

CHAPTER 1 INTRODUCTION

Xiang-Yang Li has been an assistant professor of Computer Science at the Illinois

Institute of Technology since August 2000. His research interests span computational

geometry, wireless ad-hoc networks, optical networks and algorithmic mechanism

design.

Joseph P. Mocker is a senior communication system and network research scientist at

the Naval Research Laboratory in Washington, D.C. His primary research interests are

adaptive network protocol and architecture design, multicast technology and data

reliability, mobile wireless networking and routing, network protocol simulation and

analysis, Quality of Service (QoS) networking, multimedia networking and adaptive

sensor networking.

Ram Ramanathan is a division scientist at BBN technologies. His research interests are

in the area of wireless ad-hoc networks, in particular, routing, medium-access control,

and directional antennas.

Andreas Savvides is an assistant professor in Electrical Engineering and Computer

Science at Yale University. His research interests are in sensor networks, embedded

systems and ubiquitous computing.

Mani Srivastava is a professor of electrical Engineering at UCLA. His current research

spans all aspects of wireless, embedded and low power systems, with a particular focus

on systems issues and applications in wireless sensor and actuator networks.

Violet R. Syrotiak is an assistant professor of computer science and Engineering at

Arizona State University. Her areas of research include many aspects of medium-access

control for mobile ad-hoc networks, such as dynamic adaptation, quality of service,

energy awareness, and topology transparency.

Jie Wu is a professor in the department of Computer Science and Engineering, Florida

Atlantic University. He researches the areas of mobile computing, routing protocols,

fault-tolerant computing, and interconnection networks.

George V. Zaruba is an assistant professor of Computer Science and Engineering at

the University of Texas, Arlington. Dr. Zaruba’s research interests include wireless

networks, algorithms, and protocols, and performance evaluation concentrating on the

medium-access control layer and current wireless technologies.

CHAPTER 1 INTRODUCTION

1.7 INTER-VEHICLE AND VEHICLE TO ROADSIDE
COMMUNICATION

The last decade has witnessed an increased interest in inter-vehicle and vehicle to

roadside communication, in part, because of the proliferation of wireless networks.

Most research in this area has concentrated on vehicle-roadside communication, also

called beacon-vehicle communication |8J (9| |10j [11] [12|] 13] |14|, in which vehicles

share the medium by accessing different time slots (Time Division Multiple Access,

TDMA), the beacon (down-link direction) and the vehicles (up-link direction). The

beacon arranges up-link time slots (so called windows allocations) for the vehicles; the

vehicles are not allowed to access the medium without a window allocation sent to them

by the beacon. The beacon, as primary station, offers two different types of windows to

the vehicles: public and private windows. A public window is a time slot, which may be

accessed by every vehicle within the communication zone. A private window allocation

reserves a time slot for one specific vehicle, thus protecting it against data collisions.

A typical communication process between a beacon and a vehicle can be divided into

two phases: connection establishing phase and transaction phase. When a vehicle enters

the beacon’s communication zone, the vehicle address is not known to the beacon, so

the beacon periodically broadcasts a request for identification and offers a public up

link window (connection establishing phase). After the response of the vehicle has been

received, the vehicle address is known and individual addressing becomes possible. The

beacon then opens private up-link windows to a specific vehicle for data exchange

during the transaction phase.

Due to the limited communication zones (less than 60 meters), some applications for

vehicle to roadside communications are mentioned: Automatic Payment, Route

Guidance, Cooperative Driving, parking management, etc. However, with the

introduction of IEEE 802.11, wireless ad-hoc networks and location-based routing

algorithms have made vehicle-to-vehicle communication possible j 15] 116] [17] 118)

[19] [20] [21]. Applications for inter-vehicle communication can be Intelligent Cruise

Control, Intelligent Maneuvering Control, Lane Access, Emergency Warning, etc. In

116], the authors propose using Grid [33[, which employs a geographic forwarding and

scalable distributed location service to route packets from car to car, without flooding

the network. The authors in [17J propose relaying messages in low traffic densities,

1-29

CHAPTER 1 INTRODUCTION

using two components in their simulation environments: a microscopic traffic simulator

to produce accurate movement traces of vehicles travelling on a highway, and a network

simulator to model the transport of messages among the vehicles. The highway

geometry is a straight highway segment with two directions, each composed of one or

more lanes. The messages are propagated greedily each time step by hopping to the

neighbour closest to the destination. The authors in 118{ compare a topology-based

approach and a location-based routing scheme. The authors chose GPSR |34J as the

location-based routing scheme and DSR {28J as the topology-based approach. The

simulator used in [18] is called FARSI, which is a macroscopic traffic model. In [201,

the authors compare two topology-based routing approaches, DSR and AODV 127),

versus one position-based routing scheme, GPSR, in an urban environment. Finally, in

1211, the authors employ a geo-cast routing protocol that is based on AODV.

In inter-vehicle communication, vehicles are equipped with on-board computers and

wireless networks, allowing them to contact other similarity equipped vehicles in their

vicinity. By exchanging information, in the near future, vehicles may obtain knowledge

about the local traffic situation, which may improve comfort and safety in driving.

In this work, we will focus on inter-vehicle communication because vehicle-roadside

communication has been already proposed for standardisation in Europe (CEN TC 278

WG 9) [22| and North America (IVHS) (23].

1.8 ISSUES C o n c e r n in g In t e r V e h ic l e C o m m u n ic a t io n
u s in g W ir e l e s s a d - h o c N e t w o r k s

Future developments in automobile manufacturing will also include new

communication technologies. The major goals are to provide increased automotive

safety, to achieve smooth traffic flow on the roads, and to improve passenger

convenience by providing them with information and entertainment. In order to avoid

communication costs and guarantee the low delays required for the exchange of safety

related data between cars, inter-vehicle communication (IVC) systems based on

wireless ad-hoc networks represent a promising solution for future road communication

scenarios. IVC allows Vehicles to organize themselves locally in ad-hoc networks

without any pre-installed infrastructure. Communication in future IVC systems will not

be restricted to neighboured vehicles travelling within the radio transmission range, as

CHAPTER 1 INTRODUCTION

in typical wireless scenarios, the IVC system will also provide multi-hop

communication capabilities by using “relaying” vehicles that are travelling between the

sender and receiver. Figure 1.6 illustrates this basic idea. In this particular example, the

source vehicle is still able to communicate with destination vehicle, although the

destination vehicle is not in source’s vehicle immediate communication range. Vehicles

between source-destination act as intermediates vehicles, relaying the data to the

receiver. As a result, the multi-hop capability of the IVC system significantly increases

the virtual communication range, as it enables communication with more distance

vehicles.

Figure 1.6: Inter-Vehicular Communication System using Wireless Ad-hoc Networks

CHAPTER 1 INTRODUCTION

1.9 PEOPLE INVOLVED IN INTER-VEHICLE
COMMUNICATION RESEARCH

Basically, there are three different projects focused on inter-vehicle communication:

Fleetnet [19], CarTALK 2000 [24] and CarNet [16]. The objectives of Fleetnet are to

develop a communication platform for inter-vehicle communications, to implement

demonstrator applications, to develop promising introduction strategies and to

standardize the solutions found in order to improve drivers’ and passengers’ safety and

comfort. This project involves several investigations by different companies and

universities: DaimlerChrysler AG, Fraunhofer FOKUS, NEC Europe Ltd, Robert Bosh

GmbH, Siemens AG, TEMIC Telefunken microelectronic GmbH and the Universities

of Mannheim, Hamgurg-Harburg, Karlsruhe, and Hannover. The European project

CarTALK 2000 is focussing on new driver assistance systems which are based upon

inter-vehicle communication. The main objectives are the development of co-operative

driver assistance systems and the development of a self-organizing ad-hoc radio

network as the basis for communication with the aim of preparing a future standard.

Under the co-ordination of DaimlerChrysler, the CarTALK 2000 consortium pools the

knowledge of European car manufacturers, the IT industry and suppliers and expert

knowledge of the following companies and institutions:

1. DaimlerChrysler AG

2. Centro Ricerche Fiat

3. Robert Bosh GmbH

4. Siemens

5. Netherlands Organisation for Applied Scientific Research (TNO)

6. University of Cologne

7. University of Stuttgart

CarNet is an application for large ad-hoc mobile networks systems that scales well

without requiring a fixed network infrastructure to route messages. CarNet places radio

nodes in cars, which communicate using Grid, a novel scalable routing system. Grid

uses geographic forwarding and scalable distributed location service to route packets

from car to car without flooding the network. CarNet will support IP connectivity as

well as applications such as cooperative highway congestion monitoring, fleet tracking

CHAPTER 1 INTRODUCTION

and discovery of nearby point of interest The CarNet project has been developed by the

MIT Laboratory for Computer Science.

Fleetnet is based on UTRA-TDD (UMTS (Universal Mobile Telephone Service)

Terrestrial Radio Access Time Division Duplex. However, because UTRA-TDD is a

cellular communication system with centralized organization, its air-interface has to be

changed and adapted towards an ad-hoc mode to make it a suitable system for Fleetnet.

On the other hand, in CarTALK and CarNet, a wireless system based on IEEE 802.1 lb

has been considered as a possible candidate for the realization of demonstrator

prototypes.

In this thesis, we have considered the IEEE 802.1 lb standard because of its higher

market penetration. More than 95 % of today’s WLAN infrastructure includes 802.1 lb

products |5]. In addition, only the DCF mechanism has been utilized because our work

is based on wireless ad-hoc networks. Besides, using the lower ISO OS I layer

communication hardware, our main task is to develop a routing protocol that can cope

with scalability, high mobility and is completely decentralized.

1.10 S c o p e a n d O b j e c t iv e s o f t h e T h e s is

The research presented in this Thesis studies the requirements for the provision of

inter-vehicular communication on a motorway using ad-hoc wireless networks.

We use intelligent and scoped flooding to fulfil the new routing requirements for

highly mobile and dense networks. We extend the relatively new ideas of controlling

message dissemination in cluster-based networks.

The First objective of this research is to validate the proposed algorithm with the

results of a test-bed on a small scale and on a large scale. Our proposed algorithm is

compared with the models of two prominent reactive algorithms: Ad-Hoc On-Demand

Distance Vector (AODV) and Dynamic Source Routing (DSR).

The second objective is to compare our proposed algorithm with a popular location-

based routing algorithm: Greedy Perimeter Stateless Routing (GPSR).

Finally, the final objective is the statistical evaluation of the communication system

and the development, in OPNET, of a Microscopic Traffic model to represent the

mobility of the vehicles on a Motorway.

CHAPTER 1 INTRODUCTION

1.11 O u t l in e o f t h e T h e s is

This dissertation is organised as follows. First, we describe in Chapter 2 an

introduction to related work in wireless ad-hoc routing. The first part considers

proactive and reactive algorithms. The second part analyses algorithms based on

location information. The last part describes cluster-based algorithms. As indicated in

this chapter, the unicast problem in highly mobile environments requires knowledge of

the destination partner, before sending the first data packet. Chapter 3 will analyse a

reactive routing strategy based on location information in the context of inter-vehicular

communication. We again discuss related work, now in the area of cluster-based

Hooding. Then, we derive a predictive algorithm that supports highly mobile nodes. In

Chapter 4, we present results of measurements for the justification of wireless ad-hoc

networks for inter-vehicle communication. We have divided the chapter in two sections.

The first section analyses large-scale models and the second section analyses small-

scale models. In large-scale models, three aspects are considered: free-space

propagation modes, path loss and system operating margin. On the other hand, in small-

scale models, the impact of Doppler shift is considered. The chapter finishes with some

experiments that allow us to determine the interval of packets received between

communication partners in the worst case scenario, when the vehicles are travelling in

opposite directions. Chapter 5 will focus on microscopic traffic models. The chapter

starts with an introduction to vehicular traffic theory and the most important models that

describe the human driver behaviour for car-following models. In addition, the chapter

analyses the most popular microscopic traffic models and its suitability for simulation.

Chapter 6 contains the validation and verification of the simulated models. The analysis

of Dynamic Source Routing (DSR) and Ad-Hoc On-Demand Distance Vector (AODV)

is first considered. For small-scale networks, the validation is executed with the results

of a test-bed. Then, for large scale-networks, the proposed algorithm is compared with

the models of two prominent ad-hoc routing algorithms: DSR and AODV on a multi

lane rectangular and circular dual carriageway representative of city and motorway

driving. Finally, our protocol is compared on a multi-lane circular carriageway

representative of a six lane motorway driving with one location-based routing algorithm:

Greedy Perimeter Stateless Routing (GPSR). Chapter 7 shows the conclusion and

provides suggestion for future investigation.

1-34

Chapter 2: Routing algorithms in
W ireless ad-hoc
n e t w o r k s

2.1 INTRODUCTION

There are two classes of routing algorithms for wired networks: (¡¡stance vector

routing and link state routing 16]. Distance vector algorithms are based on the exchange

of only a small amount of information, where each node keeps a routing database with

one entry of the previous information, for every possible destination in the system. On

the other hand, in link state routing, a node Hoods throughout the network the list of its

neighbours.

In addition to the challenges presented by routing in traditional wired networks,

routing algorithms for wireless environments with mobility are very different than those

for wired networks with static nodes. Major problems in mobile ad-hoc networks

include limited bandwidth and a high rate of topological change.

Topological change implies the limited lifetime of topology information held at any

time due to the movements of the nodes. This implies that unless the information is

updated regularly, it becomes invalid. The more frequently the information is updated,

the greater the node mobility that can be handled correctly and efficiently.

Traditional routing algorithms based on non-positional information are suitable for

scenarios with low node mobility. However, these routing algorithms are unsuitable in

scenarios with high mobility. For this reason, we have developed an algorithm that

includes topological information inside of its routing mechanism.

The wireless nature of the medium implies limited available bandwidth, which is even

further reduced because of the high bit error rate in radio transmission.

On one hand, mobility requires topological information be sent more frequently to

maintain the nodes informed of the changes. On the other hand, the bandwidth of the

wireless medium is reduced with the constant communication between nodes. Therefore,

the compromise is to manage the mobility of the nodes using the minimum of the

bandwidth resources.

2-35

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

Routing algorithms in mobile ad-hoc wireless networks can be categorised into two

different categories: non-positional algorithms and positional algorithms (Figure 2.1).

Figure 2.1: Routing algorithms in mobile wireless ad-hoc networks.

There are three ways to classify non-positional algorithms: proactive or table-driven;

reactive or on-demand; or hybrid. Proactive, or table-driven algorithms, periodically

update the reachability information in the nodes’ routing tables, making routes

immediately available when needed. However, these algorithms require additional

bandwidth to periodically transmit control traffic. Each node maintains the necessary

routing information and each node is responsible for propagating topology updates in

response to instantaneous connectivity changes in the network (25J. Examples of such

2-36
;

^SÊÊÊÊÊÊÊÊÊÊÊÊÊKÊÊt

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

protocols include Optimized Link State Routing (OLSR) protocol |26J and Topology

Dissemination Based on Reverse Path Forwarding (TBRPF) |27|. These two protocols

keep track of routes for all destinations in the ad hoc network, and have the advantage

that communications with arbitrary destinations experience minimal initial delay

(latency). Such protocols are called proactive because they store route information even

before it is needed, and are table driven because the information can be seen as

available as part of well-maintained table.

On the other hand, on-demand, or reactive protocols, have emerged to acquire routing

information only when it is needed. Reactive routing protocols often use less bandwidth

for maintaining route tables, but the Route Discovery (RD) time for many applications

will increase. Most applications are likely to suffer a delay when they start because a

route to the destination will have to be acquired before the communications can begin.

As a result, a route discovery process is realized before the first data packet can be

sent. These types of protocols reduce control traffic overhead at the cost of increased

latency in finding the route to a destination [28|. Examples of reactive or on-demand

protocols include Ad-Hoc On-Demand Distance Vector (AODV) routing |29), and

Dynamic Source Routing (DSR) algorithm (30J.

A protocol that combines both proactive and reactive approaches is called hybrid |3 1 j.

The most popular protocol in this category is the Zone Routing Protocol (ZRP). ZRP

divides the network into overlapping routing zones, allowing for the use of independent

protocols within and between the zones. ZRP is called hybrid because it combines

proactive and reactive approaches to maintain valid routing tables without much

overhead. Communication inside of the zone is realized by the lntra-zone Routing

Protocol (IARP) that provides direct neighbour discovery (proactive routing). On the

other hand, the communication between the different zones is realized by the Inter-zone

Routing Protocol (IERP) and provides routing capabilities among nodes between zones

(reactive routing).

The main disadvantages of pure proactive and reactive routing algorithms in highly

mobility environments are their poor route convergence. They also have a very low

communication throughput because of the high number of retransmissions. |32j.

To overcome these limitations, several new types of routing algorithms have been

developed using geographic position information: Location-Aided Routing (EAR) |33),

2-37

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

Distance Routing Effect Algorithm for Mobility (DREAM) |34|, Grid Location Service

(GLS) |35J and Greedy Perimeter Stateless Routing for Wireless Networks (GPSR) |36|.

Trends suggest that, in the near future, a broad variety of location dependent services

will become feasible using to the use of Global Position System (GPS). In vehicular

technology inter and intra vehicular communication can be improved with the help of

wireless ad-hoc networks and GPS |37|.

The type of control traffic that is generated to manage the mobility of the nodes in a

network is the information that a node declares about its relative movement: its new

position, or the new neighbourhood of the node which is declaring the information. In

these situations, we are not concerned about the information propagating across the

entire network to every node. But in many cases, not only the immediate neighbour of

the declaring node, but other nodes further away may also need to know the topological

changes occurring anywhere in the network. In these situations, a lot of messages must

pass through the network to keep the information consistent and valid at each node, by

regularly announcing the changes due to the mobility, or failure of a link, etc.

These announcements about the changes are propagated to each node of the network.

But in most cases, all the nodes of the network are not in radio range of each other and

cannot communicate directly. So there must be a mechanism to reach distant nodes to

keep them informed of changes. The concept of intermediate nodes, which serve as

relays to pass the messages between the source and the destination, arises from this

need.

When a message is for a specific destination, all nodes which form the path from the

source up to the destination become intermediate nodes.

An interesting problem arises when the packet is to be broadcast. Now, the task of

determining the intermediate nodes to forward the packet is less straight forward. A

simple solution is for each node re-transmits the message when it receives it the first

time. Figure 2.2 shows an example where a packet, originated by node S, is diffused up

to 3-hops with 49 retransmissions. In the figure, we have shown the propagation of the

message up to 3 hops. The packet is retransmitted by all the nodes, including the leaf

nodes (or boundary nodes) in order to be diffused across the whole network. This is

called “pure flooding”. It consumes a large amount of bandwidth due to redundant

retransmissions.

2-38

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

Figure 2.2: Diffusion o f broadcast message using pure flooding.

Several protocols use some kind of flooding of control messages because it is very

advantageous to optimize the bandwidth. There are many techniques described in the

literature to limit flooding of broadcasting traffic [26 |27J.

2.2 PROACTIVE ROUTING ALGORITHMS FOR AD-
HOC NETWORKS

There are two main proactive algorithms that still remain within the MANET working

group [38J, that we will consider here for our study: Optimised Link State Routing

Protocol (OLSR) and Topology Dissemination based on Reverse-Path Forwarding

(TBRPF).

2.2.1 Optimised Link State Routing Protocol (OLSR) for Ad-
Hoc Networks

The OLSR protocol is an optimisation of the pure Link State Algorithm, which was

developed for mobile ad hoc networks by Thomas Clausen, et al [39], The OLSR

protocol operates as a table driven or proactive protocol. The key concept used in OLSR

is the use of Multipoint Relays (MPRs) (Figure 2.3). The Multipoint Relay of node n is

selected between the other neighbours and considers a simple heuristic; the Multipoint

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

Relay is the neighbour which covers the maximum number of two hop neighbours J40|

1411 [421. MPRs are selected nodes, which forward broadcast messages during the

flooding process.

This technique reduces message overhead as compared to pure flooding mechanism,

where every node retransmits each message when it receives the first copy of the packet.

In OLSR, only nodes elected as MPRs generate link state information. The protocol

inherits the stability of a link state algorithm and has the advantage of having routes

immediately available when needed due to its proactive nature. OLSR minimizes the

overhead from flooding of control traffic by using only selected nodes, called MPRs, to

retransmit control messages. Furthermore, a second optimisation can be achieved by

minimizing the number of control messages flooding the network, and as a third

optimisation, an MPR node may choose to report only links between itself and its MPR

selectors 1411. Hence, contrary to the classical link state algorithm, only partial link

state information is distributed in the network. This information is then used by the

OLSR protocol for route calculation. OLSR provides optimal routes (in terms of

number of hops).

The protocol is particularly suitable for large and dense networks as the technique of

MPRs works well in this context. As OLSR continually maintains routes to all

destinations in the network, any link change will cause OLSR sent packets to be flooded

across the entire network, immediately causing excessive routing overhead, which can

be very significant in large, highly mobile networks 140J.

Results from simulations in OLSR, carried out by Floyd and Van Jacobson 143J, have

shown that the periodic transmission of control messages from individual nodes can

become synchronized. For example, neighbouring nodes would, at the same time,

attempt to transmit a TC message, causing both messages to be lost due to collisions.

Enforcing jitter (a small random delay) significantly improves the performance (401

|441. This can be explained by the reduction in the collision rate for the broadcast traffic.

An extension for fast mobility in OLSR has also been proposed [45J 1461. Here, a

higher Hello frequency is proposed to accommodate node mobility. A node in a Fast-

Moving mode sends Fast-Hello messages at high frequency. The concerns include

higher mobility and higher overhead. Also, results have shown that the packet loss

increases as a function of speed |45].

2-40

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

Figure 2.3: Multipoint relays (MPRs).

2.2.2 Topology Dissemination based on Reverse-Path
Forwarding (TBRPF)

Topology Dissemination, based on Reverse-Path Forwarding, is a proactive link state

routing protocol designed for mobile ad hoc networks by Richard Ogier, et al. |47|.

TBRPF consists of two main modules: the Neighbour Discovery module, and the

Routing module (which performs topology discovery and route computation). The

Neighbour Discovery module uses differential Hello messages, which include only the

Ids of new neighbours and recently lost neighbours. In the Routing module, each node

reports only a portion of its source tree to all neighbours using periodic updates (e.g.

every 5 or 6 seconds) or differential updates (e.g. every 1 or 2 seconds).

TBRPF provides hop-by-hop routing along the shortest paths to each destination. The

key feature of TBRPF Neighbour Discovery (TND) protocol is that it uses “differential’*

Hello messages which report only neighbours whose state has recently changed. This

results in Hello messages that are much smaller than those of other link-state routing

protocols such as OSPF can be sent more frequently, thus allowing faster detection of

topology changes.

Each node running TBRPF computes a source tree (providing paths to all reachable

nodes) based on partial topology information stored in its topology table (Figure 2.4).

To minimize overhead, each node reports only “part” of its source tree to neighbours.

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

TBRPF uses a combination of periodic and differential updates to keep all neighbours

informed of the reportable part of its source tree. Each node also has the option of

reporting additional topology information (up to the full topology), to provide improved

robustness in highly mobile networks.

Figure 2.4: Example illustrating TBRPF source tree.

Proactive algorithms keep the information of all the nodes in the wireless ad-hoc

network, requiring additional control traffic to continually update route entries.

Consequently, proactive protocols suffer the disadvantage of requiring additional

bandwidth resources |48j [49].

2.3 ON-DEMAND ROUTING ALGORITHMS FOR AD-
HOC NETWORKS

2.3.1 Ad-Hoc On-demand Distance Vector Routing (AODV)

Ad Hoc On-demand Distance Vector Routing was developed by C. Perkins, et al [50].

It minimises the number of broadcasts by creating routes on-demand. AODV uses

traditional routing tables to maintain routing information in one entry per destination

|25]. The source broadcasts a route request packet, to find the route to a destination. The

neighbours’ nodes also propagate the route request packet to their neighbours until a

packet reaches an intermediate node that has a recent route for the specific destination,

or until it reaches the destination (Figure 2.5).

C h a p t e r ! ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

Figure 2.5 shows that the source node broadcasts a Route Request Packet (RREQ).

When the RREQ packet reaches node B, C and D, it is registered in each node. A node

discards a route request packet that it lias already seen. The route request packet uses a

sequence of numbers to ensure that the routes are loop free. Before a node forwards a

route request packet to its neighbours, it records the node information in its table. I his

information is used to construct the reverse route for the route reply packet (Figure 2.6).

Figure 2.6: Route Reply Packet in AODV.

The recent specification of AODV [51] includes an optimization technique to control

the Route Request packets (RREQ) flood in the route discovery process. It uses an

expanding ring search initially to discover routes to an unknown destination.

A drawback with AODV is that it requires the dissemination of Route Error (RERR)

packets when a link break in an active route is detected. A RERR message is used to

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

notify other nodes that the loss of that link has occurred. The RERR message is sent

whenever a link break causes one or more destinations to become unreachable from

some of the node’s neighbours. Since link loss is common in mobile environments

AODV will use RERR packets with greater frequency.

2.3.2 The Dynamic Source Routing Protocol for Mobile Ad-
Hoc Networks (DSR)

The Dynamic Source Routing Protocol was developed by David B. Johnson, et al |52|.

It is an on-demand routing protocol based on source routing. DSR requires no periodic

packets of any kind at any layer within the network. For example, DSR does not use any

periodic routing advertisement, link status sensing, or neighbour detection packets, and

does not rely on these functions for any underlying protocols in the network. A node

maintains routes containing the source routes to every node in the network. The

protocol consists of two major phases: route discovery and route maintenance |53J.

When the source node wants to send a packet to a destination, it looks up its route cache

to determine if it already contains a route to the destination. If it finds that an existing

unexpired route to the destination, it will use this route to send the packet. But if the

node does not have a route, it will initiate the route discovery process by broadcasting a

route request packet similar to AODV (Figure 2.7).

G

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

Figure 2.7: Route Request Packet in DSR.

The route request packet contains the address of the source and the destination, and a

unique identification number. Each intermediate node checks whether it knows the

route to the destination. If it does not, it includes its address in the route record of the

packet and forwards the packet to its neighbours. To limit the number of route requests

propagated, a node processes the route request packet only if it has not already seen the

packet and its address is not present in the route record of the packet.

A route reply packet is generated when either the destination or an intermediate node

with current information about the destination receives the route request packet. The

route record of a route request packet contains the sequence of hops from the source to

the destination (Figure 2.8).

Figure 2.8: Route Reply Packet.

The algorithm uses two types of packets for route maintenance: Route Error and

Acknowledgements |54). When a node finds a transmission problem, it generates a

route error packet. When a node receives a route error packet, it removes the hop in

error from its route cache. Acknowledgment packets are used to verify the correct

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

operation of the route links. Two types of acknowledgments are specified in DSR: link-

level acknowledgment and passive acknowledgment |54|.

The main drawback of DSR is that it is designed for mobile ad hoc networks of up to

about two hundred nodes, because it sends the entire route from the source to the

destination in every data packet. In environments with high mobility, it is difficult (o

guarantee the path from source to destination, so the protocol will send Route Error

packets more frequently, causing possible network congestion.

2.3.3 Performance comparison between AODV and DSR

Performance comparison between AODV and DSR, focusing on overhead, routing

load, delivery ratio and end-to-end delay has been reported in the literature. Authors in

[49], report that AODV requires about 5 times the overhead of DSR when there is

constant node mobility, meaning that nodes involved in the communication are not

stationary. DSR limits the scope and overhead of Route Request packets by using

caching from forwarded and promiscuously over-heard packets and using non

propagation Route Request. DSR always has a lower routing load than AODV [55] |56]

[57]. DSR makes effective use of route caching and the destination replies to all route

discovery messages because of which the source learns about multiple path(s). In

AODV, the destination replies to only the first RREQ and ignores the rest. A relatively

stable routing load is a desirable property for scalability of the protocols. AODV has a

slightly worse packet delivery performance than DSR because of higher drop rates |56].

The authors in [57], report that DSR performs better in less demanding situations.

Finally, AODV performs a little better in terms of delay than DSR J56|. The delay

increases with low mobility. This phenomenon is less visible in more highly mobile

environments where traffic automatically is more evenly distributed due to source

movements [57].

2.4 ALGORITHMS BASED ON POSITION
INFORMATION (GEOGRAPHIC COORDINATES)

2-46

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

In inter-vehicle communications, the vehicles form a mobile ad-hoc network which

consists of mobile hosts that communicate via a wireless link. Due to mobility, the

topology of the network changes continuously and wireless links establish and break

down frequently. Moreover, the ad-hoc network operates in the absence of fixed

infrastructure, forcing the hosts to organize the exchange of information in a distributed

manner. We consider here the most representative algorithms that might be suitable for

highly mobile environments. Location-Aided Routing (LAR) in Mobile Ad Hoc

Networks, Distance Routing Effect Algorithm for Mobility (DREAM), Grid Location

Service (GLS) and Greedy Perimeter Stateless Routing for Wireless Networks (GPSR).

2.4.1 Basic Principles and problems of position-based routing
algorithms

Before a packet can be sent, it is necessary to determine the position of its destination.

Typically, a location service is responsible for this task. Existing location services can

be classified according to how many nodes host the service. This can be either some

specific nodes or all nodes of the network. Furthermore, each location server may

maintain the position of some specific or all nodes in the network. We abbreviate the

four possible combinations as some-for-some, some-for-all, all-for-some and all-for-all.

In position-based routing, the forwarding decision by a node is primarily based on the

position of a packet’s destination and the position of the node’s immediate one-hop

neighbour. The position of the destination is contained in the header of the packet. If a

node has a more accurate position of the destination, it may choose to update the

position in the packet before forwarding it. The position of the neighbours is typically

learned through a one-hop broadcast beacon. These beacons are sent periodically by all

nodes and contain the position of the sending node.

We can distinguish three main packet-forwarding strategies for position-based routing:

greedy forwarding, restricted directional flooding, and hierarchical approaches. For the

first two, a node forwards a given packet to one (greedy forwarding) or more (restricted

directional flooding) one-hop neighbours that are located closer to the destination than

the forwarding node itself. The selection of the neighbour in the greedy case depends on

the optimization criteria of the algorithm. The third forwarding strategy is to form a

hierarchy in order to scale to a large number of mobile nodes. We now consider each of

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

the previous position-based routing algorithms mentioned for suitability to our proposed

network of highly mobile vehicles.

2.4.2 Location-Aided Routing (LAR) in Mobile Ad-Hoc
Networks

The Location-Aided Routing (LAR) algorithm was developed by Young-Bae Ko, et al

158]. LAR does not, in fact, define a location-based routing protocol. Instead, it

proposes using of position information to enhance the route discovery phase of reactive

ad-hoc routing approaches. Reactive ad-hoc routing protocols frequently use Hooding as

a means of route discovery. Under the assumption that nodes have information about

other nodes’ positions, this position information can be used by LAR to restrict the

flooding to a certain area.

The LAR algorithm has two schemes:

L A R sch em e 1:

The first scheme uses a request zone that is rectangular in shape (Figure 2.9). In this

scheme, the request zone is defined as the smallest rectangle that includes the current

location of S and the expected zone. When a node receives a route request, it discards

the request if the node is not within the rectangle specified by the four comers included

in the route request.

A (Xs, Yd+R) P(Xd, Yd+R) B (Xd+R, Yd+R)

Figure 2.9: LAR scheme J.

L A R sch em e 2:

2-48

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

In LAR scheme 1, source S explicitly specifies the request zone in its route request

message. In scheme 2, node S includes two pieces of information with its route request:

• Assuming that node S knows the location (Xd, Yd) of node D at some time

previous to the moment in which route discovery is initiated, node S calculates

its distance from the location (Xd, Yd), referred to as DISTs, and includes this

distance with the route request message (Figure 2.10).

• The coordinates (Xd, Yd) are also included with the route request.

Figure 2.10: LAR scheme 2.

LAR does not define a location-based routing protocol. Instead, it uses position

information to enhance the route discovery phase. This is one of the directional

flooding-based routing methods |59).

A drawback in LAR is that the source node assumes the location and average speed of

the destination node. If the sender has no information about the location of the

destination node, the algorithm behaves like unlimited flooding and spreads the

message in all directions to find the destination node. After the request has reached the

destination, the discovered route is sent back to the initiator. In a second phase, the

originator sends the data along the discovered path to the destination.

2-49

. Stti

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

2.4.3 A Distance Routing Effect Algorithm for Mobility
(DREAM)

The Distance Routing Effect Algorithm for Mobility was developed by Stefano

Basagni, et al [34J. The DREAM algorithm can be considered proactive and it

introduces two concepts: distance effect and mobility rate.

In DREAM, each node maintains a position database that stores position information

about each other node that is part of the network. It can therefore be classified as an all-

for-all approach. An entry in the position database includes a node identifier, the

direction and the distance to the node, as well as a time value that indicates when this

information was generated. The accuracy of such entry depends on its age. Each node

regularly floods packets to update the position information maintained by the other

nodes. A node can control the accuracy of its position information available to other

nodes by:

• sending position updates (temporal resolution) and

• indicating how far a position update may travel before it is discarded (spatial

resolution).

The temporal resolution of sending updates is coupled with the mobility rate of a node.

The mobility rate refers to the movement of nodes and states that the laster a node

moves, the more often it must communicate its location. This allows each node to self

optimize its dissemination frequency, thus transmitting location information only when

needed and without sacrificing route accuracy.

Spatial resolution is used to provide accurate position information in the direct

neighborhood of a node and less accurate information for nodes farther away. The cost

associated with accurate position information at very remote nodes can be reduced as a

consequence of the distance effect. The term distance effect refers to the distance

separating two nodes and states that the greater the distance separating two nodes, the

slower they appear to be moving with respect to each other. Thus, nodes that are far

apart, need to update each other’s locations less frequently than nodes closer together.

This is realized by associating an “age” with each control message which corresponds

to how far from the sender that message has travelled. An example of this distance

effect is given in Figure 2.11.

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

C A B

Figure 2.11: Distance Effect in DREAM.

The diagram in Figure 2.11 assumes that node A is stationary, while nodes B and C

are moving in the same direction at the same speed. From node A’s perspective, the

change in direction will be greater for node B than for node C. The distance effect

allows having a low spatial resolution in areas that are far away from the target node,

provided that intermediate hops are able to update the position information contained in

the packet.

In DREAM, the sender, S, of a packet to the destination D will forward the packet to

all one-hop neighbours that lie in the direction of D. In order to determine this direction,

a node calculates the region that is likely to contain D, called the expected region. As

depicted in figure 2.11, the expected region is a circle around the position of D, as it is

known to S. Since this position information may be outdated, the radius r of the

expected region is set to (tj - to) vmax, where ti is the current time, to is the timestamp of

the position information that S has about D, and vmax is the maximum speed that the

node may travel in the ad-hoc network. Given the expected region, the ‘direction toward

D' for the example given in figure 2.12 is defined by the line between S and I) and the

angle @. The neighbouring hops repeat this procedure using their information on D’s

position.

2-51

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

S

Figure 2.12: The expected region in DREAM.

DREAM is proactive in nature and may have issues relating to its scalability and may

not therefore be appropriate for large scale networks [321.

2.4.4 Grid Location Service (GLS)

Grid Location Service was developed by Jinyang Li, et al |35f Grid Location Service

(GLS) divides the area that contains the ad hoc network into a hierarchy of squares. In

this hierarchy, n-order squares contain exactly four (n-l)-order squares, forming a so

called quad tree. Each node maintains a table of all other nodes within the local first

order square. The table is constructed with the help of periodic position broadcasts

which are scoped to the area of first-order square (Figure 2.13).

2-52

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

Figure 2.13, shows the mechanism used to store position information. GLS establishes

a notion of near node Ids, defined as the least ID greater than a node’s own ID. When

node 10 in the example wants to distribute its position information, it sends position

updates to the respective node with the nearest ID in each of the three surrounding first-

order squares. Thus, the position information is available at the nodes 15, 18, 73 and at

all nodes that are in the same first-order square as 10 itself. In the surrounding three

second-order squares, again the nodes with the nearest ID are chosen to host the node’s

position. In figure 2.14, for example, these are nodes 14, 25 and 29. This process is

repeated until the area of the ad-hoc network has been covered.

Assume now that node 78 wants to obtain the position of node 10. In order to do this,

it must locate a nearby node that knows the position of node 10. In Figure 2.14, this is

node 29. But despite node 78 not knowing that node 29 holds the required position, it

can discover this information. To see how this process works, it is useful to take a look

at the position servers for node 29. Its position is stored in the three surrounding first-

order squares at nodes 36, 43, and 64.

Figure 2.14: Position Server for node 29.

Position queries for a node can now be directed to the node with the nearest ID the

querying node knows of. In our example, this would be node 36. The node with the

nearest ID does not necessarily know the node being sought, but it will know a node

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

with nearer node ID (node 29, which is already the sought-after position server). The

process continues until a node that has the position information available is found.

Since GLS requires that all nodes store the information on some other nodes, it can be

classified as an all-for-some approach. GLS, although hierarchical, is also proactive and

is thought not to be efficient in highly dynamic environments |32|.

2.4.5 GREEDY PERIMETER STATELESS ROUTING FOR
WIRELESS NETWORKS (GPSR)

The Greedy Perimeter Stateless Routing algorithm (GPSR) was developed by Karp

and Kung [36j. In GPSR, routers decide where to forward a packet using the

information about immediate neighbours. By keeping information only about the local

topology, GPSR scales well with the number of network nodes and a frequently

changing network topology. The GPRS algorithm solves the task of geographic routing

using two methods for forwarding packets: Greedy Forwarding and perimeter

forwarding.

2.4.5.1 Greedy Forwarding

In greedy forwarding, a forwarding node can make a locally optimal, greedy choice in

choosing a packet’s next hop. This is done if a node knows its radio neighbour’s

position. The locally optimal choice of next hop is the neighbour geographically closest

to the packet’s destination. Forwarding in this regime follows successively closer

geographic hops, until the destination is reached.

A simple beaconing algorithm provides all nodes with their neighbours’ positions.

Periodically, each node transmits a beacon to the broadcast MAC address, containing

only its own identifier (e.g. IP address) and position.

2.4.5.2 Perimeter Forwarding

Perimeter forwarding is called the right-hand rule. This rule states that when arriving

at node a from node y, the next edge traversed is the next one sequentially, counter

clockwise edge order, which, in this case, is the triangle bounded by the edges between

nodes *, y and z, in the order (y -» x -> z y) (Figure 2.15). The rule traverses an

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

exterior region, which, in this case, is the region outside the same triangle, in counter

clockwise edge order. 2
x z

Figure 2.15: The right hand rule.

2.5 CLUSTER-BASED ROUTING ALGORITHMS FOR
AD-HOC NETWORKS

Proactive and reactive protocols have limited scalability, due to their route discovery

and maintenance procedures [60J. One alternative to these protocols for improving

scalability is clustering, or hierarchical routing protocols. Hierarchical protocols place

nodes into groups, often called clusters. These groups may have some sort of cluster

leader that is responsible for route maintenance within its cluster and between other

clusters. Basically, cluster-based routing algorithms can be widely classified into two

different categories: clustering for transmission management, and clustering for

backbone formation |25J.

2.5.1 Clustering for Transmission Management
One problem associated with wireless mediums is the shared nature of the channel.

For example, on the physical layer, when one node transmits information to a different

node, all neighbouring nodes will receive the message. Nodes can reduce the possibility

of interference by separating transmissions in time, space, frequency, or via spreading

codes.

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

2.5.1.1 Link-Clustered Architecture

The Link-clustered architecture reduces interference in a multiple-access broadcast

environment by forming distinct clusters of nodes in which transmission can be

scheduled in a contention-free manner [611- T ransmission in adjoining clusters can be

isolated through spread-spectrum multiple access by using different spreading codes in

each cluster. Formation of clusters is realized as follows: each cluster contains a cluster-

head, one or more gateways, and zero or more ordinary nodes that are neither cluster-

heads nor gateways. The cluster-head schedules a transmission and allocates resources

within the clusters. The main rule for a gateway node is to establish connection between

two adjacent clusters. A gateway may directly connect two clusters by acting as a

member of both, or it may indirectly connect two clusters by acting as a member of one

and forming a link to a member of the other. Hence, the link-clustered architecture

accommodates both overlapping and disjointed clusters (Figure 2.16).

At least two cluster-head election algorithms have been proposed for the link-

clustered architecture: identifier-based clustering and connectivity-based clustering [62 J.

The node with the lowest or highest numbered identifier (identifier-based clustering) or

with the largest number of neighbours (connectivity-based clustering) is chosen as a

cluster-head.

The link-clustered architecture provides a natural routing backbone consisting of

cluster-heads and gateways and the links between them. A drawback of this algorithm is

that by obliging all traffic to traverse cluster-heads, network throughput and robustness

may be reduced. By employing Cluster-heads as the point of traffic, each cluster head

can potentially become congested, thus representing a failure point for communication

across its cluster.

C h a p t e r ! ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

Ordinary

Cluster Cluster-head

Figure 2.16: The Link-Clustered Architecture.

2.5.1.2 Cluster-Based Routing Protocol (CBRP)
Cluster-Based Routing Protocol (CBRP) was developed by Mingliang Jiang, et al |63|.

It is a hybrid protocol, using a two-level hierarchical routing mechanism. It groups the

network nodes into clusters (Figure 2.17), having a cluster-head which has the

knowledge of cluster members. The cluster-head also knows the inter-cluster link state

topology through the gateway nodes. CBRP employs a proactive scheme inside the

cluster, and uses a reactive protocol for inter-cluster routing, with route optimizations

by cluster-heads. Grouping the nodes into clusters provides an optimization while

discovering routes on-demand, as it produces less flooding traffic. CBRP is suitable for

middle to large networks with slow node movements. In CBRP, each node maintains a

Neighbour Table in which it keeps information about its neighbours, a Cluster

Adjacency Table in which it keeps information about how to reach adjacent clusters,

and a Two-hop Topology Database in which it registers all its two-hop neighbours.

Each node periodically sends a Hello message, containing its neighbours. When a node

starts up, it is neither a cluster member nor a cluster head. It discovers, through its Hello

messages, one or more cluster-heads which are its neighbours. It then selects one

cluster-head, and registers itself in the cluster. If a node does not find any cluster-head,

and has some neighbours with a bidirectional link, it declares itself as a cluster-head.

2-57

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

Member Cluster-head
/ \ /

Gateway

Figure 2.17: Clusters ’ Formation.

Route discovery in CBRP uses the Hooding method. An RREQ (Route Request)

message is sent by the source node to its cluster-heads, and all the known adjacent

cluster-heads. If the destination is not within two hops of the cluster-head, receiving the

RREQ, it adds its address in the header and forwards the RREQ to all adjacent cluster-

heads. If the destination is within two hops of a cluster-head, it sends the RREQ to the

destination (Figure 2.18). The destination then inverts the route contained in the header

of the RREQ and replies to the source with a RREP message using this reverse route

(Figure 2.19). A route is hence, essentially, composed of a sequence of cluster-heads

and the gateway nodes (between two clusters). When RREP passes through a cluster-

head, it may optimize the route using its two-hop knowledge. If a route can be

shortened, the cluster-head removes itself from the route by linking two member nodes

together in the route.

Source

Destination

Figure 2.18: Route Request Packet (RREQ) in CHRP.

2-58

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

Destination

^ ® Source

Figure 2.19: Route Reply Packet (RREP) in CBRP.

2.5.2 Clustering for Backbone Formation
The aim in this type of architecture is to reduce the number of hops, thereby

diminishing the end-to-end delay and providing high speed connectivity between distant

nodes in large networks. The most popular architecture is the Near-Term Digital Radio

Network.

2.5.2.1 Near-Term Digital Radio Network
The Near-Term Digital Radio Network was developed by R. Ruppe, et al |25|. The

NTDR produces a set of clusters, each of which contains a cluster-head. When they are

linked together, they form a routing backbone, as shown in Figure 2.20. The main

difference with the link-clustered architecture is that the communication between

clusters is only realized by cluster-heads. The cluster formation in NTDR is as follows:

an NTDR node elects itself as cluster-head if it does not detect any other cluster-head in

its vicinity. The NTDR architecture restricts direct inter-cluster communication to

cluster-heads, only thus permitting the cluster-heads to function as the gateways.

2-59

P

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

Figure 2.20: The NTDR Network Architecture.

2.6 Special Issues relating to inter-vehicle ad-hoc routing
protocols

One of the most obvious issues relating to inter-vehicle ad-hoc routing protocols is the

velocity of the mobile devices. One of the effects of velocity is to make the signals very

variable. Chu and Stark demonstrated in [64j that the fading signals are in function of

velocity. Based on simulations, they observed that the best performance is at lower

velocities because the signals vary more slowly, thus creating little channel attenuation

from bit to bit.

Another important aspect of the inter-vehicular ad-hoc routing protocols is the

environment in which the vehicles are moving. It is known that different environments

lead to different performances. For example, in an urban scenario, we will have more

multi-path respect to a freeway scenario because of the presence of buildings and

obstacles. Moreover, we must also consider the different velocity of different scenarios:

in a freeway scenario, the vehicles will have a higher velocity and be more distant from

each other than in a urban scenario; distance and relative velocity are very important

because they influence the communication in a very significant manner. For example, in

a urban scenario, the distances between vehicles are very small for a long periods of

time, so they can exchange more data than in a freeway scenario, where the distances

are greater. It is important to recall that in a peer to peer communication, the distance

between peers must be small enough for the entire duration of the communication.

2-60

Chapter 2 ROUTING ALGORITHMS IN WIRELESS AD-HOC NETWORKS

These facts lead us to consider the dynamic change of the traffic and important

variables, including changes in the distance between vehicles, their relati ve velocity and

their disposition as they move along to streets or roadways. Consequently, different

models must be developed to predict vehicular movement in real world scenarios.

2.7 CONCLUSIONS
The challenge in wireless ad-hoc routing algorithms is the limited bandwidth and the

high rate of geographical changes in highly mobile environments. In these environments,

frequent broadcasting of routing information is necessary to maintain the routing tables

updated. Limiting this distribution across the network is essential in the scalability of

wireless ad-hoc routing algorithms. On one hand, proactive algorithms keep the

information of all the nodes in the wireless ad-hoc network, requiring additional control

traffic to continually update route entries. Consequently, proactive protocols suffer the

disadvantage of requiring significantly greater of bandwidth resources. On the other

hand, reactive algorithms reduce control traffic overhead at the cost of increased latency

in finding the route to a destination. Existing pure proactive and reactive algorithms are

not suitable in high mobility environments, as they result in poor route convergence and

very low communication throughput. To minimize this limitation, positional algorithms

have emerged add additional information in their routing information.

Nevertheless, positional algorithms are insufficient to cope with dense and large

networks with high mobility if they do not consider any hierarchical or clustering

combination. To date, the mechanism of sending information in cluster-based networks

is inefficient because it constrains all traffic to traverse cluster-heads, thereby

augmenting the possibility of congestion due to traffic concentration. Each cluster-head

may become a single point of failure for communication across its cluster, causing the

reduction of both throughput and robustness of the network.

Chapter 3: Reactive Location-Based
Routing Algorithm with
Cluster-Based Flooding

3.1 In t r o d u c t io n

The idea of using geographical information in highly mobile nodes is in order to

improve packet forwarding decisions [65]. Before forwarding a packet, a node using

location information only needs information about the immediate neighbourhood and

the position of the destination. However, as an essential prerequisite for location-based

routing, a location service is needed from which a node can learn the current position of

its desired communication partner. To preserve location information on other nodes in

the network, each mobile node maintains a location table. This table contains an entry

for every node in the network whose location information is known, including the

node’s own location information. Three location services have been described in [66]:

DREAM Location Service (DLS), Simple Location Service (SLS) and Reactive

Location Service (RLS).

3.1.1 DREAM Location Service (DLS)
In the DREAM location service, each location packet updates the location tables

containing the coordinates of the source node based on some reference system, the

source node’s position, and the time the location packet was transmitted. Each mobile

node in the ad hoc network transmits a location packet to nearby nodes at a given rate

and to faraway nodes at another, lower rate. The rate a mobile node transmits location

packets adapts according to when the mobile node has moved a specified distance from

its last update location. Since faraway nodes appear to move more slowly than nearby

mobiles nodes, it is not necessary for a mobile node to maintain up-to-date location

information on faraway nodes. Thus, by differentiating between nearby and faraway

nodes, the overhead of location packets is limited.

C h a p t e r 3 Reactive Location-based Routing Algorithm with C luster-Based Flooding

3.1.2 Simple Location Service (SLS)
A node using the Simple Location Service will transmit a location packet to its

neighbours at a given rate. The rate a mobile node transmits location packets adapts

according to location change, via a similar procedure used for nearby nodes in DLS.

Each location packet in SLS contains up to E entries from the node’s location table and

the E entries are chosen from the table in a round robin fashion. As multiple location

packets are transmitted, all the location information a node knows will be shared with

its neighbours.

A node using SLS will also periodically receive a location packet from one of its

neighbours. The node will then update its location table, based on the received table

entries, such that location information with the most recent time is maintained.

3.1.3 Reactive Location Service (RLS)
In the Reactive Location Service (RLS), when a mobile node requires a location for

another node and the location information is either unknown or expired, the requesting

node will first ask its neighbours for the requested location information. If the node’s

neighbours do not respond to the requested location information within a timeout period,

then the node will flood a location request packet in the entire network.

When a node receives a location request packet and does not know the requested

location information, the node propagates the flood location request. If, however, a node

receives a location request packet and the node’s location table contains the requested

location information, the node returns a location reply packet via the reverse source

route obtained in the location request packet. In other words, each location request

packet carries the full route (a sequence list of nodes) that a location reply packet should

be able to traverse in its header.

3.2 ROUTING OF PACKETS USING LOCATION
INFORMATION

The advantage of using positional information in vehicular ad-hoc wireless networks

(VANET) is that routing can be fully dynamic and distributed and the number of

3-63

Chapter 3 Reactive Location-based Routing Algorithm with C luster-Based Flooding

flooding packets observed in dynamic ad-hoc networks compared to non-positional

algorithms is reduced.

In non-positional based routing algorithms, link failures or link changes may lead to

the transmission of route error packets. In this case, either local route error correction is

required or the route error has to travel back to the source. The source then sends a fresh

route request looking for a new route to the destination. If the nodes in the network are

mobile with constantly changing links, the probability of these failures increases. This

may lead to the source not being able to send data packets to the destination. However,

with positional-based routing algorithms, routing can be done without the use of route

error packets. A source node using geographic forwarding includes the location of its

destination in each packet. The packet moves, hop by hop, through the network,

forwarded along via cooperating intermediates nodes. At each node, a purely local

decision is made to forward the packet to the neighbour that is geographically closest to

the destination. The fact that forwarding does not involve any global information helps

geographic routing scale and cope well with highly mobile nodes.

In this chapter, we propose a reactive location routing algorithm with cluster-based

flooding for inter-vehicle communication (LORA-CBF) due to the increasing number of

vehicles in circulation {66]. In 1950 the number of vehicles registered in United Sates

was around 50 million and for 2000 it was around 150 million. This tendency motivates

us to design an algorithm that copes with a very dense and highly mobile network.

3.3 REACTIVE LOCATION ROUTING ALGORITHM
WITH CLUSTER-BASED FLOODING (LORA-CBF)

This algorithm inherits the properties of reactive and hierarchical routing algorithms

and has the advantages of acquiring routing information only when a route is needed.

First of all, LORA-CBF improves the traditional routing algorithms based on non-

positional routing by making use of location information provided by GPS, and

secondly, it minimizes flooding of its Location Request (LREQ) packets. Flooding,

therefore, is directive for traffic control by using only the selected nodes, called

gateway nodes, to diffuse LRHQ messages. The purpose of gateway nodes is to

minimize the Hooding of broadcast messages in the network by reducing duplicate

retransmission in the same region.

3-64

Chapter 3 Reactive Location-based Routing algorithm with C luster-Based Flooding

Member nodes are converted into gateways when they receive messages from more

than one cluster-head. All the members in the cluster read and process the packet but do

not retransmit the broadcast message. This technique significantly reduces the number

of retransmissions in a flooding or broadcast procedure in dense networks. Therefore,

only the gateway nodes retransmit packets between clusters (hierarchical organization).

Moreover, gateways only retransmit a packet from one gateway to another in order to

minimize unnecessary retransmissions, and only if the gateway belongs to a different

cluster-head. To avoid synchronization of neighbours’ transmissions, as observed in |38

(41 [43], we have delayed each packet transmission randomly.

Some Cluster-Based Flooding strategies for routing in wireless ad-hoc networks

have been reported in the literature [68] [69]]70] J7.1] [72]. The main contribution in

this work is the re-broadcast and gateway selection mechanism. The cluster formation

in [68] is based on the Link Cluster Algorithm (LCA)]58] and the algorithm is based on

Link State Routing protocol, where all nodes in the cluster are expected to acknowledge

the Link State Update (LSU). If one of the nodes does not send an acknowledgement,

the cluster-head retransmits the LSU to that particular node. Flooding is transmitted

from source to a destination via cluster-heads and gateways. In [69] and [70], the re

broadcast is done only by the boundary nodes. Nodes other than boundary nodes just

listen and update their tables. In J71], there are two types of routing strategies: Optimal

Spine Routing (OSR) and Partial-knowledge Spine Routing (PSR). OSR uses full and

up-to-date knowledge of the network topology, thus the source can determine the route

to the destination. On the other hand, PSR uses partial knowledge of the network

topology, and takes a greedy approach to compute the shortest path from the source to

the destination. In]72], the authors use a cluster-head controlled token protocol (like

polling) to allocate the channel among competing nodes. We have implemented a re

broadcast strategy, where only gateways that belong to a different cluster-head re-

broadcast the location request packets, improving the routing overhead in dense

networks.

Apart from normal Hello messages, LORA-CBF does not generate extra control

traffic in response to link failures and additions. Thus, it is suitable for networks with

high rates of geographical changes. As the protocol keeps only the location inform ation

3-65

W .
¡fill!

Chapter 3 Reactive Location-based Routing Algorithm with C luster-Based Flooding

of the [source, destination] pairs in the network, the protocol is particularly suitable for

large and dense networks with very high mobility. LORA-CBF is designed to work in a

completely distributed manner and thus does not depend upon any central entity. In

addition, it does not require a reliable transmission for its control messages. Each node

sends its control messages periodically, and can therefore sustain some packet losses.

This is, of course, important in radio networks like the one being considered here,

where deep fades are possible.

LORA-CBF does not operate in a source routing manner [301. Instead it performs hop

by hop routing: each node uses its most recent location information of its neighbour

nodes to route a packet. Hence, when a node is moving, its position should be registered

in a routing table such that the movements can be predicted to correctly route the

packets to the next hop to the destination.

3.3.1 Protocol functioning
The Reactive Location Routing Algorithm with Cluster-Based Flooding (LORA-CBF)

carries out different functions that are required to perform the task of routing. Here we

discuss some functionalities of the protocol.

3.3.1.1 Neighbour sensing
Each node must detect the neighbouring nodes with which it has a direct link. To

accomplish this, each node periodically broadcasts a Hello message, containing its

location information, address and its status. These control messages are transmitted in

broadcast mode and are received by all one-hop neighbours, but they are not relayed to

further nodes. A Hello message contains:

• Node Address.

• Type of node (Undecided, Member, Gateway or Cluster-head).

• Location (Latitude and Longitude).

Chapter 3 Reactive Location-based Routing algorithm with C luster-Based Flooding

3.3.1.2 Operation of Reactive Location Routing Algorithm
with Cluster-Based Flooding (LORA-CBF)

LORA-CBF is formed with one cluster-head, zero or more members in every cluster

and one or more gateways to communicate with other cluster-heads. Each cluster-head

maintains a “Cluster Table.” A “Cluster Table” is defined as a table that contains the

addresses and geographic locations of the member and gateway nodes. We have

assumed that all nodes can gather their positions via GPS or some local coordinate

system.

When a source attempts to send data to a destination, it first checks its routing table to

determine if it knows the location of the destination. If it does, it sends the packet to the

closest neighbour to the destination (Figure 3.1). Otherwise, the source stores the data

packet in its buffer, starts a timer and broadcasts Location Request (LREQ) packets.

Only gateways and cluster-heads can retransmit the LREQ packet. Gateways only

retransmit a packet from one gateway to another in order to minimize unnecessary

retransmissions, and only if the gateway belongs to a different cluster-head.

Figure 3.1: Flow diagram for LORA-CBF.

3-67

Chapter 3 Reactive Location-based Routing Algorithm with C luster-Based Flooding

Upon receiving a location request, each cluster-head checks to see if the destination is

a member of its cluster. Success triggers a Location Reply (LREP) packet that returns to

the sender using geographic routing, because each node knows the position of the

source and the closest neighbour based on the information from the LREQ received and

the Simple Location Service (SLS). Failure triggers retransmissions by the cluster-head

to adjacent cluster-heads (Reactive Location Service, RLS). The destination address is

recorded in the packet. Cluster-heads and gateways, therefore, discard a request packet

that they have already seen.

Once the source receives the location of the destination, it retrieves the data packet

from its buffer and sends it to the closest neighbour to the destination.

A node in LORA-CBF can be in any of the following four states:

• Undecided: A node is in this transitional state when it is in search of a cluster-

head. The node is in this state when it initially enters the network or wakes up.

• Member: A node that is a member of some cluster assigned to a cluster-head. A

Member in LORA-CBF can not retransmit a Location Request Packet (LREQ).

• Cluster-head: A node that is responsible for all the nodes in its cluster and sends

a Hello message periodically. The cluster-head also maintains the cluster table

of the member and gateway nodes in its cluster.

• Gateway: A node that is member of at least two cluster-heads that can be used

for communication between clusters.

For a network, such as the ad-hoc wireless network where there are not static nodes,

there will be frequent link breaks between nodes, because of the dynamic nature of the

network. Four events may occur which can lead to the make or break of links in the

network:

1. A new node enters the network

When a node enters the network, it can follow two paths; it either joins an existing

cluster-head or forms a cluster choosing itself as the cluster-head. Being in Undecided

state, it sends out a Hello message in search of an existing cluster-head and if it receives

a response, it joins the cluster-head and changes from undecided to member. Otherwise,

it elects itself as the cluster-head and sends out future Hello message noting itself as a

cluster-head.

Chapter 3 Reactive Location-based Rou ting A lgorithm with C luster-Based Flooding

2. An existing node leaves the network

When a node leaves the network due to failure or some other reason, the node is said

to be turned off. In this case, the cluster-head will wait for a response from the failed

node. If there is no response within a particular time period, the node is either

considered off or has changed its location out of the range of its cluster-head. In this

case, the cluster-head updates its cluster table removing the details of that node.

In case the node that has switched off is a cluster-head, this results in all the nodes of

the cluster going to the undecided state. The nodes then search for a different cluster-

head. In case they find a cluster-head, they change their status to a member of that

cluster-head.

In case the node that has switched off is a bridge node between two existing cluster-

heads, the cluster-head will update its Cluster Table when the cluster-head does not

receive further messages front the gateway.

3. A node enters the vicinity of an existing cluster

When a node having an existing cluster-head enters the vicinity of another cluster-

head, its status is that of a member. It changes its status to gateway before

rebroadcasting the Hello message. In this case, when the cluster-heads receive the Hello

message from the gateway, they simply update their routing table with the actual

information.

4. A node leaves the vicinity of an existing cluster

In case the node moves out of the vicinity of an existing cluster X and makes its way

to a new cluster F, the cluster head of X updates its routing table so that the node is no

longer its member and the cluster-head of Y updates its routing table, making the node

its member. Transmitting Hello messages between cluster-head Y and the node does this.

In case the node moves out of a cluster and cannot find a new cluster-head, it elects

itself as the cluster-head.

Basically, the algorithm consists of four stages:

1. Cluster formation.

2. Location discovery (LREQ and LREP).

3. Routing of data packets.

4. Maintenance of location information.

3-69

Chapter 3 Reactive Location-based Routing algorithm with C luster-Based Flooding

3.3.1.3 Cluster formation
To enable cluster formation and maintenance, all nodes keep the information about their

neighbours in the neighbour table.

Let t be the period of time between the Hello broadcasts. When a node first switches

on, it first listens to Hello packets on the broadcast channel. If any other node on the

broadcast channel is already advertising itself as a cluster-head (status of node = cluster-

head), the new node saves the heard cluster-head ID in its cluster-head ID field and

changes its status to member. At any point in time, a node in the mobile network

associates itself with a cluster-head. The cluster-heads are identified by the cluster-head

ID. Otherwise, the new node becomes cluster-head. The cluster-head is responsible for

the cluster and periodically sending a Hello Message (Figure 3.2).

Figure 3.2: Cluster formation mechanism for Reactive Location Routing
Algorithm with Cluster-Based Flooding (LORA-CBF).

Chapter 3 Reactive Location-based Routing Algorithm with C luster-Based Flooding

When one member receives the Hello message, it registers the cluster-head and

responds with a reply Hello message. The cluster-head then updates the Cluster Table

with the address and position (longitude and latitude) of every member in the cluster.

When a member receives a Hello packet from a different cluster-head, it first registers

the cluster-head, but the member does not modify its cluster-head ID until the expiration

time for the field has expired. Before the member rebroadcasts the new information, it

changes its status to a gateway. After receiving the Hello packet, the cluster-heads

update the Cluster Table with the information about the new gateway (Figure 3.3).

Member Cluster-head

Figure 3.3: Gateway node in LORA-CBF algorithm.

In the case where the source wants to send a message to the destination, it first checks

its routing table to determine if it has a “fresh” route to the destination. If it does, it first

seeks its Cluster Table to determine the closest neighbour to the destination. Otherwise,

it starts the location discovery process.

3.3.1.4 Location Discovery Process
When the source of the data packet wants to transmit to a destination that is not

included in its routing table or if its route has expired, it first puts the data packet in its

buffer and broadcasts a Location Request (LREQ) packet (Reactive Location Service,

RLS).

When a cluster-head receives a LREQ packet, it checks the identification field of the

packet to determine if it has previously seen the LREQ packet. If it has, it discards the

packet. Otherwise, if the destination node is a member of the cluster-head, it unicasts

the Location Reply (LREP) packet to the source node.

Chapter 3 Reactive Location-based Routing algorithm with C luster-Based Flooding

If the destination node is not a member of the cluster-head, it first records the address

of the LREQ packet in the list and rebroadcasts the LREQ packet to its neighbouring

Cluster-heads (Figure 3.4).

Figure 3.4: Location Request Packet (LREQ).

Each cluster-head node forwards the packet only once. The packets are broadcast only

to the neighbouring cluster-head by means of an omni-directional antenna that routes

them via the gateway nodes. Gateways only retransmit a packet from one gateway to

another in order to minimize unnecessary retransmissions, and only if the gateway

belongs to a different cluster-head. When the cluster-head destination receives the

LREQ packet, it records the source address and location. From this, the destination’s

cluster-head knows the location of the source node. The destination then sends a LREP

message back to the source via its closest neighbour (Figure 3.5).

Finally, the packet reaches the source node that originated the request packet. If the

source node does not receive any LREP after sending out a LREQ for a set period of

time, it goes into an exponential back off before re-transmitting the LREQ. Hence, only

one packet is transmitted back to the source node. The reply packet does not have to

maintain a routing path from the source to the destination. The path is determined from

3-72

Chapter 3 Reactive Location-based Routing algorithm with C luster-Based Flooding

the location information given by the source node. The path traversed by the LREQ

may be different from that traversed by the LREP.

3.3.1.5 Routing of Data packets
The actual routing of data packets is then based on the location of source, destination

and neighbours (Figure 3.6).

Figure 3.6: Data and Acknowledgement packets being forwarding in LORA-CBF.

Since the protocol is not based on source routing, packets travel the path from source

to a destination based on locations. The packets find paths to the destinations

individually each time they transmit data between the source and the destination. As the

two nodes know their relative positions, packets are transmitted based on this. Moreover,

since the transmission is in the direction of the destination node, the path found will be

shorter than other routing mechanisms (non-positional-based), In non-positional-based

routing strategies, the shortest path is measured in hops. Therefore, the path found may

not be the shortest. However, the path found using location information will be

significantly shorter. If the source of the data packet does not receive the

acknowledgement packet before its timer expires, it will retransmit the data packet

again. This situation might occur during loss of packets due to drop out or network

disconnection.

C h a p t e r 3 Reactive Location-based Routing Algorithm with C luster-Based Flooding

3.3.1.6 Maintenance of location information
The LORA-CBF algorithm is suitable for networks with very fast mobile nodes

because it maintains and updates the location information of the source and destination

every time the pairs send or receive data and acknowledgment packets. The source

updates its location information before sending each data packet. When the destination

receives the data packet, its location information is updated and an acknowledgment

packet is sent to the source.

3.3.1.7 Forwarding strategy
LORA-CBF uses MFR (Most forward within radius) as its forwarding strategy. In

MFR the packet is sent to the neighbours that best reduce the distance to the destination.

The advantage of this method is that it decreases the probability of collision and end-to-

end delay between the source and the destination [59|.

3.4 SHORT-TERM PREDICTIVE ALGORITHM
In highly mobile environments, having the correct knowledge of neighbour positions

is fundamental in the routing efficiency of any algorithm. LORA-CBF predicts the next

position (geographical location) of every neighbour node, based on its short-term

predictive algorithm [73]. After predicting the position of all neighbour nodes, LORA-

CBF sends the packet to the neighbour node which has the best position (MFR). The

best position means that it can reach the node that is closest to the destination.

Mobility and contention of the wireless media may cause the loss of packets being

transferred, and this is a very important aspect to consider in the development of

predictive algorithms. We address this problem, including the gap between packets

being received (Figure 3.7).

3-74

:V

C h a p t e r 3 Reactive Location-based Routing Algorithm with Cluster-Based Flooding

Figure 3.7: Sort-term predictive algorithm used in LORA-CBF.

The short-term predictive algorithm tries to extrapolate the position of the next hop k

positions ahead in time. For example, a simple technique is to assume the data follows a

linear trend.

Pj + k = Pj + AP * e(3.1)

Where:

Chapter 3 Reactive Location-based Routing algorithm with C luster-Based Flooding

Pj + k future position of the next hop.Pj current position of the next hop.

AP interval between current position and previous position of the next hop.

e factor indicating the gap between packets received.

The predictive algorithm is useful for networks with very high mobility and which are

contention-based. In LORA-CBF, a Hello message is broadcast periodically. Every

node keeps the location information of every neighbour from which it has received

Hello messages. When one node receives a packet for transmission to a particular

destination, it first checks its routing table to determine if it knows the location of the

destination node. If it does, it triggers the short-term predictive algorithm to calculate

the future position of the destination. If the node can reach the destination, it sends the

packet directly. Otherwise, before retransmitting it, the node predicts the locations of

the neighbour nodes, based on previous positions, and sends the packet to the closest

neighbouring node to the predicted destination.

3.5 CONCLUSIONS
We have addressed several challenges in vehicular ad-hoc networks (VANET) with

the Reactive Location-Based Routing Algorithm with Cluster-Based Flooding (LORA-

CBF). First, using location information, we have improved packet forwarding decisions

due to two location services: Simple and Reactive. For neighbouring nodes, a Simple

Location Service has been implemented, and for faraway nodes, a Reactive Location

Service is employed. Second, in geographic forwarding, the source node includes the

location of its destination in each packet. Here, the packet moves hop by hop through

the network, forwarded along via cooperating intermediates nodes. At each node, a

purely local decision is made to forward the packet to the neighbour that is

geographically closest to the destination. However, location information by itself does

not guarantee the transmission between neighbouring nodes in vehicular ad-hoc

networks. Mobility and contention of wireless media may cause loss of packets being

transferred, and this is very important aspect to consider in the development of wireless

routing algorithms. Fiere, we have addressed this problem by including a predictive

algorithm in LORA-CBF. Finally, due to the increasing number of vehicles, VANET

3-76

Chapter 3 Reactive Location-based Routing Algorithm with C luster-Based Flooding

networks are foreseen to include hundreds or thousands of vehicles in its architecture.

This tendency motives us to design an algorithm that copes with a very dense and

highly mobile network. What we have developed here divides the size of VANET

networks into several clusters, thus improving its scalability.

C h a p t e r 4: J u s t if ic a t io n o f IEEE
802.11b W ir e l e s s N e t w o r k s
f o r I n t e r - V e h ic l e
C o m m u n ic a t io n

4.1 i n t r o d u c t i o n

There are many problems that affect communication in mobile communication

environments, but the two main ones are: multi-path delay and Doppler Shift |74].

Multi-path delay produces frequency selective fading, so that signals suffer interference,

and Doppler can affect shift the carrier frequencies. Fading is caused by interference

between two or more versions o f the transmitted signal that arrive at the receiver at

slightly different times. The versions, also called multi-path waves, combine at the

receiver antenna to give a resultant signal, which can vary widely in amplitude and

phase, depending on the distribution of the intensity and relative propagation time of the

waves and the bandwidth of the transmitted signal. The phenomenon is known as

constructive or destructive interference.

In the estimation o f the radio coverage area o f a transmitter and receiver, two simple

large-scale and small-scale propagation models can be used. Large-scale models

characterise signal strength over large T-R separation distances (several hundreds or

thousands of meters). Propagation models that characterise the rapid fluctuation of the

received signal strength over very short travel distances (a few wavelengths) or short

time duration (on the order o f seconds) are called small scale, or fading models.

4.2 LARGE-SCALE FADING

As a mobile node moves away from the transmitter over much larger distances, the

local average received signal will gradually decrease, and it is the local average signal

level that is predicted by large-scale propagation models.

Chapter 4 JUSTIFICATION OF IEEE 802.1 lb WIRELESS NETWORKS FOR
INTER-VEHICLE COMMUNICATION

4.2.1 Free Space Propagation Model

The free space propagation model (FSP) is used to predict received signal strength

when the transmitter and receiver have a clear, unobstructed line-of-sight path between

them [74). The FSP model can be calculated with the formula listed below, which is the

transmission between two antennas, separated by a distance.

Pr(d) =
PtGtGrX2
(4 n f d 2

(4.1)

Where:

Pt is the transmitted power, Pr(d) is the receiver power, which is a function o f the

transmission - reception separation.

Gt is the transmitter antenna gain, Gr is the receiver antenna gain, d is the

transmission - reception separation distance in meters and X is the wavelength in

meters.

Received power Pr(d) is generally the most important parameter predicted by large-

scale propagation models

4.2.2 Path Loss
Path Loss is the reciprocal o f the received power and represents signal attenuation as a

positive quantity measured in dB, and is defined as the difference (in dB) between the

effective transmitted power and the received power, which may or may not include the

effect of antenna gain. The path loss for the free space model when antenna gains are

included is given by the equation below.

Pr(d) = G,GrA2
P, (471) V

10 log p, 10 log
G,G,sl2

(4n) V

PL(dB) = - I Olog
G,Gr)J

(4 ji)2 2
(4.2)

4.2.3 System Operating Margin

System Operating Margin (SOM) (also referred to as Fade Margin) is defined as the

difference between the received signal level (in dBm) and the receiver sensitivity (in

dBm) needed for error free reception. Also, the System Operating Margin can be

calculated using the formula listed below. SOM, basically, is the difference between the

signals a radio is actually receiving vs. what it needs for good data recovery (i.e.

receiver sensitivity).

SOM = Re ceived _ Signal(dBm) - R eceiver _ Sensitivity(dBm) (4.3)

The System Operating Margin predicts the area of optimal reception between the

transmitter and receiver. The minimum SOM recommended is 10 dB, and 20 dB is

considered to be excellent [76).

4.3 SMALL-SCALE FADING
As a mobile node moves over very small distances, the instantaneous received signal

strength may oscillate rapidly giving rise to small scale fading. Small-scale fading, or

simple fading, is used to describe the rapid fluctuations o f the amplitude, phase or

multi-path delay of a radio signal over a short period o f time or travel distance, so that

large-scale path loss effects may be ignored. In vehicular ad-hoc wireless networks

(VANET), due to the relative motion between the transmitter and receiver, each multi-

path wave experiences an apparent shift in frequency.

4.3.1 Impact of Doppler Shift
We have considered the worst case scenario to evaluate the impact o f Doppler shift

(Figure 4.1). In the scenario shown, we have assumed an average speed of the vehicles

of 42 m/s (150 km/h), with each vehicle iequipped with an IEEE 802.1 lb wireless card.

We wish to determine the maximum speed that the vehicle can travel without being

affected by Doppler shift. The relative speed in the scenario shown in Figure 4.1 is the

involvement o f speed o f each vehicle. In this case, it is 84 m/s.

Chapter 4 JUSTIFICATION OF IEEE 802.11 b WIRELESS NETWORKS FOR
____________ INTER-VEHICLE COMMUNICATION______________________________

Chapter 4 JUSTIFICATION OF IEEE 802.1 lb WIRELESS NETWORKS FOR
INTER-VEHICLE COMMUNICATION

Figure 4.1: Worst case scenario to evaluate the impact o f Doppler shift

There are two types o f small-scale fading based on Doppler Spread: fast fading and

slow fading.

4.3.1.1 Fast fading

Depending on how rapidly the transmitted base band signal changes compared to the

rate of change of the channel, a channel may be classified either as a fast fading or slow

hiding channel. Therefore, a signal undergoes fast fading if Ts > Tc and Bs < BD,

Where: Ts is the reciprocal bandwidth, Tc is the coherence time, Bs is the Bandwidth,

and Bd is the Doppler Spread.

The coherence time describes the time varying nature o f the channel in a small-scale

region and is caused by the relative motion between the vehicles.

Here, we test if our scenario is fast fading or slow fading. The signal base band in

IEEE 802.11 b is 1.375 MHz, so Ts = 90 ns.

3M (f in is m /s
2.4x109//z ~ ' ~ H z'

42m / s

0.125 m / s
Hz

= 336Hz

The coherence time is defined in |74], as the period of time over which the time

correlation function is greater than 0.5,

Chapter 4 JUSTIFICATION OF IEEE 802.11 b WIRELESS NETWORKS FOR
INTER-VEHICLE COMMUNICATION

Ts = 90 ns < 1.3ms = Tc , and Bs -1.375M Hz > 336H z- B 0 . This is not a Fast fading

channel.

In a slow fading channel, the channel may be assumed to be static over one or several

reciprocal bandwidth intervals. In the frequency domain, this implies that the Doppler

spread o f the channel is much less than the bandwidth of the base band signals.

Therefore, a signal undergoes slow fading if

Ts « Tc and Bs » BD.

It should be clear that the velocity o f the mobile node (or velocity o f objects in the

channel) and the base band signalling determines whether a signal undergoes fast fading

or slow fading.

The channel in our scenario is slow fading because:

Ts = 90 ns « 1.3 ms = Tc and Bs - 1.375MHz » 336Hz = BD.

If the base band signal bandwidth is much greater than Bn , the effect o f Doppler

Spread are negligible at the receiver [74].

Now, we are able to analytically determine the maximum speed that the vehicle can

travel before it will be affected by Doppler Effect. Considering the maximum Doppler

Spread o f 1.375 MHz we obtain:

(4.4)

Where f m is the maximum Doppler shift.

Using the equation (4.4), we obtain: Tc

4.3.1.2 Slow fading

m / V

v = f m U , v = 1315M H z*0.125—— v=618,750 km/h.
Hz

The result obtained indicates that the Doppler Effect will not affect the

communication between vehicles, using the IEEE 80.1 lb Wireless cards.

4.4 TEST SET UP AND EXPERIMENTAL DETAILS

Very few test-beds have been deployed to evaluate the performance of wireless

networks for inter-vehicle communication [77| [781 [79]. The authors in |77| used

ORINOCO IEEE 802.11b WLAN cards and enhanced the range o f connectivity by

deploying ORINOCO omni-directional antennas on top of cars. One laptop was set up

as a receiver and the other as a transmitter that streamed UDP packets. Three

environments were evaluated: Sub-urban, Urban and Freeway. In the freeway

environment, the speed limit was considered to be 65 miles per hour (104 km/h). Here

the vehicle measurements were done considering the vehicles following and crossing

each other. Authors in [78] have reported that, eight nodes were deployed within a

700m by 300 m site. Each node ran the Dynamic Source Routing (DSR) protocol. Every

vehicle was equipped with a Lucent Wave LAN Wireless LAN radio on the roof. The

ad-hoc network included five moving car-mounted nodes. In this experiment, one car

was following the other at a separation of 90m. Another experiment was reported in

[79]. Here the authors report a single inter-vehicle communication system using

commercially available DS/SS wireless LAN modems with omni-directional antennas.

The communication frequency is the 2.4 GHz ISM (Industrial, Scientific and Medical)

band. They showed that inter-vehicle communication can be realized at low cost with

existing equipment.

The experiment was realized between two vehicles. In one vehicle, a notebook

computer (PC-1) was connected to a JRL 200 wireless LAN adapter via an Ethernet

hub, to which an Internet camera was also connected. In the other vehicle, another

notebook computer (PC-2) was connected directly to another JRL 200 wireless LAN

adapter, both via a PCMCIA LAN card. Both computers and the camera were assigned

an IP address. Thus a small LAN was formed, with one of the links being a wireless one

between the two vehicles.

By using the UNIX command ping , the packet loss and round trip delay of packets

transferred between computers was measured every two seconds. In addition, using the

file transfer command ftp, the data rate o f the transfer of some files was measured.

Furthermore, images could be viewed in real time (approximately 1 picture per second)

from the Internet camera on the computer PC-2.

Chapter 4 JUSTIFICATION OF IEEE 802.11 b WIRELESS NETWORKS FOR
____________ INTER-VEHICLE COMMUNICATION____________________________ _

Chapter 4 JUSTIFICATION OF IEEE 802.1 lb WIRELESS NETWORKS FOR
INTER-VEHICLE COMMUNICATION

Several experiments were undertaken on a straight stretch o f road to determine if there

was any effect of speed, and also whether there was any noticeable effect of Doppler

shift when the vehicles approached and then moved away from each other at different

speed. In all cases, good line of sight communication was achieved, and there was no

noticeable performance degradation.

In our experiment, we were interested in the worst case scenario, where vehicles

travel in opposite directions on opposite sides o f a motorway.

The first part of the experiment focused on determining the maximum distance o f the

received power between the transmitter and the receiver. To do this, we used two

Enterasys’ wireless cards and two omni-directional antennas. According to

specifications, the antenna has a power of 15 dBm or 32 mW, and the omni-directional

antennas have a gain o f 5 dBi. We realized the experiment in the local airport o f

Colima, Mexico and repeated the test three times.

Table 4.1 indicates the values of receiver sensitivity for the Enterasys ’ wireless cards,

according the data rates and distance between transmitter and receiver [75].

11 Mbps 5.5 Mbps 2 Mbps 1 Mbps

Distance 160 270 400 550

Receiver Sensitivity (dBm) -82 -87 -91 -94

Table 4.1: Theoretical values specified for receiver sensiti vity in Enterasys *
wireless cards

Graph 4.1 represents the analytical result for the received signal power, and is

achieved using equation (4.1).

4-84

Chapter 4 JUSTIFICATION OF IEEE 802.11 b WIRELESS NETWORKS FOR
INTER-VEHICLE COMMUNICATION

Graph 4.1: Received signal power.

Graph 4.2 indicates theoretical, experimental and analytical results o f the received

signal power over a certain distance between the transmitter and receiver. The values

expressed are the values shown in the data sheet o f the Enterasys’ Wireless cards. On

the other hand, the values obtained experimentally are the same values we have used to

obtain the analytical results.

Graph 4.2: Received signal power between transmitter and receiver

The maximum experimental distance between the transmitter and the receiver with

802.11b Enterasys’ Wireless Cards and 5dBi car-mounted omni-directional antennas is

446 m.

Graph 4.3 represents the analytical result for the free space loss, and is achieved

using equation (4.2).

Chapter 4 JUSTIFICATION OF IEEE 802.11 b WIRELESS NETWORKS FOR
____________ INTER-VEHICLE COMMUNICATION_____________________ ________

Graph 4.3: Free space loss.

Graph 4.4 indicates experimental and analytical results o f the free space loss over a

certain distance between the transmitter and receiver.

Chapter 4 JUSTIFICATION OF IEEE 802.11 b WIRELESS NETWORKS FOR
INTER-VEHICLE COMMUNICATION

Graph 4.4: Free space loss between transmitter and receiver.

Graph 4.4 shows the free space loss considering car-mounted omni-directional

antennas and Enterasys’ Wireless cards. The path loss increases with the distance

starting with 40 dB at one meter to 93 dB at 450 meters.

The next experiment focused on determining the System Operating Margin between

transmitter and receiver (Graph 4.5). The analytical result is achieved using equation

(4.3).

Graph 4.5: System Operating Margin.

Experimental results show good values for the System Operating Margin, with a

distance o f 300 m between the transmitter and the receiver. A SOM of 17dBm has been

obtained.

The next experiment consisted in sending Hello messages in the worst case scenario.

The speed of the vehicles was maintained constant in each test, and we repeated the test

three times starting from 80 km/h to 140 km/h. Hello messages were periodically

transmitted to announce the presence o f the mobile node. In our algorithm, Hello

messages are vital to disseminate location information between neighbouring nodes.

The tests were conducted by driving in opposite directions at varying speeds (Figure

4.1). The two vehicles had laptops running Linux and were equipped with Enterasys’

IEEE 802.1 lb WLAN cards. The range of connectivity was enhanced by deploying an

omni-directional antenna inside o f each car.

One laptop was set up as a receiver and the other as a sender that streamed UDP

packets. The wireless cards were configured to operate in broadcast ad-hoc mode. The

UDP packets were o f 64 bytes in length.

Chapter 4 JUSTIFICATION OF IEEE 802.11 b WIRELESS NETWORKS FOR
____________ INTER-VEHICLE COMMUNICATION______________________________

Graph 4.6: Delivery Ratio.

Graph 4.6 shows the delivery ratio between the transmitting and receiving vehicle

(according to the transmission range). When one o f the vehicles is moving at 140 km/h,

the number o f packets being received by the receiver vehicle is 17 and in the worst case

4-88

scenario, when both vehicles are travelling in opposite directions, the number o f packets

being received by the receiver vehicle is 8.

Graph 4.7 shows the results for delivery ratio using OPNET for simulation of the

worst scenario and compares the results with those obtained experimentally. Our results

are slightly different from the OPNET network simulator, because our omni-directional

antennas were mounted inside of the cars, instead ol on the iool oi each. Our pigtail

cable was too small to extend it more than lm. Similar results are reported in [79].

Here, the effect of the antenna position was investigated. They found that the antenna

mounted on the roof gave better results when mounted on the dashboard. When both

antennas were mounted on the front dashboard, communication was more difficult.

Similar results are reported in [8 0], where vehicles traveling in opposite directions at

140 km/h are in communication range for 12.5 seconds.

Chapter 4 JUSTIFICATION OF IEEE 802.11 b WIRELESS NETWORKS FOR
____________INTER-VEHICLE COMMUNICATION______________________________

Graph 4.7: Delivery Ratio compared between the experimental result and results
obtained in OPNET.

4.5 CONCLUSIONS
In this chapter, we have shown that IEEE 802.1 lb wireless networks are suitable for

inter-vehicle communication. We have supported our hypothesis with the results of two

propagation models. On one hand, according to large scale models, the maximum

distance between the transmitter and the receiver is 446 m. In addition, the System

Operating Margin (SOM) feasible at 446 m is over 13 dB. The SOM is over the

minimum margin recommended. On the other hand, we have found with the results of

small scale models, that the Doppler Effect does not affect the communication between

communication partners at high speed. Finally, we have realized an experiment that has

allowed us to validate the former results in the worst case scenario, when the transmitter

and receiver are travelling in opposite directions. Results have shown that at least 8

packets are possible when the transmitter and receiver are within communication range.

Chapter 4 JUSTIFICATION OF IEEE 802.1 lb WIRELESS NETWORKS FOR
____________ INTER-VEHICLE COMMUNICATION______________________________

Chapter 5: Microscopic Traffic
Models

5.1 INTRODUCTION

This chapter focuses on vehicular traffic models to be used with the previously

described algorithm. These models will simulate realistic traffic movement and assess

the most suitable traffic model for describing the movement of vehicles on a motorway.

According to |81, 82], vehicular traffic models may be categorised into four level-of-

detail classifications, namely sub-microscopic, microscopic, mesoscopic and

macroscopic. Sub-microscopic models describe the characteristics of individual

vehicles in traffic flow and the operation of specific parts (sub-units) of the vehicle (e.g.

changing gears, breaks, etc). Microscopic models simulate driver behaviour and

interaction among drivers. Mesoscopic models represent the transportation systems and

analyse groups of drivers with homogeneous behaviour. Finally, macroscopic models

describe traffic at a high level of aggregation as a flow without distinguishing its basic

parts |83] (84] (85] (86] [87] (88], such as in the situation of the traffic flow in a road

network using entities such as density, flow and average speed. For simulation of large

road networks, the family of macroscopic flow models is the common choice. This is

because microscopic models are more often used for studying the traffic flow in smaller

areas in great detail, because this type of model consists of sub-models that describe

particular driver behaviour. Important behaviour models include: gap-acceptance, speed

adaptation, lane changing,, overtaking, and car-following. The gap-acceptance model

determines minimum acceptable distances from surrounding vehicles in the context of

intersections and merging. Speed adaptation refers to the adaptation to the road design

speed at a vehicle’s current position in the network. Lane-changing models describe

driver behaviour when deciding whether to change lane or not on a multi-lane road link,

e.g. when travelling on a motorway. Analogously, on two-lane rural roads the overtake

model controls drivers’ overtaking behaviour. Finally, there is the car-following model,

which describes the interactions with preceding vehicles in the same lane. Of these, this

thesis concentrates on car-following. Modelling of car-following is needed when

interactions between individual vehicles are taken into account. Most previous research

5-91

Chapter 5 MICROSCOPIC TRAFFIC MODELS

on driving behaviour modelling has been focused on car-following, and there are

numerous papers on this topic. However, very few qualitative comparisons and

descriptions of car-following models have been made [89].Therefore, only microscopic

traffic models are of interest within the context of this work, in addition, car following

models are used in cases where one is interested in the dynamics of the traffic system or

if information of microscopic traffic measures is needed. Typical applications of a

microscopic traffic model include analysis of the impacts of different network designs,

evaluation of Intelligent Transportation Systems (ITS) applications and emission

modelling, all of which require detailed information on driving course of events.

5.2 INTRODUCTION TO VEHICULAR TRAFFIC THEORY

In vehicular traffic theory |90J, freeway traffic is described by three elementary

parameters: traffic density pvch in [veh/km], traffic flow q in [veh/s] and the net time gap

i in [s]. These quantities can be related together by their average values as shown in

equation (5.1):

r \
300

Pvc/i
T =

1 300

Vm V Pw* (J
1

300

V PwJi

(5.1)

Herein lm is the average length of vehicles, dm the average distance between vehicles

and vm the average speed in [m/s] of vehicles. From equation (5.1), the values are

calculated to the maximum transmission range of 300 m. Also, we can calculate a

possible maximum velocity vp , if the average time gap t m and the traffic density pveh are

given. Real average velocities, the so-called average free velocities vmtfiw, are always

equal or below this limit:

v , < V'mjree p
m V

300Pî ir - / (5.2)

If traffic density is low, vehicles are assumed to drive at their free velocity v,n /m. .

Additional vehicles do not diminish the average driven velocity vm fhY, but only vy. Thus,

additional vehicles result in an increase of the traffic flow </and shorter time gaps xm.

5-92

Chapter 5 MICROSCOPIC TRAFFIC MODELS

This traffic state is called undisturbed traffic. If traffic density increases, so that it is not

longer possible to drive byvm free, the driven velocity will reduce to v and the traffic

state is called disturbed traffic.

Macro-simulation models describe the traffic flow in a road network using variables

such as density, flow and average speed, whereas micro-simulation models consider

each individual driver vehicle unit and its interactions with other vehicles in the

network.

S.3 CAR FOLLOWING MODELS

All microscopic traffic models use a very large number of variables that have to be

calibrated in order to achieve representative results. The calibration work increases

proportionally with the number of parameters. It is therefore desirable to keep the

number of variables as small as possible. A car-following model must however contain

parameters that allow both the reaction time and the magnitude of the reaction to be

adjusted.

A car-following model represents driver behaviour with respect to the preceding

vehicle in the same lane |91]. We will now discuss three types of car-following models,

namely safe-distance models, stimulus-response models and psycho-physiological

models.

5.3.1 Sale-distance models

Safe-distance car-following models describe the mobility of a single vehicle in

relation to its predecessor, and they are based on the assumption that the follower

always keeps a safe distance to the vehicle in front. A simple model can be established

allowing for at least one car length for every ten miles an hour (16.1 km/hr). Using this

driving rule, is possible determine the minimum distance headway D of the vehicle n

driving with velocity v with respect to vehicle//-1 , where ¿„represents the length of

vehicle n .

A,(v) = ¿„(1 + (v /16.1)) (5.3)

Equation (5.3) is called Pipe’s model and shows that the minimal safe distance

increases linearly with the velocity v of the vehicle. There is a more refined model that

5-93

Chapter 5 MICROSCOPIC TRAFFIC MODELS

describes the spacing of vehicles in traffic flow, in which the overall reaction time T

consists of:

• Perception time (the time needed for the driver to recognise that there is an

obstacle);

• Decision time (the time needed to make decision to decelerate), and

• Braking time (the time needed to apply the brakes).

The total safety distance model assumes that the drivers consider braking distances

sufficient enough to permit them to brake to a stop without causing a rear-end collision

with the preceding vehicles if the latter vehicles come to stop instantaneously. The

corresponding safe distance headway equals:

D„(v) = Ln+ Tv + v2 /(2pg) (5.4)

where:

p Denotes the friction with the road surface, and

g describes the acceleration due to gravity.

Finally, the gross-distance headway GDn(v) effectively occupied by vehicle //driving

with velocity v is a function of the vehicle’s length Ln, a constant minimal distance

between the vehicles dmin, the reaction time T and a speed risk factor F:

GDn (v) = (Ln + <7tnin) + v(T + vF) (5.5)

5.3.2 Stimulus-response car-following models

A second model is based on the fact that drivers try to follow the behaviour of the

vehicle just ahead |92|. This model is based in the following principle:

Response - sensitivity x stimulus (5.6)

In general, the response is the braking or the acceleration of the following vehicle,

delayed by an overall reaction time T:

a,(t + T) = y (v „>)-v .(/>) (5.7)

where:

vn(t) denotes the velocity of the vehicle n at time t,

Chapter 5 MICROSCOPIC TRAFFIC MODELS

an{t) describes the acceleration of the vehicle n at time t,

y defines the driver’s sensitivity.

Thus, the stimulus is defined by the velocity difference between leader and follower.

The following expression has been proposed for driver’s sensitivityy.

y = c-(vn(t + T)T/(xn_](t) - x n(0)1 (5.8)

In equation (5.8), we see that the following vehicle adjusts its velocity vn(t) in

proportion to both distance and speed differences with delay T. The extent to which this

occurs depends on the training values o fc \ / and m which are calibrated during the

simulation or by measurement.

5.3.3 Psycho-Physiological Car Following Models

In this model the reaction thresholds that distinguish different regions of driver

behaviour have been considered. Here in x space, the space between vehicles is dictated

by the speed of the regarded vehicle v,, the speed of the leading vehicle v2, and the

distance h = x2 - .v,. The perception threshold is defined to be a distance at which the

driver realizes positive or negative differences of speed between himself and the vehicle

in immediately in front.

H\ : v2 - v, = -k_ (h - hQ)2 - v0 perception threshold (negative)

H2 : v, - v, = -A'+ (h - h0)2 + v0 perception threshold (positive)

These thresholds separate the regimes of reaction and no reaction of the driver. Here,

and fc±are:

vo=0.3 m/s * .= 4 1 0 ‘Jm V kt = 8-l(T,m V

Besides these perception thresholds, other thresholds for slowing down and

acceleration procedures can be introduced so that

/ / 3 : h = hti + 7>, Risky distance

H4 :1i ~ /ip + Ts\\ Safe distance

m
is the distance at speed 0. Typical values for the physiological parameters v0

Chapter 5 MICROSCOPIC TRAFFIC MODELS

/ / 5: h = h0 + Tdv, Desired distance

Typical values are:

Tr =0.45.9 Ts =0.9s TtJ=\.5s

where Tr , Ts and T,are the risky, safe and desired times respectively.

5.4 Microscopic Traffic Simulators

These models distinguish and trace single cars and their drivers. From driver

behaviour and vehicle characteristics, position, speed and acceleration of each car are

calculated for each time step.

A good review of the more popular models in use is given in [90] [93]. MIMIC,

INTEGRATION, AIMSUM, MITSJM, VISSIM and SIMONE 2000.

5.4.1 The Traffic Simulator MIMIC

MIMIC is a microscopic traffic simulator that is based on stimulus-response car

following model as discussed in 5.2.2 [91J. In MIMIC, each driver maintains a

preferred speed. When forced to deviate from this speed, the driver will attempt to

resume it as soon as possible. The preferred speed is obtained from a set of normal

distributions functions, based on observed traffic data. The normal distribution function

can be expressed as:

m =
i 2 cr (5.9)

G- J l - T X

Equation (5.9) represents the normal probability density function for preferred speed,

based on observed traffic data, with p = 80.030 and a = 8.778.

In MIMIC, the time gap distribution is expressed:

. (Uw-nf
m

2o*
O-yJln

Where:

c r = — r £ (h u - p) *
/j-1

(5.10)

Chapter 5 MICROSCOPIC TRAFFIC MODELS

Equation (5.10) describes the time gap distribution using a log-normal distribution. It is

based on an observed traffic volume of 917 vehicles/h, with ct2 = 0.661 andp = 0.945.

The traffic simulation model MIMIC can be expressed as:

-a i-
a ; y ^ A g -A g p ^ e issJ+p-(vpi - v i)-e

-P
(5.11)

where:

Ag = (t - t r) - x , (t - t r)-L,_ | (5.12)

Agp, = v (t - t r)-top, + a , (t - t r) -^ ~ L (5.13)

in which

tr is the reaction time,

ai is the rate of acceleration of vehicle

v(is the actual rate of speed of vehicle /,

xi is the position of vehicle / along the lane,

Lt is the length of vehicle /,

Aipt by vehicle / preferred time gap,

vpt by vehicle i preferred rate of speed,

Ag is the actual space gap between two vehicles,

Agpi by vehicle i preferred space gap, and

y, p, a, p are calibration parameters.

The authors in {91} do not mention how to obtain the values of the reaction time and

the calibration parameters, however this is not important in the case of our concerned in

reaching a high level of precision.

5.4.2 The Traffic Simulator Integration

The INTEGRATION model was conceived during the mid 1980s as an integrated

simulation and traffic assignment model |94j. The model assumes a basic relationship

between spatial headway (space between vehicles) and speed for each link, whose

mathematical expression is:

Chapter 5 MICROSCOPIC TRAFFIC MODELS

h = cx + [c2 /(v0 - v)] + c3 • v' (5.14)

where:

c, =P-c2

C3 = ['~ C\ + VJ C ~ (C2 / (V0 ~ Vcr))] 1 Vcr

P = (2-vfr- vo)/(v0- v fr)2

with:

c1, , and c3, parameters to be calibrated;

/;, headway between two vehicles;

V , current speed of each vehicle;

v0, free speed on the link;

vcr, critical speed on the link;

C, capacity;

dm jam (or maximum) density.

Parametersc, , c2 and c3 are obtained for each link, through the attribution of specific

values to free speed (v0), critical speed (vf,), capacity (C), jam density (dm), as shown

in table 5.1 [82j.

Link

Classes

Link type C (veh/li) v0 (km/h) v„ (km/h) dm (veh/km*lane)

1 Motorway 4000* 130 90 130

2 Acceleration

lane

4950” 125 85 130

3 On/off ramp 1000 50 30 130

4 Merge 3500* 120 80 130

5 Toll station - 35 20 130

* two-lane link, ** three-lane link

Table 5.1: Link categories and estimated values o f the model parameters.

5-98

Chapter 5 MICROSCOPIC TRAFFIC MODELS

The traffic simulation model Integration assumes a basic relationship between the

spatial headway and the current speed of each vehicle. Similar to MIMIC the model

tries to maintain a free speed of the vehicle, based on several parameters to be calibrated

during the simulation.

5.4.3 The traffic Simulator AIMSUN

The car-following model used in AIMSUN is a safety distance model, as previously

discussed in 5.2.1. Here, vehicles are classified as free or constrained by the vehicle in

front. When constrained by the vehicle in front, the follower tries to adjust its speed in

order to obtain safe space headway to its leader. On the other hand, when free, the

vehicle’s speed is constrained by its desired speed and its maximum acceleration.

The speed during the time interval [/,/ + 7], is chosen as:

V„(/ + 7-) = min + 7 + 7')} (5 .15)

The maximum speed a vehicle can accelerate during one time step is given by:

vn 0 + T) = vn(t) + 2.5-a"m ■ T f , v „ (0 |
desired

V 7

0.025 + v.O)
. desired

(5.16)

and the maximum safe speed for vehicle n with respect to the vehicle in front at time t is

calculated as:

i{'('+7')=iC-7>

!
(c C '-r f- 'C •ViW

V I

(5.17)

. d„ + (7 .d = —2------2dL
u n - \ ~

(5.18)

where:

a"ux maximum desired acceleration of the vehicle w, (~),
s~

r/"ux maximum desired deceleration of the v e h i c l e),

<7n_, estimation of maximum deceleration desired by vehicle «-1, (~),

5-99

Chapter 5 MICROSCOPIC TRAFFIC MODELS

s„+, effective length of a vehicle, and consists of the vehicles length and the user

specified parameter minimun distance between vehicles.

Typical values for AIMSUN model are showed in table 5.2

Parameter Description Value

« r Maximum acceleration of the vehicle n
2.5 —

s~

< r Maximum desired deceleration of vehicle n
2 -

.v2

T Reaction Time 0.7 seconds

Table 5.2: Typical values used in AIM SUN model.

The Traffic Simulation Model AIMSUM bases its performance on a safety distance

model. Therefore, the maximum speed that the vehicle can accelerate in the next

interval is determined according to the maximum safe distance between vehicles. The

main drawback of the AIMSUM model is that it does not define clearly how to estimate

the maximum deceleration of the vehicle 1.

5.4.4 MITSIM Traffic Simulation Model

The car-following model used in MITSIM incorporates three regimes with different

follower behaviour: free driving, following and emergency deceleration.

5.4.4.1 Free driving;

In this domain, the vehicle objective is to achieve its current desired speed. If the

current speed is higher than the desired speed, the vehicle uses the normal deceleration

rate to slow down to the desired speed. On the other hand, if the speed is lower than the

desired speed, the vehicle uses its maximum acceleration rate to reach the desired speed

as fast as possible. In MITSIM, the normal deceleration and the maximum acceleration

rates are parameters, which are functions of vehicle type and the current speed. The

acceleration rate of the vehicle n may be expressed as

Chapter 5 MICROSCOPIC TRAFFIC MODELS

<*n Vn < v
desired

“n = \ O v .= v i—
desired

(5.19)

“n Vn > V-

Where a* is the maximum acceleration rate and a~ is the normal deceleration rate,

both measured in ms 2

5.4.4.2 Car-following:

In the car-following regime, the acceleration rate of vehicle //, an is calculated as:

p*
« .= « * • • --------~ -------(5-20)

where a 1, p1 and yt are model parameters. oC ,pf and y+ are used if vn <vrt_ ,anda ',

P' and Y"tfv„ >vw_,.

5.4.4.3 Emergency:

In this domain, the vehicle uses a deceleration rate that prevents collision and extends

the headway. This deceleration rate is given by

a.. = <
_ fl. r0 .5 -(v - v ,)2 v > v min < an ---------------- !Lj— • "

C v i-A ,- ,- -1») 1

minm {a;,a„.1+0.25-a;} v„ <v„.

(5.21)

Typical values for MITSIM model are showed in table 5.3

Parameter Description Speed (m/s)

an Nomial deceleration

rate of vehicle n

(4)
s~

<6.1 6.1 - 12.2 12.2-18.3 18.3-24.4 >24.2

8.7 5.2 4.4 2.9 2

Parameter Description Speed (m/s)
+

an Maximum acceleration rate of < 6.096 6.096- 12.192 > 12.192

, . , ni . vehicle n (~)
s~

7.8 6.7 4.8

5-101

Chapter 5 MICROSCOPIC TRAFFIC MODELS

P a r a m e te r D e s c r ip t io n V a lu e

+
a C a r - f o l lo w in g p a r a m e te r , a c c e le r a t io n 2 .1 5

r C a r - f o l lo w in g p a r a m e te r , a c c e le r a t io n - 1 .6 7

Y+
C a r - f o l lo w in g p a r a m e te r , a c c e le r a t io n -0 .8 9

o f C a r - f o l lo w in g p a r a m e te r , d e c e le r a t io n 1 .55

p - C a r - f o l lo w in g p a r a m e te r , d e c e le r a t io n 1 .08

Y~
C a r - f o l lo w in g p a r a m e te r , d e c e le r a t io n 1 .6 5

^upper M a x f o l lo w in g t im e h e a d w a y 1 .3 6 s

hower M in f o l lo w in g t im e h e a d w a y 0 .5 s

Table 5.3: Typical values used in M1TSIM model.

The Traffic Simulation Model MITSIM bases its conduct in three domains with

different follower behaviour according to free driving, following and emergency

deceleration. In MITSIM, the main drawback is that it bases its acceleration or

deceleration rate to many speed intervals.

5.4.5 The Microscopic Traffic Flow Model VISSIM

VISSIM implements a psycho-spacing car-following model. The basic idea is that the

driver can be in one of the four driving modes (Figure 5.1) [95]:

• Following

• Free driving

• Closing in

• Emergency Regime

5-102

Chapter 5 MICROSCOPIC TRAFFIC MODELS

Figure 5.1: The different thresholds and regimes in the VISSIM model.

The critical situation occurs when a faster vehicle approaches a slower vehicle on a

single lane and it has to decelerate. The action point of conscious reaction depends on

the speed difference, distance and driver dependent behaviour.

Several conditions govern the VISSIM model:

1. The desired distance between stationary vehicles, AX. This threshold consists

of the length of the front vehicle and the desired front-to-rear distance and is

defined as:

AX = Ln_x + AXadd + RND\n ■ AXmult (5.22)

where AXadd and AXmult are calibration parameters. RND\n , is normally a

driver-dependent parameter.

2. The desired minimum following distance at low speed differences, All.Y. This

threshold is calculated as:

ABX = AX + BX (5.23)

with BX = (BXadd + BXmull■ RND\„) • Vv (5.24)

where BXadd and BXmult are calibration parameters. The speed v is defined

as:

5-103

Chapter 5 MICROSCOPIC TRAFFIC MODELS

(5.25)

3. The maximum following distance, SDX. This distance varies between 1.5 and

2.5 times the minimum following distance, ABX. SDX is defined as:

where EXadd and EXmult are calibration parameters. NRND is a distributed

random number and RND2n is a driver-dependent parameter.

4. Approaching point, SDV. This threshold is used to describe the point where the

driver notices that he or she approaches a slower vehicle. SDV is defined as:

where CXconst, CXadd and CXmult are calibration parameters.

5. Increasing speed difference, OPDV. This threshold describes the point where

the driver observes that he or she is travelling at a lower speed than the leader.

The threshold is defined as

where OPDVadd and OPDVmult are calibration parameters. NRDN is a

distributed random number.

The threshold above gives rise to the following car-following regimes:

5.4.5.1 Following:

The thresholds SDV, SDX, OPDV and ABX constitute the following regime. The

acceleration of vehicles is assumed to be different to zero at all times. When the vehicle

passes SDV and ABX thresholds the acceleration rate is ~bmU and when the vehicle

passes the threshold of SDX and OPDV it is assigned the acceleration o fhmli. The

acceleration or deceleration rate, hnujl is defined as:

SDX - AX + EX • BX

with EX = EXadd + EXmult ■ (NRND - RND2n)

(5.26)

(5.27)

with CX = CXconst • (CXadd + CXmult • (RND1„ + RND2r)) (5.28)

OPDV = SDV -(-OPDVadd - OPDVmult • NRND) (5.29)

bnuU = BNVLLmult • (RNDAn + NRND) (5.30)

5-104

Chapter 5 MICROSCOPIC TRAFFIC MODELS

where BNULLmult is a calibration parameter. RND4n is driver parameter and NRND is

a random number.

5.4.5.2 Free driving

In this domain, the vehicle uses its maximum acceleration to reach its desired speed.

The maximum acceleration, bimx for passenger cars is defined as

L = BMAXmult ■ (vnux-v-FaktorV) (5.31)

FaktorV = -------------------^ ------------------- (5.32)
vdes + FAKTOR Vmult • (vmax - vtles)

where vimx is the maximum speed for the vehicle. FAKTORVmult is a calibration

parameter.

5.4.5.3 Closing in

When the vehicle passes the SDV threshold, the driver notices that he or she is

approaching a slower vehicle, then the driver decelerates in order to avoid collisions,

the following deceleration rate is used:

(Av):
ABX-(& x

+ bfl-l

where />„_,is the deceleration of the leader.

(5.33)

5.4.5.4 Emergency regime:

When the front to rear distance is smaller than ABX, the follower decelerates to avoid

colliding with the vehicle in front, according to the following:

bn = - — C d — + b,, + b ■
2 A X -(A x-L ,_ ,) BX

The vehicle’s maximum deceleration rate, bmin, is calculated as

bmin = -B MIN add - BMINmult • RND3n + BMINmult • v„

(5.34)

(5.35)

where BMINadd and BMINmult are calibration parameters. RND3n is a driver

parameter. Typical values for the VISSIM model are showed in table 5.4

Chapter 5 MICROSCOPIC TRAFFIC MODELS

P a r a m e te r D e s c r ip t io n V a lu e

AXadd A d d it iv e c a l ib r a t io n p a r a m e te r 1 .25

AXmult M u lt ip l ic a t iv e c a l ib r a t io n p a r a m e te r 2 .5

BXadd A d d i t iv e c a l ib r a t io n p a r a m e te r 2 .0

BXmult M u lt ip l ic a t iv e c a l ib r a t io n p a r a m e te r 1.0

EXadd A d d i t iv e c a l ib r a t io n p a r a m e te r 1.5

EXmult M u lt ip l ic a t iv e c a l ib r a t io n p a r a m e te r 0 .5 5

OPDVadd A d d i t iv e c a l ib r a t io n p a r a m e te r 1.5

OPDVmult M u l t ip l ic a t i v e c a l ib r a t io n p a r a m e te r 1.5

CX C a l ib r a t io n p a r a m e te r 4 0

B Null mult M u lt ip l ic a t iv e c a l ib r a t io n p a r a m e te r 0.1

NRND R a n d o m n u m b e r N (0 . 5 , 0 .1 5)

RND\ D r iv e r p a r a m e te r N (0 .5 , 0 .1 5)

RND2 D r iv e r p a r a m e te r N (0 .5 , 0 .1 5)

RND4 D riv e r p a r a m e te r N (0 .5 , 0 .1 5)

K w , M a x a c c e le r a t io n . . 3 .5
3 . 5 ------- v

4 0

K m M a x d e c e l e r a t i o n _ _ 1 .5
- 2 0 - f -------v

6 0

Table 5.4: Typical values used in VISS1M model.

The Traffic Simulation Model VISSIM employs four regimes with several thresholds

in the car-following model. The main drawback of VISSIM is that it requires many

calibration parameters.

5.5.6 The Traffic Simulation Model Simone 2000

Simone 2000 can be described as a highly-detailed microscopic traffic simulation

model for motorways with a variety of intelligent support systems; AlCC (Autonomous

Intelligent Cruise Control), SSL (Static Speed Limit Device), ISA (Intelligent Speed

Limit Device), CDC (Centralized Distance Control), Platoon-Driving, and Multi-lane

Platoon Driving.

5-106

Chapter 5 MICROSCOPIC TRAFFIC MODELS

• AICC (Autonomous Intelligent Cruise Control)

Every vehicle equipped with AICC keeps a pre-delined time headway (gap)

from the car preceding it, using an on-board distance and speed sensor, a computer

unit, and algorithms.

• SSL (Static Speed Limit Device)

A static speed limit device limits the maximum speed that can be achieved in

the specific vehicle.

• ISA (Intelligent Speed Limit Device)

An intelligent speed adapter limits the vehicle maximum speed, as the SSL does,

but this limit is flexible and depends on the actual speed limit of the road section

or the actual control regime. In order to adapt the speed of vehicles

automatically, communication between roadside and the vehicle is needed, when

the car enters or leaves a road section with a certain speed limit,

• CDC (Centralized Distance Control)

An advanced version of the AICC is the Centralized Distance Control (CDC).

The AICC functionality is present and discretionary. The CDC functionality is

activated on request by a centralized control regime and is mandatory. The CDC

system also maintains a safe distance to the car immediately in front and

responds to speed differences, but uses distance parameters supplied by the

roadside traffic centre, and thus requires roadside communication.

• Platoon Driving: ISA and CPC /+LGJ

The combination ISA and CPC is needed to drive a vehicle more or less

automatically over a dedicated lane. The maximum speed is set by the roadside

traffic centre and communicated to the equipped vehicle (by means of ISA). The

distance control is maintained by the Centralized Platoon Control (CPC) system.

This is a system similar to CDC but extended with inter-vehicle communication

to allow for fast responses times, and to receive and send platoon commands.

Here cars are guided along the dedicated lanes by a Lane Guidance system

(LG), i'or example, by following magnetic markers in the road surface.

Chapter 5 MICROSCOPIC TRAFFIC MODELS

• Multi-Lane Platoon Driving: ISA and CPC and ILC f+LGJ

The most sophisticated system considered can be described as automatic driving

over a multi-lane motorway. Inter-vehicle communication is necessary to allow

for fast response times while receiving and transmitting vehicle positions and

speeds, as well as platoon-commands.

5.5.6.1 Distance Controller

The longitudinal distance controller is one of the main elements of a microscopic

simulation model for traffic flows. It describes how a vehicle progresses along a lane

focusing on its leader. In Simone, a detailed search procedure of the leader is performed

to get the direct leader. The longitudinal controller determines the acceleration (positive

or negative) needed to obtain a desired minimum distance to the leader. The desired gap

function is defined:

MO =/,' + M O • (zO,. + zl, • v,(0 + z 2, • v,(02) (5.36)

where:

s(t) : desired gap distance (from rear follower i to rear leader) (m);

i : index vehicle;

1 : length of vehicle /;

0 : congestion factor;

zO : margin parameter (m);

zl : linear headway parameter (s);

z2
•j

: quadratic headway parameter (s~);

V (t) : speed at time t (rn/s)

The congestion factor has been introduced to take into account changing driver

behaviour in congested conditions. The value of the proportional congestion factor rj is

a function of the experienced traffic state (congested/non-congested) and driving speed

in case of congested conditions. In non-congested driving state, the factor rj is equal to

one. For congested conditions, the congestion factor is equal to 1.3. The values for zO,

zl and z2 are defined in [96J. The approach described here for the desired gap distance

is also followed in other microscopic models (FOSIM, and MIXIC),

5-108

Chapter 5 MICROSCOPIC TRAFFIC MODELS

5.5.6.2 Longitudinal Controller

The longitudinal controller tries to minimize the distance error and speed differences

of subject vehicle i with respect to the leading vehicle i-1. The model can be described

as follows:

a , (i + t) = a, •(*,_,(/)-.v,(;)-■«,(/)) + pf -(v,_,(/) - v,(0) (5.37)

with:

a(t + x) : Acceleration applied after delay time (m/s2)

x(t) : x-coordinate vehicle rear bumper at time 1 (m)

v(/) : speed at time t (m/s)

i : index subject vehicle (follower)

/-1 : index subjects’ leader

a : distance error sensitivity (1/s)

P* : speed difference sensitivity (for positive difference) (1/s2)

P" : speed difference sensitivity (for negative difference) (1/s2)

The Table 5.5 shows some constant for Simone 2000.

Margin Parameter (m) 2.5

Linear headway parameter (s) 0.55

Quadratic headway parameter (s2) 0.005

Distance error sensitivity (1/s) 0.3

Positive speed difference 2.0

Negative speed difference 1.7

Table 5.5: Constants used in Simone 2000.

The Traffic Simulation Model Simone 2000 bases it performance on the distance and

longitudinal controller. Simone 2000 has been designed for use on a motorway with a

variety of intelligent support systems. However, its basic mechanism can be employed

in urban environments.

5-109

Chapter 5 MICROSCOPIC TRAFFIC MODELS

5.5 C O N C LU S IO N S

Since the appearance of the 1985 Highway Capacity Manual, there has been an

increasing amount of research on traffic flow models, which lias led to a different

understanding of how traffic operates, especially on a motorway |97|. Efforts to

implement ITS with regard to both traffic management and traffic information provision

will provide challenges for applying this improvement on new microscopic traffic

models.

One car following model experiment was studied segment by segment using a model

where the stimulus included terms proportional to deviations from the mean inter

vehicle spacing, deviation from the mean speed of the lead vehicle and deviations from

the mean speed of the following car {98). An interesting result of the analysis of this

model is that it implies an asymmetry in the response, depending on whether the

relative stimulus is positive or negative.

In this chapter, we have analyzed six microscopic traffic models. These microscopic

traffic models are based on three types of car-following models: safe-distance models,

stimulus-response and psycho-physiological models. Of the studied models VISS1M

contains the largest number of parameter and AIMSUM is the model with the smallest

number of parameters. The main drawback of MIMIC, INTEGRATION and V1SSIM

models are the calibration parameters. These parameters have to be calibrated during

the simulation period. AIMSUM model does not define clearly how to estimate the

maximum deceleration of the vehicle n-l and MITSIM bases its acceleration or

deceleration rate to many speed intervals.

The traffic simulation model Simone 2000, seems to be more suitable for our

simulation scenarios. It based its behaviour in two different controllers: Distance

Controller ami Longitudinal Controller. In addition, it incorporates the e I feet when the

relative speed stimulus is positive or negative. We will use this microscopic traffic

model to simulate the mobility of the vehicles on a motorway and in an urban scenario,

further in this thesis.

5-110

C h a p t e r 6: Va l i d a t io n o f t h e S im u l a t io n

A l g o r i t h m in a S m a l l a n d L a r g e
S c a l e A d - h o c N e t w o r k

6.1 INTRODUCTION

There are three general forms of experimental techniques: measurements, analysis and

simulation. Here, our goal is to develop o f an algorithm for inter-vehicle

communication. Measurements, although possible, would be impractical for many

nodes. In addition, we would also need to considerate the economic cost associated with

deployment. Analysis, although useful, would not be very suitable for a very complex

system 11071. Simulation models are increasingly being used in complex systems,

where several parameters need to be considered [108). Here, we will use the results o f a

test-bed to validate our algorithm in a small scale ad-hoc network. Then, with the use of

extensive simulation, we will validate our protocol in a large scale ad-hoc network with

two prominent ad-hoc routing algorithms, DSR and AODV, in both urban and

motorway environments. Finally, we will compare our positional algorithm with

another positional algorithm, Greedy Parameter Stateless Routing (GPSR).

6.2 DYNAMIC SOURCE ROUTING PROTOCOL (DSR)
DSR uses source routing rather than hop-by-hop routing. Each packet carries in its

header the complete, ordered list o f nodes through which the packet must pass. The key

advantage o f source routing is that intermediate nodes do not need to maintain up-to-

date routing information in order to route the packets they forward, since the packets

themselves already contain all the routing decisions. This fact, coupled with the on-

demand nature o f the protocol, eliminates the need for the periodic route advertisement

and neighbour detection packets present in other protocols.

6.2.1 Basic Mechanisms of DSR
The DSR protocol consists o f two mechanisms: Route Discovery and Route

Maintenance. Route Discovery is the mechanism by which a node S wishing to send a

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

packet to a destination D obtains a source route to D. To Perform a Route Discovery,

the source node S broadcasts a Route Request packet that is flooded through the

network in a controlled manner and is answered by a Route Reply packet from either

the destination node or another node that knows a route to the destination. To reduce the

cost o f Route Discovery, each node maintains a cache o f source routes it has learned or

overheard, which it aggressively uses to limit the frequency and propagation o f Route

Requests.

Route Maintenance is the mechanism by which a packet’s sender S detects if the

network topology has changed such that it can no longer use its route to the destination

D because two nodes listed in the route have moved out of range o f each other. When

Route Maintenance indicates a source route is broken, S is notified with a Route Error

packet. The sender S can then attempt to use any other route to D already in its cache or

can invoke Route Discovery again to find a new route.

6.2.2 Implementation Decision

Using the model developed by the National Institute of Standard and Technology

(NIST) 1109], we have enhanced the unicast mechanism for data packets. The enhanced

mechanism requires that a destination node return an acknowledgement packet for each

data packet received. The acknowledgement packet is returned by reversing the path

over which the data packet came.

6.3 AD-HOC ON-DEMAND DISTANCE VECTOR
(AODV)

AODV is essentially a combination o f both DSR and DSDV [110], It borrows the

basic on-demand mechanism of Route Discovery and Route Maintenance from DSR,

plus the use o f hop-by-hop routing, sequence numbers, and periodic beacons from

DSDV.

6.3.1 Basic Mechanism
When a node S needs a route to some destination D, it broadcasts a Route Request

message to its neighbours, including the last known sequence number for that

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

destination. The Route Request is flooded in a controlled manner through the network

until it reaches a node that has a route to destination. Each node that forwards the Route

Request creates a reverse route for itself back to node S.

When the Route Request reaches a node with a route to D, that node generates a

Route Reply that contains the number o f hops necessary to reach D and the sequence

number for D most recently seen by the node generating the Reply. Each node that

participating in forwarding this Reply back toward the originator of the Route Request

(node S), creates a forward route to D. The state created in each node remembers only

the next hop and not the entire route, as would be done in source routing.

In order to maintain routes, AODV normally requires that each node periodically

transmit a Hello message with a once per second default rate. Failure to receive three

consecutive Hello messages from a neighbour is taken as an indication that the link to

the neighbour in question is down.

When a link goes down, any upstream node that has recently forwarded packets to a

destination using that link is notified via an Unsolicited Route Reply containing an

infinite metric for that destination. Upon receipt of such a Route Reply, a node must

acquire a new route to the destination using Route Discovery as described above.

6.3.2 Implementation Decision

Similar to what we did in DSR, we used the model developed by the National Institute

o f Standard and Technology (NIST) [109] for AODV. Furthermore, we also enhanced

the unicast mechanism for data packets. The enhanced mechanism requires that a

destination node return an acknowledgement packet for each data packet received. The

acknowledgement packet is returned by reversing the path over which the data packet

came.

6.4 GREEDY PERIMETER STATELESS ROUTING
(GPSR)

GPSR is based on two forwarding methods: Greedy forwarding and perimeter

forwarding [35]. In Greedy forwarding, a forwarding node can make a locally greedy

choice. This means that at each hop packets are sent to the neighbour that is closest to

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

the indicated destination's position. On the other hand, in perimeter forwarding, the

node chooses the right-hand rule. The right-hand rule traverses the interior o f a closed

polygonal region in clock-wise edge order.

6.4.1 Implementation Decision

In GPSR, a node knows the position of its neighbours by means o f their beacons and

the position of a packet’s destination, with the help o f the location service. The location

service that GPSR uses is the Reactive Location Service (RLS). Figure 6.1 shows the

flow diagram that we have for the beaconing and registration o f neighbour nodes in

GPSR. In addition, we have implemented a location discovery procedure containing

Location Request packet (LREQ) and a Location Reply packet (LREP). Whenever the

position o f a node is required, the node looking for location information floods a request

containing the ID of the node it is looking for. When a node receives a request with its

own ID, it replies to the node looking for its position. Routing is done in a greedy way

by forwarding the packet to neighbour closer to the physical location o f the destination.

This local optimal choice repeats at each intermediate node until the destination is

reached. Thus, in order to forward packets to the destination the correspondent node

only requires the knowledge o f its neighbours’ location.

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

Figure 6.1: Beaconing and registration of neighbours ’ nodes in GPSR.

6.5 METHODOLOGY
First, vve have modified the DSR algorithm (see appendices) with an

acknowledgement packet. This allows the algorithm to determine when the link

between the source and the destination is broken.

Then, we also modified the AODV algorithm (see appendices). Similarly to DSR, an

acknowledgement packet has been included.

The next part o f the work was the validation o f our protocol in small scale ad-hoc

network with the results o f a test-bed. Here, AODV, DSR and LORA-CBF were

compared in terms o f end-to-end delay and throughput against the Associativity-Based

Routing Protocol (ABR) [25). Based on the results obtained in a small-scale ad-hoc

network, the next part o f the work was the validation o f the LORA-CBF algorithm in a

large-scale ad-hoc network. We selected two prominent routing algorithms: DSR and

AODV. We propose to validate our LORA-CBF algorithm in both and urban and

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

motorway environment. These scenarios represent, to a great degree, the typical

application of vehicular networks.

The goal o f our simulations was to validate our model and compare the reaction of

non-positional and positional routing algorithms to network topology changes.

For urban environments, we have used a square figure. This topology is a typical

representation o f the urban traffic flow of a city, where vehicles change their speed and

direction around the corners. Here, we have considered an average speed of 8 m/s (18

miles/hour). On the other hand, for motorway environments, we have used a circular

figure. Also, this topology can represent the mobility o f the vehicles on a motorway,

and since the rate of the curvature is small compared with the length, vehicle mobility is

more constant. We have considered an average speed o f 42 m/s (95 miles/hour). In

addition, we have considered three lanes per direction. These three lanes per direction

are reasonable for UK motorway traffic.

Our protocol evaluations were based on the simulation of 250 vehicles forming an ad-

hoc network, moving around a circular and a square road o f 6283 m length (Figure

6.2).We have considered only the car-following model because it can be applied in both

traffic scenarios. The car-following model describes the interactions with preceding

vehicles in the same lane and it only considers the gap and the speeds between vehicles

to promote their next position.

We have selected the microscopic traffic model Simone 2000 to be implemented in

OPNET (111], because it is the most popular traffic simulation model for motorway

environments and it employs the car-following model as its longitudinal distance

controller. In addition, it also incorporates the effect when the relative speed stimulus is

positive or negative.

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

Figure 6.2: Scenarios evaluated. Vehicles are considered to be arranged in an
endless loop.

6.5.1 Communication Model
The model for evaluating the routing protocols is implemented in OPNET. Because

one o f the goals o f our simulation is to compare the performance o f each routing

protocol, we have chosen our traffic sources to be constant bit rate (CBR) sources.

When defining the parameters o f the communication model, we experimented with data

rates o f 1 Mbps and 11 Mbps and packet sizes o f 1448 bytes. We have selected the

same size o f packets used in the test-bed. The communication between the source and

destination is peer-to-peer, and communication is initiated at times uniformly

distributed between 1 - 5 seconds. Since both DSR and AODV lack a predicting

mechanism, we started their communication at 1 s. Details about the prediction

mechanism can be found on page 70, in Chapter 3.

It should be noted that to make a fair comparison between algorithms that do and do

not have such a mechanism, it was necessary to arrange both DSR and AODV by

effectively managing the disconnection between transmitter and receiver. For LORA-

CBF, we have started at five seconds because o f its cluster formation. The cluster

formation mechanism requires less than two seconds, but we have started at five

seconds to guarantee a steady-state network. Also, we have implemented several

metrics used commonly in the evaluation o f routing algorithms: route discovery time,

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

average end-to-end delay of data packets, routing load, routing overhead, overhead and

packet delivery ratio.

Every value represented in each graph depicts the results o f 30 simulations and the

error is less than 10 % in most of the parameters analysed.

6.5.2 Medium Access Mechanism

The IEEE 802.11b Distributed Coordination Function (DCF) is used as the medium

access control protocol. DCF is designed to use both physical carrier sense and virtual

carrier sense mechanisms to reduce the probability of collisions due to hidden terminals.

The transmission o f each unicast packet is preceded by a Request-to-Send/Clear-to-

Send (RTS/CTS) exchange that reserves the wireless channel for transmission o f a data

packet. Each correctly received unicast packet is followed by an acknowledgement

(ACK) to the sender, which retransmits the packet a limited number of times until the

ACK is received. Broadcast packets are sent only when virtual and physical carrier

sense indicates that the medium is clear, but they are not preceded by RTS/CTS and are

not acknowledged by their recipients.

The physical radio characteristics o f each mobile node’s network interface, such as

the antenna gain, transmit power, and receiver sensitivity, were chosen to approximate

the Enterasys’s IEEE 802.11b WLAN [75] direct sequence spread spectrum radio. A

transmission range o f 300 m. was chosen which is consistent with current 802.11b

Wireless LAN and 5 dBi gain car-mounted antennas. An experiment was realized

between two vehicles driving in opposite direction in order to validate the transmission

range. The results o f this experiment are included on page 85, in Chapter 4.

6.6 VALIDATING THE ALGORITHM IN A SMALL
SCALE-NETWORK

We have validated our simulation models with the results o f an experimental test-bed

[112]. Here, the Associativity-based routing protocol (ABR) [25] has been evaluated in

a multi-hop network. ABR is a source-initiated on-demand ad-hoc routing protocol that

discovers routes when the source desires it. ABR uses periodic beaconing to inform

neighbouring nodes about their presence. Nodes running the ABR protocol maintain a

6-118

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

neighbouring table which indicates how many times the beacon from a neighbour has

been heard over a specific period of time.

In this experiment [112], four Laptop computers were configured with the enhanced

TCP/IP/ABR protocol. The nodes were positioned so that they had only one upstream

and one downstream neighbour. As shown in Figure 6.3, only one hop physical links

were possible. The control was realized by C.-K Toh, Minar Delwar and Donald Allen.

Figure 6.3 Test-bed considered and replicated in OPNET.

To partially validate our model, we compared the control o f [112] with the algorithms

o f AODV, DSR and LORA-CBF. We found that results from small packets (64 Bytes)

were slightly different, but the results obtained from medium and large packets (1000,

1448 and 48856 Bytes), are very similar (Table 6.1 and 6.2 and Graphs 6.1, 6.2, 6.3,

6.4, 6.5 and 6.6). The difference at 64 Bytes may be due to the increased packet

exchanging between two nodes. In IEEE 802.11b, every data packet is verified by an

acknowledgement packet. In small packets, this increase is considerably.

EED (ms) 1 hop 64 Bytes 1000 Bytes 48856 Bytes

ABR (C. -K . Toh) 3.25 10.40 340

LORA-CBF 0.937 9.102 407.53

DSR 1.463 9.628 408.044

AODV 0.929 9.094 407.51

6-119

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

EED (ms) 2 hops 64 Bytes 1000 Bytes 1448 Bytes

ABR (C. -K . Toh) 6.20 19.7 26.20

LORA-CBF 2.524 18.854 26.022

DSR 3.283 19.614 26.782

AODV 2.548 18.879 26.047

EED (ms) 3 hops 64 Bytes 1000 Bytes 1448 Bytes

ABR (C. -K . Toh) 8.80 29.2 38.30

LORA-CBF 4.095 28.591 39.343

DSR 5.199 29.695 40.447

AODV 4.157 28.653 39.405

Table 6.1 Results of EED obtained from simulation using OP ¡SET and compared
with the results of the test-bed.

450

400

350

300

g 250

Q
LU 200
LU

150

100

50

0

□ ABR
BLORA-CBF
□ DSR
□ AODV %----—

. - ; • > "'■‘i-
v

M M

*
,.r v

64 1000 48856

Size of packet (Bytes)

Graph 6.1: Results of EED obtained from simulation using OPNET and compared
with the results of the test-bed in one hop.

6-120

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

□ ABR
H LORA-CBF
□ DSR
□ AODV

i

1000 1448

Size of packet (Bytes)

Graph 6.2: Results o f EED obtained from simulation using OPNET and compared
with the results o f the test-bed in two hops.

14481000

□ ABR
■ LORA-CBF
□ DSR
□ AODV

a .« .

D
lu 20

Size of packet (Bytes)

Graph 6.3: Results o f EED obtained from simulation using OPNET and compared
with the results o f the test-bed in three hops.

6-121

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

Throughput (kbps)

1 hop

64 Bytes 1000 Bytes 48856 Bytes

ABR (C. -K . Toh) 157.54 769.23 1149.55

LORA-CBF 546.4 878.93 959.1

DSR 349.96 830.91 957.86

AODV 551.13 879.7 959.1

Throughput (kbps)

2 hops

64 Bytes 1000 Bytes 1448 Bytes

ABR (C. -K . Toh) 82.58 406.1 442.14

LORA-CBF 202.85 424.3 445.16

DSR 155.95 407.87 432.53

AODV 200.94 423.75 444.73

Throughput (kbps)

3 hops

64 Bytes 1000 Bytes 1448 Bytes

ABR (C. -K . Toh) 58.18 273.97 302.45

LORA-CBF 125 279.8 294.44

DSR 98.48 269.41 286.4

AODV 123.17 279.2 293.97

Table 6.2 Results o f Throughput obtained from simulation using OPNET and
compared with the results o f the test-bed.

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

64 1000 48856
Size of packet (Bytes)

Graph 6.4: Results o f Throughput obtained front simulation using OPMET and
compared with the results o f the test-bed in one hop.

500

450

400

Tn 350
a

i , 300

a 250
SZU)
3 200 ok.
¡E 150

100

0
64 1000 1448

Size of packet (Bytes)

Graph 6.5: Results o f Throughput obtained from simulation using OPNET and
compared with the results o f the test-bed in two hops.

6*123

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

</>
anJ£
3
a

JO
D)3
ou

JO
H

L-------r------------ 1E3ABR
ES LORA-CBF
□ DSR
□ AODV

\
■ ■ :

.
.m -mkt

| |p | |

350

300

250

200

150

100

50

0
64 1000 1448

Size of packet (Bytes)

Graph 6.6: Results o f Throughput obtained from simulation using OPNET and
compared with the results o f the test-bed in three hops.

6.6.1 One-hop validation

Two metrics were considered in the one hop validation o f our models; Throughput

and End to End Delay (EED). For further confirmation, we also applied equation CMC

for throughput and time to transmit a packet (EED) in IEEE 802.11 wireless networks,

(see appendices).

fable 6.3 shows the results of one hop with data packet size o f 1000 Bytes and a

range o f 300 m between the transmitter and the receiver. The three values are similar.

EED Throughput

Test Bed (C-K Toll) 10.4 ms 769.23 Kbps

Numerical Analysis 8.4 ms 956 Kbps

OPNET model 9.1 ms 878.93 Kbps

Table 6.3: Results validating LORA-CBF in one hop

6-124
■ w w w »1»

• ..

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

The numerical analysis does not take into account retransmissions due to collisions.

This reflects the minimum difference between the results showed.

6.6.2 Two and three-hops validation

E E D (m s) T w o H o p s T h r e e H o p s

Test Bed (C-K Toh) 19.7 29.2

LORA-CBF Algorithm 18.854 28.591

T h r o u g h p u t (K b p s) T w o H o p s T h r e e H o p s

Test Bed (C-K Toh) 406.091 273.972

LORA-CBF Algorithm 424.313 279.808

Table 6.4: Results validating LORA-CBFfor two and three hops

Table 6.4 shows the results o f the comparison between the results o f the test bed and

the simulation results in OPNET validating LORA-CBF. According to our results, we

believe that our algorithm has been validated in one, two and three hops. This small-

scale network is economically feasible, but a large-scale network is impractical due to

deployment costs o f deployment. We have used extensive simulation for the evaluation

o f LORA-CBF in a large-scale network.

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

6.7 Validating the Location Routing Algorithm with
Cluster-Based Flooding (LORA-CBF) in a large-scale
network

We have compared our algorithm with the models o f two prominent algorithms,

AODV and DSR. The comparison is reasonable because we have improved the data

reception mechanism with an acknowledgement packet in AODV and DSR protocols.

When the timer for an acknowledgement data packet expires, AODV and DSR starts a

new Route Request (RREQ) packet.

6.7.1 Metrics of Simulation
In comparing the performance of the algorithms in large scale ad-hoc networks, we

have chosen to evaluate them according to the most common metrics:

Route discovery time (Latency): Is the amount o f time the source has to wait for

sending the first data packet.

Average end-to-end delay o f data packets: This includes all possible delays caused by

buffering during route discovery, queuing at the interface queue, retransmissions delays

at the MAC, and propagation and transfer times.

Routing load: Is measured in terms o f routing packets transmitted per data packets

transmitted. The latter includes only the data packets finally delivered at the destination

and not the ones that are dropped. The transmission o f each hop is counted once for

both routing and data packets. This provides an idea o f network bandwidth consumed

by routing packets with respect to “useful” data packets.

Routing overhead: Is the total number o f routing packets transmitted during the

simulation. For packets sent over multiple hops, each transmission o f the packet (each

hop) counts as one transmission.

Overhead (packets): Is the total number o f routing packets generated divided by the

total number o f data packets transmitted, plus the number total routing packets.

Packet delivery ratio: Is measured as a ratio of the number ol data packets delivered to

the destination and the number o f data packets sent by the sender. Data packets may be

dropped en route for one reason: the next hop link is broken when the data packet is

ready to be transmitted.

6-126

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

6.7.1.1 A Comparison of the algorithms LORA-CBF,
AODV and DSR on a multi-lane rectangular dual
carriageway representative of city driving

The results for the next series o f important comparisons were acquired using the

models described in sections 6.2 and 6.3 and Chapter 3, using the parameters shown in

section 6.4.1. Care was taken to make sure that results are not biased.

Graph 6.7 shows delivery ratios of the three algorithms considered for 1 Mbps and 11

Mbps and shows that congestion due to lack o f spatial diversity is a problem for DSR at

the higher speed. However, at a low speed (1Mbps), it has a better delivery ratio

compared to AODV. LORA-CBF has the best performance at both data rates, in

contrast with AODV that has the lowest delivery ratio.

- ■ LORA CBF city (1 Mbps) - « LORAJ3BF city (11 Mbps)

- ♦ -A O D V city (1 Mbps) - ♦ AODV city (11 Mbps)

- A - DSR city (1 Mbps) -A - DSR city (11 Mbps)

Graph 6.7: Delivery Ratio on a multi-lane rectangular dual carriageway
representative o f city driving (packets).

6-127

^ * vf.;.vx"

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

The results in Graph 6.8 show the End-to-End Delay (BED). All the algorithms

evaluated have shown higher EED with a data rate o f 1 Mbps and a better EED with a

data rate o f 11 Mbps. This is because more bits are transmitted at higher data rates.

LORA_CBF city (1 Mbps) - ■- LORA_CBF city (11 Mbps)

AODV city (1 Mbps) - « AODV city (11 Mbps)

— à r ~ DSR city (1 Mbps) - A~ DSR city (11 Mbps)

Graph 6.8: End-to-End Delay on a multi-lane rectangular dual carriageway
representative o f city driving (ms).

Routing Overhead is shown in Graph 6.9. The results show that DSR, o f all the

algorithms analyzed, has the best performance for overhead. This is because DSR lacks

transmission control. This means that with a data rate o f 11 Mbps, DSR has slightly

higher routing overhead when compared to a data rate o f 1 Mbps. This is caused by

congestion due to lack o f spatial diversity. We can recollect that spatial diversity is the

mechanism of transmitting the signal via several independent diversity branches to get

independent signals replicas. This can be realized using multiple transmit/receive

antennas.

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
__________ NETWORK__

® 31000
o
CQa
v 26000
TO<1)

s :

ÿ 21000
o
O)

•| 16000
o
C£

11000

- • - - LORA_CBF city (1 Mbps) LORA_CBF city (11 Mbps)

- ♦- - AODV city (1 Mbps) - ♦ - AODV city (11 Mbps)

- TÉT DSR city (1 Mbps) - k- DSR city (11 Mbps)

• - - — - r .- . - - - - 9
- - ' • - - — -......... — ✓

✓ _ ✓

---------- ■

*■ ’

k -----------------------k----------- - -
“T......

1 3 5 7

Hop Count

Graph 6.9: Routing Overhead on a multi-lane rectangular dual carriageway
representative o f city driving (packets).

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

Graph 6.10 shows the route discovery times for the three algorithms considered. DSR

has a poor performance with a data rate of 11 Mbps. In contrast with a data rate of 1

Mbps, it has similar behaviour compared to AODV and LORA-CBF.

- ü - LORA_CBF city (1 Mbps) - ■ • LORAJSBF city (11 Mbps)

- AODV city (1 Mbps) - • AODV city (11 Mbps)

-A - DSR city (1 Mbps) - A DSR city (11 Mbps)

Graph 6.10: Route Discovery Time on a multi-lane rectangular dual carriageway
representative of city driving (ms).

6-130

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

Overhead is shown in Graph 6.11. Again, AODV has the lowest performance. On the

other hand, DSR has the highest performance due to its kick o f transmission control.

LORA-CBF has relatively good performance in spite of its complexity and robustness.

We define complexity in terms o f its structure and functions, and robustness in terms of

neighbour mobility and link breaks.

- ■ - LORA_CBF city (1 Mbps) - «- LORA_CBF city (11 Mbps)

- - •—AODV city (1 Mbps) - • AODV city (11 Mbps)

- A- DSR city (1 Mbps) - A- DSR city (11 Mbps)

Graph 6.11: Overhead on a multi-lane rectangular dual carriageway
representative o f city driving (packets).

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

In Graph 6.12 we see the routing load, showing that AODV has more routing load

than LORA-CBF and DSR. Again, DSR has the best performance in terms of routing

load due to its lack of a neighbour sensing mechanism, as discussed on Chapter 3.

LORA-CBF maintains its routing load at a constant level with both data rates. Routing

load is indicative o f scalability because it shows the number o f packets used to maintain

the routing tables updated.

- «- - LORA_CBF city (1 Mbps)

- #- • AODV city (1 Mbps)

- Ar ■ DSR city (1 Mbps)

- * - LORA_CBF city (11 Mbps)

- • - AODV city (11 Mbps)

- A- DSR city (11 Mbps)

Graph 6.12: Routing Load on a multi-lane rectangular dual carriageway
representative of city driving (packets).

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

6.7.1.2 A Comparison of the algorithms LORA-CBF,
AODV and DSR on a multi-lane circular dual
carriageway representative of motorway driving

Once again we selected a packet size of 1448 Bytes, and considered two data

transmission rates for our simulations: a theoretical maximum of 11 Mbps and the worst

case with 1 Mbps. Graph 6.13 compares the packet delivery ratio o f the three algorithms

considered. LORA-CBF shows good results with both data rates. AODV has a slightly

worse packet delivery ratio than DSR. DSR shows the poorest delivery ratios with a

data rate o f 11 Mbps

LORA C B F M otorw ay (I M bps) L O R A C B F M otorw ay (1 1 M bps)

— A O D V M otorw ay (1 M bps) ' • A O DV M otorw ay (11 M bps)

—A— DSR M otorw ay (1 M bps) D SR M otorw ay (11 M b p s)_______

Graph 6. 13: Delivery’ Ratio on a multi-lane circular dual carriageway
representative of motorway driving (packets).

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

End to End delay (EED) is shown in Graph 6.14. All o f the algorithms have the lower

performance with a data rate of 1 Mbps. In general, AODV has the worse delay due its

frequent retransmissions. DSR has been shown to have higher performance due its

economy of control packets. LORA-CBF has slightly larger EED compared with DSR.

0 -i----------------- -------------------- t------------------------------------- !--------------------------------------!------------------------------ -------

1 3 5 7

Hop Count

— L O R A C B F M otorw ay (I M bps) • - LORA CB F M otorw ay (1 1 M bps)

—• — A O D V M otorw ay (1 M bps) ■ AODV M otorw ay (11 M bps)

—A— DSR M otorw ay (1 M bps) • A - DSR M otorw ay (11 M bps)

Graph 6.14: End-to-End Delay on a multi-lane circular dual carriageway
representative o f motorway driving (ms).

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

Graph 6.15 shows the routing overhead. Here, DSR has the better performance in

terms o f routing overhead due to its lack of neighbour sensing mechanism and AODV

increases its routing overhead according to the distance between nodes. LORA-CBF

maintains its routing overhead at an almost constant level, because the level depends on

the frequency o f a Hello messages. This is constant and independent of the maximum

distance between communication partners. AODV requires about 3 times the routing

overhead o f DSR (Also reported in [48]).

Hop Count

- H i — L O R A C B F M otorw ay (1 M bps) • ■ • LORA CB F M otorw ay (11 M bps)

—• — A O D V M otorw ay (1 M bps) • A O DV M otorw ay (11 M bps)

— A— DSR M otorw ay (I M bps) A D SR M otorw ay (11 M bps)

Graph 6. IS: Routing Overhead on a multi-lane circular dual carriageway
representative of motorway driving (packets).

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

Graph 6.16 shows the route discovery time for all the algorithms evaluated. DSR has

been shown to have worst behaviour at 11 Mbps and its performance with a data rate o f

1 Mbps is similar to AODV and LORA-CBF.

—■ — L O R A C B F M otorw ay (1 M bps) * • L O R A C B F M otorw ay (11 M bps)

A O D V Motorway (1 M bps) • * * A O DV M otorw ay (11 M bps)

—A — D SR M otorw ay (1 M bps) _____________________ y A - DSR M otorw ay (11 M bps)____

Graph 6.16: Route Discovery Time on a multi-lane circular dual carriageway
representative of motorway driving (ms).

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

Overhead is shown in the Graph 6.17. Again, AODV has the lowest performance.

Highly mobile environments have high link breaks rates and each breaks cause a

transmission o f RERR messages. In the case o f AODV, the overhead is increased by the

Hello messages.

LORA CB F M otorw ay (1 M bps) • * L O R A C B F M otorw ay (11 M bps)

— A O D V M otorw ay (I M bps) • • • A O DV M otorw ay (11 M bps)

— à — DSR M otorw ay (1 M bps) ______________________ _ A - D SR M otorw ay (1 1 M bps)

Graph 6.17: Overhead on a multi-lane circular dual carriageway
representative of motorway driving (packets).

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

Graph 6.18 represents the routing load. AODV shows more routing load than both

LORA-CBF and DSR. This also increases with distance between source and destination

and depends on the amount o f data delivered.

Hop Count

— L ORA C B F M otorw ay (1 M bps) • - ■ • LORA CH I' M otorw ay (11 M bps)

—• — A O D V M otorw ay (1 M bps) • A O DV M otorw ay (11 M bps)

— à — D SR M otorw ay (1 M bps) ■ - A • • DSR M otorw ay (11 M bps)

Graph 6.J8: Routing Load on a multi-lane circular dual carriageway
representative o f motorway driving (packets).

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

6.7.1.3 A Comparison of the algorithms LORA-CBF,
AODV and DSR on a multi-lane rectangular and
circular dual carriageway representative of city
and motorway driving

Graph 6.19 compares the packet delivery ratio o f all the algorithms considered.

LORA-CBF has shown good results with both data rates and both scenarios considered.

AODV has a slightly worse packet delivery ratio than DSR and it is influenced by the

mobility o f the vehicles. Both AODV and DSR have displayed the poorer delivery

ratios with high mobility.

H o p C o u n t

LORA__CBF Motorway (1 Mbps)
LORA CBF city (1 Mbps)
AODV Motorway (1 Mbps)

- • AODV city (1 Mbps)
- A - DSR Motorway (1 Mbps)
- A- DSR city (1 Mbps)

LORA__CBF Motorway (11 Mbps)
LORA__CBF city (11 Mbps)

• AODV Motorway (11 Mbps)
- ♦ AODV city (11 Mbps)

A • DSR Motorway (11 Mbps)
- A- DSR city (11 Mbps)

Graph 6.19: Delivery Ratio on a multi-lane rectangular and circular dual
carriageway representative of city and motorway driving (packets)

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

End to End delay (EED) is shown in Graph 6.20. All of the algorithms have lower

performance with a data rate o f 1 Mbps. In general, AODV has the worse delay due its

frequent retransmissions. The impact of high mobility has only a small influence on

EED. DSR has been shown to have a better EED performance because o f its

economization o f control packets while, LORA-CBF has slightly bigger EED compared

with DSR.

1 3 5 7

Hop Count

H i - LORA_CBF Motorway (1 Mbps)
- » - LORA__CBF city (1 Mbps - 64 Bytes)
- ♦ -A O D V Motorway (1 Mbps)
- ♦ - AODV city (1 Mbps)
•—A— DSR Motorway (1 Mbps)
- A- DSR city (1 Mbps)

• ■ LORAJ3BF Motorway (11 Mbps)
LORA_CBF city (11 Mbps)

♦ AODV Motorway (11 Mbps)
- ♦ - AODV city (11 Mbps)

A DSR Motorway (11 Mbps)
- A- DSR city (11 Mbps)

Graph 6.20: End-to-End Delay on a mult N one rectangular and circular dual
carriageway representative o f city and motorway driving (ms).

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

Graph 6.21 shows the routing overhead. Here, DSR has the better performance due to

its lack o f a neighbour sensing mechanism. Also, with the higher data rate, it shows a

higher routing overhead in both of the scenarios that were compared. On the other hand,

AODV increases its routing overhead according to the variables o f distance and

mobility. It has performed better performance in terms o f routing overhead with the low

data rate. LORA-CBF maintains its routing overhead at an almost constant level,

because the level depends on the frequency of Hello messages. This is constant and

independent o f the maximum distance between communication partners. AODV

requires about 3 times the routing overhead o f DSR.

—» —LORA CBF Motorway (1 Mbps) ••»• LORA CBF Motorway (11 Mbps)
- »- - LORA_CBF city (1 Mbps) - • - LORA_CBF city (11 Mbps)
—»-AODV Motorway (1 Mbps) - • # AODV Motorway (11 Mbps)
- • ■ AODV city (1 Mbps) - • AODV city (11 Mbps)
—A— DSR Motorway (1 Mbps) ▲ DSR Motorway (11 Mbps)
- A* - DSR city (1 Mbps) - A— DSR city (11 Mbps)

Graph 6.21: Routing Overhead on a multi-lane rectangular and circular dual
carriageway representative o f city and motorway driving (packets)

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

Graph 6.22 shows the route discovery time for all o f the algorithms evaluated. DSR

shows poor performance with a data rate o f 11 Mbps in both scenarios evaluated.

LORA-CBF and AODV have show7 similar performance in terms of route discovery

time in both situations with both data rates.

Hop Count
LORA_CBF Motorway (1 Mbps) • LORAjCBF Motorway (11 Mbps)

- ■- • LORA_CBF city (1 Mbps) - • - • LORA_CBF city (11 Mbps)
—• —AODV Motorway (1 Mbps) • AODV Motorway (11 Mbps)
- • AODV city (1 Mbps) - • - AODV city (11 Mbps)
—A- DSR Motorway (1 Mbps) A DSR Motorway (11 Mbps)
-À--DSR city (1 Mbps) -A--DSR city (11 Mbps)

Graph 6.22: Route Discovery> Time Overhead on a multi-lane rectangular and
circular dual carriageway representative o f city and motorway driving
(ms)

6-142
. y v

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

Overhead is shown in the Graph 6.23. Again, AODV has the poorest performance.

Highly mobile environments have high link break rates and each break causes a

transmission o f RERR messages. In the case o f AOD V, the overhead is increased by the

Hello messages. On the other hand, DSR has the highest performance due to its lack of

transmission control. LORA-CBF has relatively good performance in spite o f its

complexity and robustness.

—• — LORA_CBF Motorway (1 Mbps)
- «- - LORA_CBF city (1 Mbps)
—• —AODV Motorway (1 Mbps)

AODV city (1 Mbps)
—A— DSR Motorway (1 Mbps)
; á-_ DSR city (1 Mbps)

- ■ LORAJ3BF Motorway (11 Mbps)
- «- LORA_CBF city (11 Mbps)

• AODV Motorway (11 Mbps)
- ♦ - AODV city (11 Mbps)

▲ DSR Motorway (11 Mbps)
- A - DSR city (11 Mbps)

Graph 6.23: Overhead on a multi-lane rectangular and circular dual carriageway
representative o f city and motorway driving (packets).

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

Graph 6.24 represents the routing load. AODV shows more routing load than LORA-

CBF and DSR. This also increases according to distance and mobility. Similarly, DSR

shows better behaviour with low mobility. LORA-CBF shows similar results on urban

and motorway scenarios at both data rates.

100 H------------
1 3

— i1-----------------------------— -----------—

5 7

Hop Count
-*-LORA_CBF Motorway (1 Mbps) LORA_CBF Motorway (11 Mbps)
- m- - LORA_CBF city {1 Mbps) - »- * LORAJ3BF city (11 Mbps)
— AODV Motorway (1 Mbps) • • AODV Motorway (11 Mbps)
- • - - AODV city (1 Mbps) - ♦- AODV city (11 Mbps)
—A— DSR Motorway (1 Mbps) ▲ DSR Motorway (11 Mbps)
- A~ - DSR city (1 Mbps) - A-• DSR city (11 Mbps)

Graph 6.24: Routing Load on a multi-lane rectangular and circular dual
carriageway representative o f city and motorway driving (packets).

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALl
NETWORK

6.8 A Comparison of the LORA-CBF and GPSR
algorithms on a multi-lane circular dual carriageway
representative of a six lane motorway driving

The development o f routing algorithms for vehicular ad-hoc networks is a

challenging task because such networks have a high level of mobility and therefore, are

very dynamic with respect to their links. In such networks, classical algorithms such as

AODV and DSR suffer from sub-optimal routes and low delivery ratios. On the other

hand, algorithms that employ Geographical Position System (GPS) do not satisfy the

requirements o f multi-hop vehicular ad-hoc networks. In this section, we will compare

our Location-Based Routing Algorithm with Cluster-Based Flooding (LORA-CBF),

with a very popular position-based routing algorithm called GPSR (Greedy Perimeter

Stateless Routing) and demonstrate that at an average speed of 42 m/s (-150 km/h), the

lack o f a predictive algorithm in GPSR deteriorates its performance.

We have implemented the GPSR algorithm on the same circular dual carriageway

scenario and with the same number of vehicles, considering a relative speed of 84 m/s

(-300 km/h). Results have shown that without a predictive algorithm, it is not possible

to communicate between a source-destination pair located further than two hops. Our

intention here is to show that employing a predictive algorithm will improve

communication on a motorway.

We have implemented in GPSR, the same short-term predictive algorithm used in

LORA-CBF and the same physical and MAC layer. In addition, we have used the same

metrics that were employed to analyze the behaviour o f LORA-CBF, AODV and DSR

to analyze the performance between LORA-CBF and GPSR.

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

Graph 6.25 represents the delivery ratio of GPSR and LORA-CBF. The short-term

predictive algorithm has improved the communication o f GPSR significantly (90 %).

Both algorithms have similar results with data rates o f 11 Mbps and GPSR has slightly

lower delivery ratio with data rates of 1 Mbps. In general, both algorithms have shown

very similar results because both o f them use the same forwarding mechanism (greedy

forwarding).

LORAJ2BF Motorway (1 Mbps) LORA_CBF Motorway (11 Mbps)

GPSR Motorway (1 Mbps) » GPSR Motorway (11 Mbps)

Graph 6.25: Delivery Ratio on a multi-lane circular dual carriageway
representative o f a six lane motorway driving (packets).

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

End-to-End Delay is shown in Graph 6.26. Because they employ the same forwarding

mechanism, GPSR and LORA-CBF have similar behaviour in terms o f EED.

H i - LORA_CBF Motorway (1 Mbps) • tt LORA_CBF Motorway (11 Mbps)

GPSR Motorway (1 Mbps) - • GPSR Motorway (11 Mbps)

Graph 6.26: End-to-End Delay on a multi-lane circular dual carriageway
representative o f a six lane motorway driving (ms).

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

Graph 6.27 describes the routing overhead. Here, LORA-CBF has a slightly higher

routing overhead at a data rate of 11 Mbps compared with GPSR at the same data rate.

On the other hand, at a data rate of 1 Mbps, LORA-CBF begins with a slightly higher

routing overhead and a distance of 3 hops (900 m). Both algorithms show exactly the

same routing overhead. At greater distances, however, LORA-CBF shows a lower

routing overhead than GPSR.

LORA_CBF Motorway (1 Mbps) • ■ LORA^CBF Motorway (11 Mbps)

GPSR Motorway (1 Mbps) • GPSR Motorway (11 Mbps)

Graph 6.27: Routing Overhead on a multi-lane circular dual carriageway
representative o f a six lane motorway driving (packets)

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

Graph 6.28 represents the route discovery time. Both algorithms have shown similar

behaviour at data rate of 11 Mbps, but a data rate of 1 Mbps GPSR has a greater route

discovery time. Due to the limited spatial diversity, GPSR has more packet collisions.

On the other hand, LORA-CBF reduces the route discovery time due to its cluster-based

flooding mechanism.

LORA_CBF Motorway (1 Mbps) • ■ LORA_CBF Motorway (11 Mbps)

GPSR Motorway (1 Mbps) • • GPSR Motorway (11 Mbps)

Graph 6.28: Route Discovery’ Time on a multi-lane circular dual carriageway
representative o f a six lane motorway driving (ms)

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

Graph 6.29 shows the Overhead. Here, GPSR has a slightly lower overhead compared

to LORA-CBF at data rates of 1 Mbps. With data rates of 11 Mbps, however, both

algorithms performance similarly.

LORA_CBF Motorway (1 Mbps) • H LORA_CBF Motorway (11 Mbps)

GPSR Motorway (1 Mbps) • * GPSR Motorway (11 Mbps)

Graph 6.29: Overhead on a multi-lane circular dual carriageway
representative o f a six lane motorway driving (packets)

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK __

The routing load is shown in Graph 6.30. Again, with a data rate o f 11 Mbps, LORA-

CBF has a slightly higher routing load than GPSR, but with a data rate of 1 Mbps,

LORA-CBF begins with a slightly higher routing load than GPSR. However, at five

hops (1500 m), both algorithms have the same routing load. After this distance, LORA-

CBF shows a lower routing load than GPSR. Again, due to spatial diversity, GPSR

suffers more collisions that cause the increase of the routing load.

LORA_CBF Motorway (1 Mbps) * ■ LORA_CBF Motorway (11 Mbps)

GPSR Motorway (1 Mbps) ' • GPSR Motorway (11 Mbps)

Graph 6,30: Routing Load on a multi-lane circular dual carriageway
representative o f a six lane motorway driving (packets)

6-151

Chapter 6 VALIDATION OF THE SIMULATION ALGORITHM IN A SMALL AND LARGE SCALE
NETWORK

6.9 CONCLUSIONS
In this chapter we have taken account of the mobility involved in typical urban and

motorway traffic scenarios and have simulated a very large netwoik ol two hundred and

fifty nodes. Our simulation model has been validated where possible, using both

measurement and analysis against a control.

We have considered two non-positional-based algorithms (AODV and DSR) and one

positional-based algorithm (LORA-CBF). Results show that the mobility and size of the

network affects the performance ol AODV and DSR more significantly in comparison

with LORA-CBF. In the presence o f high mobility, link failures are more common

AODV and DSR. Link failures trigger new routes discoveries in all o f the algorithms,

but in AODV and DSR, this happens more frequently due to their routing mechanism.

Thus, the frequency of route discoveries is directly proportional to the number ot route

breaks. We observe that Positional-based routing protocol provides an excellent

performance in terms o f end-to-end delay and packet delivery ratio, at the cost ot using

additional information (location information). Non-positional-based routing algorithms

suffer from sub-optimal routes as well as worse packet delivery ratio because ol moie

dropped packets. In addition, our Location Routing Algorithm with Cluster-Based

Flooding (LORA-CBF) is robust in terms o f Routing Overhead, Overhead, Routing

Load and Delivery Ratio.

Also, we have compared GPSR and LORA-CBF on a motorway. We have improved

GPSR with a short-term predictive algorithm to improve its performance over high

speed. With the short-term predictive algorithm GPSR and LORA-CBP have shown

similar behaviour. Both algorithms employ the same greedy forwarding mechanism and

the neighbour sensing mechanism. Therefore, the main difference between them is the

hierarchical architecture in LORA-CBF. This hierarchical architecture requires less

route discovery time and a lower delivery ratio, but increases the routing overhead, and

general overhead as well as routing load.

6-152

Chapter 7: Conclusions and Future
Work

The challenge o f wireless ad-hoc routing algorithms is the limited bandwidth and the

high rate o f geographical changes in highly mobile environments. In these types o f

environments, frequent broadcasting of routing information is necessary to maintain the

routing tables updated. Limiting this distribution across the network is essential in the

scalability o f the wireless ad-hoc routing algorithms. On one hand, proactive algorithms

keep the information o f all the nodes in the wireless ad-hoc network, requiring

additional control traffic to continually update route entries. Consequently, proactive

protocols suffer the disadvantage o f requiring significantly greater o f bandwidth

resources. On the other hand, reactive algorithms reduce control traffic overhead at the

cost o f increased latency in finding the route to a destination. Existing pure proactive

and reactive algorithms are not suitable in highly mobile environments, as they result in

poor route convergence and very low communication throughput. To overcome this

limitation, positional algorithms have emerged that provide additional information in

their routing information.

Nevertheless, positional algorithms are insufficient to cope with dense and large

networks with high mobility if they do not consider any hierarchical or clustering

combination. To date, the mechanism for sending information in cluster-based

networks is inefficient because it constrains all traffic that must traverse cluster-heads,

thereby augmenting the possibility o f congestion due to traffic concentration. Each

cluster-head may become a single point o f failure for communication across its cluster,

causing the reduction o f both throughput and robustness o f the network.

We have addressed several challenges in vehicular ad-hoc networks (VANET) with

the Reactive Location-Based Routing Algorithm with Cluster-Based Flooding (LORA-

CBF). First, using location information, we have improved packet forwarding decisions

with regards to two location services: Simple and Reactive. For neighbouring nodes, a

Simple Location Service has been implemented, and for faraway nodes, a Reactive

Location Service is employed. Second, in geographic forwarding, the source node

includes the location o f its destination in each packet. Here, the packet moves hop by

hop through the network, forwarded along via cooperating intermediates nodes. At each

Chapter 7 CONCLUSIONS AND FUTURE WORK

node, a purely local decision is made to forward the packet to the neighbour that is

geographically closest to the destination. However, location information by itself does

not guarantee the transmission between neighbouring nodes in vehicular ad-hoc

networks. Mobility and contention of wireless media may cause loss of packets, and this

is a very important aspect to consider in the development of wireless routing algorithms.

Here, we have addressed this problem by including a predictive algorithm in LORA-

CBF. Finally, due to the increasing number o f vehicles, VANET networks are foreseen

to include hundreds or thousands o f vehicles in their architecture. This tendency

motivates us to design an algorithm that can cope with a very dense and highly mobile

network. What we have developed here divides the size of VANET networks into

several clusters, thus improving their scalability.

In this thesis, we have shown that IEEE 802.1 lb wireless networks are suitable for

inter-vehicle communication. We have supported our hypothesis with the results of two

propagation models. On one hand, according to large scale models, the maximum

distance between the transmitter and the receiver is 446 m. In addition, the System

Operating Margin (SOM) feasible at 446 m is over 13 dB. The SOM is over the

minimum margin recommended. On the other hand, we have lound that the Doppler

Effect does not affect the communication between communication partners at high

speed in small scale models. Finally, we have realized an experiment that has allowed

us to validate the former results in the worst case scenario, when the transmitter and

receiver are travelling in opposite directions. Results have shown that at least 8 packets

are possible when the transmitter and receiver are within communication range.

Since the appearance o f the 1985 Highway Capacity Manual, there has been an

increasing amount o f research on traffic flow models, which has led to a different

understanding o f how traffic operates, especially on a motorway. ElTorts to implement

ITS with regard to both traffic management and traffic information provision will

provide challenges for applying this improvement to new microscopic traffic models.

In this thesis, we have analyzed six microscopic traffic models. 1 hese microscopic

traffic models are based on three types o f car-following models: safe-distance models,

stimulus-response and psycho-physiological models. 01 the studied models VISSIM

contains the largest number o f parameter and AIMSUM is the model with the smallest

number o f parameters. The main drawback of MIMIC, 1N1EGRA1ION and VISSIM

Chapter 7 CONCLUSIONS AND FUTURE WORK

models are the calibration parameters. These parameters have to be calibrated during

the simulation period. The A1MSUM model does not define clearly how to estimate the

maximum deceleration o f the vehicle n-1 and MI I SIM basts its acceleration or

deceleration rate to many speed intervals.

The Simone 2000 traffic simulation model seems to be more suitable lor our

simulation scenarios. It bases its behaviour on two different controllers: Distance

Controller and Longitudinal Controller. In addition, it incorporates the

acceleration/deceleration effect when the relative speed stimulus is positive or negative.

We have used this microscopic traffic model to simulate the mobility o f the vehicles on

a multi-lane rectangular and circular dual carriageway representative o f city and

motorway driving.

In the last part o f this thesis, we have taken into account the mobility involved in

typical urban and motorway traffic scenarios and have simulated a very large network

o f two hundred and fifty nodes. Our simulation model has been validated, where

possible, using both measurement and analysis against a control.

We have considered two non-positional-based algorithms (AODV and DSR) and one

positional-based algorithm (LORA-CBF). Results show that the mobility and size o f the

network affects the performance o f AODV and DSR more significantly in comparison

with LORA-CBF. In the presence o f high mobility, link failures are more common.

Link failures trigger new route discoveries in all o f the algorithms, but in AODV and

DSR, this happens more frequently due to their routing mechanism. 1 bus, the frequency

o f route discoveries is directly proportional to the number o f route breaks. We observe

that Positional-based routing protocol provides an excellent performance in terms of

end-to-end delay and packet delivery ratio, at the cost o f using additional information

(location information). Non-positional-based routing algorithms suffer from sub-

optimal routes as well as worse packet delivery ratio because o! more dropped packets.

In addition, our Location Routing Algorithm with Cluster-Based Flooding (LORA-

CBF) is robust in terms o f Routing Overhead. Overhead, Routing Load and Delivery

Ratio.

Also, we have compared GPSR and LORA-CBF on a motorway. We have improved

GPSR with a short-term predictive algorithm to improve its performance over high

speeds. With the short-term predictive algorithm, GPSR and LORA-CBF have shown

Chapter 7 CONCLUSIONS AND FUTURE WORK

similar behaviour. Both algorithms employ the same greedy forwarding mechanism and

neighbour sensing mechanism. Therefore, the main difference between them is the

hierarchical architecture of LORA-CBF. This hierarchical architecture requires less

route discovery time and a lower delivery ratio, but increases the routing overhead and

general overhead as well as routing load.

One o f our future research lines is in the direction of multi-cast algorithms, where we

pretend to extend the capabilities of LORA-CBF towards group communication, which

might have application in military' and educational settings. Here, multicast algorithms

maintain paths between a single source and multiple destinations, which appears more

difficult than unicast algorithms, but not excessively, so. Given the growing importance

o f multicast as a means to reduce the bandwidth utilization for mass distribution o f data,

and the pressing need to conserve scarce bandwidth over wireless media, it is natural

that multicast routing should receive some attention lor ad-hoc networks.

Another future area is in the direction o f sensor networks. Here, recent attention has

been focused on ideas involving the possibility o f coordinating the activities and reports

o f a large collection o f small sensor devices. Such devices, are inexpensive to

manufacture and can to be spread in large numbers of identical units to offer detailed

information about terrain or dangerous environmental conditions. We hope to apply our

cluster-based algorithm to minimize the transmission in a determined zone. This might

be applicable, for example, in danger zones such as volcanic hazard areas.

Lastly, we also are investigating the possibility oi employing our algorithm as a

possible option that might contribute to the convergence o f wireless ad-hoc and cellular

networks. Fourth generation wireless networks are all about integrating a global

network based on an open-system approach that will seamlessly integrate different

types o f wireless networks with wireline backbone networks to promote the

convergence o f voice, multimedia, and data traffic over a single IP-based core network.

With the availability o f ultrahigh bandwidth o f up to 100 Mbps, multimedia services

can be supported efficiently. Ubiquitous computing will be facilitated with enhanced

system mobility and portability support, with location-based services and support o f ad-

h°c networking.

L is t o f r e f e r e n c e s

[1] Jy rk i O ra sk a r i: B lu e to o th v e rsu s W L A N IE E E 802 .1 lx . P ro d u c t M o d e llin g a n d R e a l iz a t io n G ro u p
(P M & R G), D e p a r tm e n t o f C o m p u te r S c ie n c e a n d E n g in e e r in g , H e ls in k i U n iv e r s i ty o f E n g in e e r in g .

[2] B re n t A . M il le r a n d C h a ts c h ik B isd ia n . B lu e to o th R e v e a le d . P re n tic e -H a ll , 2 0 0 1 .
[3] D a v id K a m m e r , G o rd o n M c N u tt, B ria n S e n e se a n d J e n n ife r B ray . B lu e th o o th , A p p lic a t io n

D e v e lo p e r ’s G u id e : T h e S h o rt R a n g e In te rc o n n e c t S o lu tio n .
[4] B o b O ’H a ra a n d AI P e tr ic k . The IEEE 802.11 Handbook: A Designer’s Companion. S ta n d a rd s

In fo rm a tio n N e tw o rk . IE E E P re ss , 1999.
[5] B ro a d c o m . IE E E 8 0 2 .1 lg . W h ite P a p e r , F e b ru a ry , 2 0 0 3 .
[6] A n d re w S. T a n e n b a u m . Com puter Networks, th ird e d itio n . P re n tic e -H a ll In te rn a tio n a l , Inc. 1996.
¡7] C -K T o ll. Ad Hoc Mobile Wireless Networks: Protocols and Systems. P re n tic e -H a ll In te rn a tio n a l , Inc.

2002.

[8] C a r l -H e rb e r t R o k ita n sk y . S I M C 0 2 : S im u la to r fo r P e r fo rm a n c e e v a lu a tio n o f V e h ic le -B e a c o n
a n d In te r -v e h ic le C o m m u n ic a tio n P ro to c o ls (M e d ia A c c e s s / K n o w le d g e -B a s e d R o u tin g) . In

IE E E V e h ic u la r T e c h n o lo g y C o n fe re n c e , p p . 8 9 3 -8 9 9 , 1991.
[9] C a r l -H e rb e r t R o k i ta n s k y . P e r fo rm a n c e A n a ly s is o f A d a p tiv e M u lt i-h o p R o u tin g P ro to c o l U s in g

a M a rk o v M o d e l. P ro c e e d in g s IE E E V e h ic u la r le c h n o lo g y C o n le re n c e , 1992 .
[1 0] C a r l -H e rb e r t R o k i ta n s k y a n d C h r is t ia n W ie tfe ld . C o m p a r is o n o l A d a p tiv e M e d iu m A c c e s s

C o n tro l S c h e m e s fo r B e a c o n -V e h ic le C o m m u n ic a tio n s . IE E E -JE E V e h ic le N a v ig a tio n

In fo rm a tio n S y s te m s C o n fe re n c e , 1993 .
[11] G . B ra s c h e , C . - H . R o k ita n s k y , a n d C . W ie tfe ld . C o m m u n ic a tio n A rc h ite c tu re a n d P e r fo rm a n c e

A n a ly s is o f P ro to c o ls fo r R T T In fra s tru c tu re N e tw o rk s an d V e h ic le -R o a d s id e C o m m u n ic a tio n s .

IE E E 4 4 ,h V e h ic u la r T e c h n o lo g y C o n fe re n c e , 1994 .
[1 2] C h r is t ia n W ie tf e ld a n d C a r l -H e rb e r t R o k ita n sk y . P e r fo rm a n c e o f V e h ic le -R o a d s id e

C o m m u n ic a t io n S y s te m s s u p p o r t in g M u lt ip le R T I-A p p lic a tio n s . P ro c e e d in g s in V e h ic le

N a v ig a t io n & In fo rm a tio n S y s te m s C o n fe re n c e , 1994 .
[1 3] C a r l -H e rb e r t R o k i ta n s k y a n d C h r is t ia n W ie tfe ld . M e th o d s a n d 1 o o ls fo r P e r fo rm a n c e

E v a lu a tio n a n d V a lid a tio n o f V e h ic le -R o a d s id e C o m m u n ic a tio n P ro p o se d fo r S ta n d a r iz a t io n . In
V e h ic u la r T e c h n o lo g y C o n fe re n c e , v o l 2 , p p . 9 6 4 -9 7 0 , 1995 .

[14] C h r is t ia n W ie tf e ld a n d C a r l -H e rb e r t R o k ita n sk y . M a rk o v C h a in A n a ly s is o f A lte rn a tiv e
M e d iu m A c c e s s C o n tro l P ro to c o l fo r V e h ic le -R o a d s id e C o m m u n ic a tio n s . In V e h ic u la r

T e c h n o lo g y C o n f e r e n c e , v o l. 2 , p p 9 5 8 -9 6 3 , 1995 .
[15] lo a n C h is a l i ta a n d N a h id S h a h m e h r i . A N o v e l A rc h ite c tu re fo r S u p p o r t in g V e h ic u la r

C o m m u n ic a tio n . IE E E 5 6 th V e h ic u la r T e c h n o lo g y C o n fe re n c e , 2 0 0 2 .
116] R o b e rt M o rr is , J o h n J a n n o tt i , F ra n s K a a sh o c k , J in y a n g L i a n d D o u g la s s D e c o u to . C a rN e t. A

S c a la b le A d H o c W ire le s s N e tw o rk S y s te m . In P ro c e e d in g s o f th e 9 A C M S IG O P S E u ro p e a n
w o rk s h o p : B e y o n d th e P C : N e w C h a lle n g e s fo r th e O p e ra t in g S y s te m , K o ld in g , D e n m a rk , S e p te m b e r

2000.

[17] Z o n g D a C h e n , H T K u n g an d D a r io V lah . A d H o c R e la y W ire le s s N e tw o rk s o v e r M o v in g V e h ic le s
o n H ig h w a y s . I n te rn a t io n a l C o n fe re n c e o n M o b ile C o m p u tin g a n d N e tw o rk in g , M o b iC o m 2 0 0 1 .

118] H o lg e r F ü ß le r , M a r t in M a u v e , H a n n e s H a r te n s te in , M ic h a e l K ä s e m a n n a n d D ie te r V o llm e r .
M o b iC o m P o s te r : L o c a tio n -B a s e d R o u tin g fo r V e h ic u la r A d -H o c N e tw o rk s . A C M S 1 G M O B IL E

M o b ile C o m p u t in g a n d C o m m u n ic a t io n R e v ie w , v o lu m e 7 is su e I , 2 0 0 3 .

U 9] h t tp : / /w w w .f le e tn e t .d e .
l 2 o l C h r is t ia n L o c h e r t , H o lg e r F ü ß le r . H a n n e s H a r te n s te in , D a g m a r H e rm a n n , J ia n g T ia n a n d M a rtin

M a u v e . A R o u t in g S tra te g y fo r V e h ic u la r A d H o c N e tw o rk s in C ity E n v iro n m e n ts . IE E E In te l l ig e n t

Vehicles S im p o s iu m , 2 0 0 3 .
[2 H T irn o K o sh , C h r is t ia n S c h w in g e n s c h lö g l , a n d L i A i. In fo rm a tio n D is s e m in a tio n in M u lt ih o p In te r-

R o u t in g P ro to c o l (A O D V). 5 ,h

f 7 C 1 ---—
P 6 r u a r ,e s k f>er^ 'n s - A d h o c n e tw o rk in g . A d d is o n W e s le y . 2 0 0 0 .

I h o m a s C la u s e n , P h il ip p e J a c k e t , A n is L a o u i ti , P a s c a le M in e t, P a u l M u h le th a le r , A m ir Q a y y u m ,

v e h ic le N e tw o r k s - A d a p t in g th e A d -h o c O n -d e m a n d D is ta n c e V e c to r
I n te rn a t io n a l C o n f e r e n c e o n In te l l ig e n t T ra n s p o r ta t io n S y s te m , - .0 0 - .

12 2] h ttp : / /w w \v .c o in n e ts .r \v th - a a c h e n .d e /~ ftp ^wij.9_
l 2 3] h ttp ^ /w w w .w i l l ia m s o n-1a b s .c o m /iv ji i J j t i n
124) h t tn : / /w \

http://www.fleetn

REFERENCES

L a u re n t V ie n n o t. O p tim iz e d L in k S ta te R o u tin g P ro to c o l (O L S R). h ttp ://w w v w .ie tf .o rg /rfc /rfo 3 6 7 6 tvi
O c o tb e r 2 0 0 3 . R e q u e s t fo r C o m m e n ts (W o rk in P ro g re ss) .

[2 7] R ic h a rd G . O g ie r , M a rk G . L ew is , F re d L. T e m p lin . T o p o lo g y D is s e m in a tio n b a s e d on R e v e rs e -P a th
F o rw a rd in g (T B R P F) . h t tp : / /w w w .ie tf .o r i i / r tc /r f c 3 6 8 4 .tx t , F e b ru a ry 2 0 0 4 . R e q u e s t fo r C o m m e n ts

(W o rk in P ro g re s s) .
[2 8] X u k a i Z o u , B y ra v R a m a m u rth y a n d S p y ro s M a g liv e ra s . R o u tin g T e c h n iq u e s in W ire le s s A d H o c

N e tw o r k s - C la s s i f i c a t io n an d C o m p a r iso n . P ro c e e d in g s o f th e S ix th W o rld M u lt ic o n fe re n c e on

S y s te m ic s , C y b e rn e tic s a n d In fo rm a tic s , S C I, Ju ly 2 0 0 2 .
[2 9] C h a r le s E . P e rk in s , E liz a b e th M . B e ld in g -R o y e r , S a m ir R. D as . A d h o c O n -D e m a n d D is ta n c e V e c to r

(A O D V) R o u t in g, h t tp : / /w w w .ie tf .o r i i / r f c /r fc 3 5 6 l .tx t . Ju ly 2 0 0 3 . R e q u e s t fo r C o m m e n ts (W o rk in

P ro g re s s) .
[3 0] D a v id B . J o h n s o n , D a v id A . M a ltz , Y ih -C h u n H u . T h e D y n a m ic S o u rc e R o u tin g P ro to c o l fo r

M o b ile A d H o c N e tw o rk s iD S R t h t tp : / /w w w .ie t f .o r u / in te rn e t- d ra f t s /d r a f t - ie t f - m a n e t- d s r - 1 0 .tx t.

Ju ly 2 0 0 4 . IE T F In te rn e t D ra ft (W o rk in P ro g re ss) .
[31] Ja n S c h a u m a n n . A n a ly s is o f th e Z o n e R o u tin g P ro to c o l, h t tp : / /w w w .n e tn .ie is te r .o ra /m is c /z rp /z r p .p d f.

D e c e m b e r 2 0 0 2 .
[3 2] M a r tin M a u v e , J ö rg W id m e r a n d H a n n e s H a r te n s te in . A S u rv e y o n P o s it io n -B a s e d R o u tin g in

M o b ile A d -H o c N e tw o rk s . IE E E N e tw o rk M a g a z in e , 15 (6): 3 0 -3 9 , N o v e m b e r 2 0 0 1 .
[3 3] Y o u n g -B a e K o , N itin H . V a id y a . L o c a tio n -A id e d R o u tin g (L A R) in M o b ile A d H o c N e tw o rk s .

P ro c e e d in g s o f th e 4 th a n n u a l A C M /IE E E In te rn a tio n a l C o n fe re n c e on M o b ile C o m p u tin g an d

N e tw o rk in g , p p 6 6 -7 5 , 1998.
[3 4] S te fa n o B a s a g n i , Im ric h C h a la m ta c , V io le t R. S y ro tiu k . A D is ta n c e R o u tin g E ffe c t A lg o r ith m fo r

M o b il i ty (D R E A M). M O B IC O M 9 8 . D a lla s T e x a s U S A .
[3 5] J in y a n g L i, J o h n J a n n o tt i , D o u g la s S . J. D e C o u to , D a v id R. K a rg e r , R o b e rt M o rris . A S c a la b le

L o c a tio n S e rv ic e fo r G e o g ra p h ic A d H o c R o u tin g . A C M M o b ic o m 2 0 0 0 , B o s to n , M A .
[3 6] B ra d K a rp , H . T . K u n g . G P S R : G re e d y P e r im e te r S ta te le s s R o u tin g fo r W ire le s s N e tw o rk s .

P ro c e e d in g s o f th e 6 th A n n u a l A C M /IE E E In te rn a tio n a l C o n fe re n c e o n M o b ile C o m p u tin g a n d

N e tw o rk in g (M o b iC o m 2 0 0 0) .
[3 7] A lin a B e ja n a n d R a m o n L a w re n c e . P e e r - to -P e e r C o o p e ra t iv e D riv in g . S e v e n te e n th In te rn a tio n a l

S y m p o s iu m O n C o m p u te r a n d In fo rm a tio n S c ie n c e s (IS C IS X V II) , 2 0 0 2 .
[3 8] h ttp : / /w w v v .ie tf .o r i i /h tm l.c h a r te r s /m a n e t- c h a tle r .h tm l
[3 9] P . J a c q u e t , P . M ü h le th a le r , T . C la u se n , A . L a o u iti, A Q a y y u m , a n d L. V ie n n o t. O p tim iz e d L in k S ta te

R o u t in g P ro to c o l fo r A d H o c N e tw o rk s . IE E E IN M IC P a k is ta n 2 0 0 1.
[4 0] A n is L a o u ti , P a u l M ü h le th a le r , A b d e lla h N a jid , E p ip h a n e P la k o o . S im u la tio n R e su lts o f th e O L S R

R o u t in g P ro to c o l fo r W ire le s s N e tw o rk . I st M e d ite r r a n e a n A d -H o c N e tw o rk s W o rk s h o p (M e d -H o c -

N e t) , S a rd e g n a , I ta ly 2 0 0 2 .
[4 1] P h il ip p e J a c q u e t , A n is L a o u iti, P a s c a le M in e t a n d L a u re n t V ie n n o t. P e r fo rm a n c e o f m u lt ip o in t

re la y in g in a d h o c m o b ile ro u tin g p ro to c o ls . N e tw o rk in g 2 0 0 2 , P ise (I ta ly) 2 0 0 2 .
[4 2] A m ir Q a y y u m , L a u re n t V ie n n o t a n d A n is L a o u iti. M u lt ip o in t R e la y in g fo r F lo o d in g B ro a d c a s t

M e s s a g e s in M o b ile W ire le s s N e tw o rk s . 3 5 th A n n u a l H a w a ii In te rn a t io n a l C o n fe re n c e on S y s te m

S c ie n c e s (H I C S S ’2 0 0 2) .
[4 3] S a lly F lo y d a n d V a n J a c o b s o n . T h e S y n c h ro n iz a t io n o f P e r io d ic R o u tin g M e ssa g e s . IE E E /A C M

T ra n s a c tio n o n N e tw o rk in g , v o l. 2 is su e 2 , p p 1 2 2 -1 3 6 , 19 9 4 .
[4 4] T h o m a s H e id e C la u s e n , G it te H a n se n , L a rs C h r is te n s e n a n d G e rd B e h rm a n n . T h e O p tim iz e d L in k

S ta te R o u t in g P ro to c o l E v a lu a tio n th ro u g h E x p e r im e n ts a n d S im u la tio n . IE E E S y m p o s iu m o n

“ W ire le s s P e r s o n a l M o b ile C o m m u n ic a t io n s " , S e p te m b e r 2 0 0 1.
[4 5] M o u n ir B e n z a id , P a s c a le M in e t a n d K h a ld o u n A l A g h a . In te g ra t in g fa s t m o b il i ty in th e O L S R

r o u tin g p r o to c o l . F o u rth IE E E C o n fe re n c e o n M o b ile a n d W ire le s s C o m m u n ic a t io n N e tw o rk s

(M W C N) , S to c k h o lm S w e d e n , S e p te m b e r 2 0 0 2 .
[4 6] M o u n ir B e n z a id , P a s c a le M in e t a n d K h a ld o u n A l A g h a . A n a ly s is a n d s im u la t io n o f F a s t-O L S R .

P ro c e e d in g s o f th e 5 7 !h IE E E S e m i-a n n u a l V e h ic u la r T e c h n o lo g y C o n fe re n c e (V I C) , Je k u K o re a ,

A p r i l 2 0 0 3 . i.

i. A r e v ie w o f c u r re n t ro u t in g p ro to c o ls fo r a d h o c w ire le s s

n e tw o rk s . IE E E P e r s o n a l C o m m u n ic a tio n s , p a g e s 4 6 -5 5 , A p ril 1999 .
[4 9] J. B ro c h , D . M altz ., D . J o h n s o n , Y .-C . H u a n d J. J e tc h e v a . A p e r fo rm a n c e c o m p a r is o n o f m u lt i-h o p

w ir e le s s a d h o c n e tw o r k s r o u tin g p ro to c o ls . In P ro c e e d in g s o f th e 4 th A C M /IE E E In te rn a tio n a l
C o n fe re n c e o n M o b ile C o m p u tin g a n d N e tw o rk in g (M O B I C O M), p a g e s 8 5 -9 7 , D a lla s , 1X , U S A ,

158

http://wwvw.ietf.org/rfc/rf
http://www.ietf.orii/rtc/rfc3684.txt
http://www.ietf.orii/rfc/rfc356l
http://www.ietf.oru/internet-drafts/draft-ietf-manet-dsr-10.txt
http://www.netn.ieister.ora/misc/zrp/zr
http://wwvv.ietf.orii/html.charters/manet-chatler.html

REFERENCES

1998.
[5 0] h ttp : / /m o m e n l.c s .u c s b .e d u /A O D V /a o d v .l i lm l .
[5 1] C h a r le s E . P e rk in s a n d E liz a b e th M . R o y e r. A d -h o c O n -D e m a n d D is ta n c e V e c to r R o u tin g .

P ro c e e d in g s o f th e 2 nd IE E E W o rk sh o p on M o b ile C o m p u tin g S y s te m s a n d A p p lic a t io n s , N e w

O rle a n s , L A , F e b ru a ry 1 9 9 9 , p p . 9 0 -1 0 0 .
[5 2] h t tp : / /w w w .c s .r ic e .e d u /D a ta b a s e /d b i .s h tm l
[5 3] D a v id B . Jo h n s o n a n d D a v id A . M a ltz . D y n a m ic S o u rc e R o u tin g in A d H o c W ire le s s N e tw o rk s .

C o m p u te r S c ie n c e D e p a r tm e n t, C a rn e g ie M e llo n U n iv e rs ity .
[5 4] D a v id B . J o h n s o n , D a v id A . M a ltz a n d Jo sh B ro ch . D S R : T h e D y n a m ic S o u rc e R o u t in g P ro to c o l fo r

M u lt i-H o p W ire le s s A d H o c N e tw o rk s .
[5 5] A v in a s h K a s h y a p , H ite n d ra N is h a r a n d P a ra g A g a rw a l. S u rv e y o n U n ic a s t R o u tin g in M o b ile A d

H o c N e tw o rk s . C o m p u te r S c ie n c e D e p a rtm e n t. U n iv e rs ity o l I e x a s a t D a lla s , I X .
[5 6] S a m ir R . D a s , R o b e rt C a s ta ñ e d a an d J ia n g ta o Y an . S im u la tio n B a se d P e r fo rm a n c e E v a lu a tio n o f

M o b ile , A d h o c N e tw o rk R o u tin g P ro to c o ls . A C M J B a ltz e r M o b ile N e tw o r k s a n d A p p lic a tio n s

(M O N E T) J o u r n a l , J u ly 2 0 0 0 , p a g e s 1 7 9 -1 8 9 .
[5 7] C h a r le s E . P e rk in s , E liz a b e th M . R o y e r, S a m ir R . D as a n d M a h e sh K. M a rin a . P e r fo rm a n c e

C o m p a r is o n o f tw o O n -D e m a n d R o u tin g P ro to c o ls fo r A d H o c N e tw o rk s . IE E E P e rso n a l
C o m m u n ic a tio n M a g a z in e sp e c ia l is su e on A d h o c N e tw o rk in g , F e b ru a ry 2 0 0 1 , p . 1 6 -28 .

[5 8] Y o u n g -B a e K o a n d N itin H . V a id y a . L o c a tio n -A id e d R o u tin g (L A R) in m o b ile ad h o c n e tw o rk s .

W ire le s s N e tw o rk s , p p 3 0 7 - 3 2 1 ,2 0 0 0 .
[5 9] S ilv ia G io rd a n o , Iv an S to jm e n o v ic a n d L ju b ic a B la z e v ic . P o s it io n B a se d R o u tin g A lg o r i th m s fo r A d

H o c N e tw o rk s : A T a x o n o m y . A d H o c W ire le s s N e tw o rk in g , 2 0 0 3 .
[6 0] E liz a b e th M . B e ld in g -R o y e r . M u lt i-L e v e l H ie ra rc h ie s fo r s c a la b le A d -h o c R o u tin g . W ire le s s

N e tw o rk s , p p 4 6 1 - 4 7 8 ,2 0 0 3 .
[6 1] D e n n is J. B a k e r , A n th o n y E p h re m id e s an d Ju lia A . F ly n n . T h e D e s ig n a n d S im u la tio n o f a M o b ile

R a d io N e tw o rk w ith D is tr ib u te C o n tro l. IE E E J o u rn a l on S e le c te d A re a s in C o m m u n ic a tio n , 1984 .
[6 2] M a r io G e r la a n d J a c k T z u -C h ie h T sa i. M u lt ic lu s te r , m o b ile , m u lt im e d ia ra d io n e tw o rk . B a ltz e r

Jo u rn a ls , 1 9 95 .
[6 3] Mingliang Jiang, Jinyang Li, Y.C. Tay. Cluster Based Routing Protocol (CBRP).

.httn://www.ietf.orti/intcmet-drafts/draft-ietf-manet-cbrp-espec-OLtxt, July 1999. IETF Internet Draft
(Work in Progress).

[6 4] M ic h a e l J. C h u a n d W a y n e E . S ta rk . E ffe c t o f M o b ile V e lo c ity o n C o m m u n ic a tio n s in F a d in g

C h a n n e ls . IE E E T ra n s a c tio n s o n V e h ic u la r T e c h n o lo g y , v o l. 4 9 , n o . 1, 2 0 0 0 .
[6 5] M ic h a e l K ä s e m a n n , H a n n e s H a r te n s te in , H o lg e r f ü b le r , a n d M a rtin M a u v e . A n a ly s is^ o f a L o c a tio n

S e rv ic e fo r P o s i t io n -B a s e d R o u tin g in M o b ile A d H o c N e tw o rk s . P ro c e e d in g s o f th e I G e rm a n

W o rk s h o p o n M o b ile A d H o c N e tw o rk s (W M A N 2 0 0 2) .
[6 6] T ra c y C a m p , J e f f B o le n g a n d L u c a s W ilc o x . L o c a tio n In fo rm a tio n S e rv ic e s in M o b ile A d H o c

N e tw o rk s . I n te rn a t io n a l C o m m u n ic a tio n C o n fe re n c e (IC C) , 2 0 0 2 .

[6 7] [1 9] h t t p : / / m s l l . m i t . c d i i / M a r 2 L c c t u r e / U s e S a f e t y , h t m

16 8] B o r is M ite lm a n , A rk a d y Z a s la v s k y . L in k S ta te R o u tin g P ro to c o l w ith C lu s te r B a se d f lo o d in g
lo r M o b ile A d -h o c C o m p u te r N e tw o rk s . P ro c e e d in g s o f th e W o rk s h o p o n C o m p u te r S c ie n c e

a n d In fo rm a tio n T e c h n o lo g ie s C S I T ’9 9 .
[6 9] P. K r ish n a , N . H . V a id y a . M . C h a ttc r je e a n d D . K . P ra d h a n . A C lu s te r -B a s e d A p p ro a c h fo r ro u tin g

in D y n a m ic N e tw o rk s . A C M S IG C O M M , C o m p u te r C o m m u n ic a tio n R e v ie w , p a g e s 4 9 -6 5 , 1997.
[7 0] B e v a s D as , R a g h u p a th y S iv a k u in a r , a n d V a d u v u r B h a rg h a v a n . R o u t in g in A d H o c N e tw o rk s U s in g a

S p in e . P ro c e e d in g s in In te rn a t io n a l C o n fe re n c e in C o m p u te r a n d C o m m u n ic a tio n N e tw o rk s , 1997 .
f7 U R a g h u p a th y S iv a k u m a r , B e v a s D a s a n d V a d u v u r B h a rg h a v a n . S p in e R o u tin g in A d H o c N e tw o rk s .

A C M /B a l tz e r C lu s te r C o m p u tin g J o u rn a l, 1998 .
[? 2J C h in g -C h u a n C h ia n g , H s ia o -K u a n g W u , W in s to n L iu a n d M a r io G e r la . R o u tin g in C lu s te re d

M u lt ih o p , M o b ile W ire le s s N e tw o rk s w ith F a d in g C h a n n e l . T h e IE E E S in g a p o re In te rn a tio n a l
C o n le r e n c e o n N e tw o rk s , p p 1 9 7 -2 1 1 , 1997 .

I7 3] V ila lta R . E T A L . P re d ic t iv e a lg o r i th m s in th e M a n a g e m e n t o f C o m p u te r S y s te m s , IB M S y s te m s

Journal, V o l 4 1 , N o 3 , 2 0 0 2 .
•7 4 1 T h e o d o r e S. R a p p a p o r t . W ire le s s C o m m u n ic a tio n s : P r in c ip le s a n d P ra c tic e , P re n tic e H all

Communications E n g in e e r in g a n d E m e rg in g T e c h n o lo g ie s S e r ie s , 2 0 0 2 .
3 J hfUfl//www.eiiterasvs.coni products/vvireless/CSlxlKAA/

¡ 61 [UJjfL/www.ispplanet.com/fixcd wireless/eoni]M ^ í2 M lM M Y 5 í jM dílJ IB J ltB ll
*7 7 J J a t in d e r P a l S in g h . N ic h o ia s B a m b o s , B a s h k a r S r in iv a s a n a n d D e t le f C la w in . W ire le s s L A N

http://momenl.cs.ucsb.edu/AODV/aodv.lilml
http://www.cs.rice.edu/Database/dbi.shtml
http://www.ietf.orti/intcmet-drafts/draft-ietf-manet-cbrp-espec-OL
http://msll.mit.cdii/Mar2Lccture/Use_Safety,htm
http://www.eiiterasvs.coni
http://www.ispplanet.co

REFERENCES

P e r fo rm a n c e u n d e r V a r ie d S tre s s C o n d itio n in V e h ic u la r T ra f f ic S c e n a r io s . IE E E V e h ic u la r
T e c h n o lo g y C o n fe re n c e , fa ll 2 0 0 2 , V o l 2 , p p 7 4 3 -7 4 7 , V a n c o u v e r .

[78J D a v id A . M a ltz , Jo sh B ro c h an d D a v id B. Jo h n so n . L e s s o n s fro m a F u ll-S c a le M u lt ih o p W ire le s s A d
H o c N e tw o rk T e s tb e d . IE E E P e rso n a l C o m m u n ic a tio n , 2 0 0 1 .

[79J L. B . M ic h e l , e t. a l. D S /S S In te r -V e h ic le C o m m u n ic a tio n E x p e r im e n ts in 2 .4 G H z IS M B a n d . IE E E
In te rn a t io n a l C o n fe re n c e on In te l l ig e n t V e h ic le s , 1998 .

[8 0] h t tp : / /w w w .ro k e .c o .u k /d o w n lo a d /d a ta s h e e ts /d t t -d a b r e c e iv e r .p d f

[8 1] S e rg e P. H o o g e n d o o m , P ie t H. L. B o v y . S ta te -o f- th e -a r t o f V e h ic u la r T ra f f ic F lo w M o d e llin g .
S p e c ia l Issu e o n R o a d T ra f f ic M o d e llin g a n d C o n tro l o f th e Jo u rn a l o f S y s te m a n d C o n tro l

E n g in e e r in g .
[8 2] D e m e tr io C a rm in e F e s ta , G io v a n n i L o n g o , G a b r ie l la M a z z u lla a n d G iu s e p p e M u so lin o .

E x p e r im e n ta l a n a ly s is o f d if fe re n t s im u la t io n m o d e ls fo r m o to rw a y tra f f ic f lo w . P ro c e e d in g s o f th e

IE E E In te l l ig e n t T ra n s p o r ta t io n S y s te m s C o n fe re n c e , 2 0 0 1 .
[8 3] B o b i C v e tk o v s k i a n d L il ia n a G a v r ilo v s k a . A s im u la t io n o f a m o b ile H ig h w a y tra f f ic . IE E E V T C ,

1998 .
[8 4] B o b i C v e tk o v s k i a n d L ilja n a G a v r ilo v sk a . A s im u la t io n o f a m o b ile tra f f ic on a h ig h w a y .

S e r ie s E le c tro n ic s a n d E n e rg e tic s V o l. 11, N o 1, p p 5 7 -7 0 , 1998 .
[8 5] A n g e la D i F e b b ra ro a n d A n to n e l la F e rra ra . A n e w tw o - le v e l m o d e l fo r m u lt ic la s s F re e w a y tra f f ic .

IE E E T ra n s a c tio n s o n v e h ic u la r te c h n o lo g y , V o l 4 5 , N o 1, 1996 .
[8 6] F u -S h e n g H o a n d P e tro s lo a n n o u . T ra f f ic F lo w M o d e lin g a n d C o n tro l u s in g A rt if ic ia l N e u ra l

N e tw o rk s . IE E E C o n tro l S y s te m M a g a z in e , V o l 16, N o 5, p p 1 6 -2 7 , 1996 .
[8 7] G a b r ie l M o n te n e g ro , M a s a k a z u S e n g o k u , Y o sh io Y a m a g u c h i a n d l a k e o A b e . T im e -D e p e n d e n t

A n á lis is o f M o b ile C o m m u n ic a tio n T ra f f ic in a R in g -S h a p e d S e rv ic e A re a w ith N o n u n ifo rm V e h ic le

D is tr ib u tio n . IE E E T ra n s a c tio n s o n V e h ic u la r T e c h n o lo g y , V o l. 4 1 , N o 3, 1992.
[8 8] K in K . L e u n g , W illia m A . M a sse y a n d W a rd W h itt. T ra f f ic M o d e ls fo r W ire le s s C o m m u n ic a tio n

N e tw o rk s . IE E E J o u rn a l o n s e le c te d a re a s in c o m m u n ic a tio n s , V o l. 12, N o . 8, 1994 .
[8 9] J o h a n J a n s o n O ls ta m a n d A n d re a s T a p a n i. C o m p a r is o n o f c a r - fo l lo w in g m o d e ls . S w e d is h N a tio n a l

R o a d a n d T ra n s p o r t R e se a rc h In s ti tu te (V T I) , 2 0 0 4 .
[9 0] L o g g h e S. D y n a m ic M o d e ll in g o f H e te ro g e n e o u s V e h ic u la r I ra ff ic . Ph. D . T h e s is , K . U . L e u v e n ,

B e lg iu m , 2 0 0 3 . .
[91] A x e l Klar, Reinhart D. Kühne and Raimund Wegener. Mathematical Models for Vehicular Traffic.

Surveys on mathematics for industry, 6 :2 1 5 -2 3 9 , 1996 .
[9 2] S tig O . S im o n s s o n . C a r - F o llo w in g a s a to o l in ro a d tra f f ic s im u la t io n . 1 E E E -IE E V e h ic le N a v ig a tio n

& In fo rm a tio n S y s te m C o n fe re n c e , 1993.
[9 3] J a im e B a rc e ló e t a l. S m a r te s t S im u la t io n R e p o rt , h t t p : // w w w . i t s . 1 e e d s .acJ ik ¿ s in a i le st
[9 4] M . V a n A e rd e , B . H e ll in g a , M . B a k e r a n d H. R a k h a . IN T E G R A T IO N : A n O v e rv ie w o f T ra f f ic

S im u la t io n F e a tu re s , T ra n s p o r ta t io n R e s e a rc h B o a rd A n n u a l M e e tin g , 1996 .
[9 5] R . H o y e r , M . F e lle n d o r f . P a ra m e tr iz a t io n o f M ic ro s c o p ic T ra f f ic F lo w M o d e ls th ro u g h im a g e

p ro c e s s in g . 8'^ IF A C S y m p o s iu m o n T ra n s p o r t , C h a n ia , C re te , J u n e 1997 .
[9 6] M . M . M in d e rh o u d . S im o n e 2 0 0 0 , s im u la t io n m o d e l o f m o to r w a y s w i th n e x t g e n e r a t io n ve h ic le s ,

te c h n ic a l s p e c if ic a tio n . M a rc h 2 0 0 2 .
[97] F re d L. H a ll. T ra f f ic S tre a m C h a ra c te r is t ic s . http://www.tfhrc.eov/its/tflYft.htni, Ju n e , 1992.
[9 8] R ic h a rd W . R o th e ry . C a r F o llo w in g M o d e ls . h n p : / / \ v w w . t f h r c .u o v / i t s / t f f / t f f J m Ju n e , 1992 .
[99] M o h a m m a d L iy a s . T h e H a n d b o o k o f A d H o c W ire le s s N e tw o r k s , C R C P re s s , 2002.
1100] E ro l A . P ek O z a n d N it in d r a J o g le k a r . P o is so n T ra f f ic F lo w in a G e n e ra l F e e d b a c k Q u e u e . Jo u rn a l

of A p p lie d P ro b a b il i ty , S e p te m b e r 2 0 0 2 .
1101] m . R u d a c k , M . M e in c k e a n d M . L o tt. O n th e D y n a m ic o f A d -h o c N e tw o rk s fo r In te l V e h ic le

C o m m u n ic a t io n s (IV C) . I C W N ’0 2 , L a s V e g a s U S A , 2 0 0 2 .
[I 9 2] _j] t tp : / /s ta t . ia m u .e d u /s ta t3 0 x T io tc s /n o d e 7 0 .h tm I .
U ° 3] P a d m a P a n c h a p a k e s a n a n d D . M a n ju n a th . O n th e T ra n s m is s io n R a n g e in D e n se A d H o c R a d io

N e tw o rk s , C o n f e r e n c e o n S ig n a l P ro c e s s in g a n d C o m m u n ic a tio n s , S P C O M M , 2 0 0 1 .
1 1Q4] M a n ia s G r o s s g la u s e r a n d D a v id T se . M o b ility ’ In c re a s e s the C a p a c ity o f A d -H o c W ire le s s

Networks, in p ro c . o f the IE E E in fo c o m . 2 0 0 1.
• l 0 N P iy u sh G u p ta a n d P . R . K u m a r . T h e C a p a c ity o f W ire le s s N e tw o rk s , IE E E T ra n s , on in fo rm a tio n

th e o ry , Vo| 4 6 , n o 2, p p 3 8 8 -4 0 4 , 2 0 0 2 . . , w
11 ° 6] S u h a s N . D ig g a v i , M a n h ia s G ro s s g la u s e r a n d D a v id N . C . T se . E v e n o n e -D im e n s io n a l M o b il i ty

Increases A d H o c C a p a c i ty , IS IT 2 0 0 2 .
11 0 7 1J- W . S c h m id t . F u n d a m e n ta l o f D ig ita l S im u la t io n M o d e llin g . P ro c e e d in g s o f th e W in te r

http://www.roke.co.uk/download/datasheets/dtt-dab_receiver.pdf
http://www.t

REFERENCES

S im u la t io n C o n fe re n c e , p p 1 3 - 2 1 , 1981 . . l l f .
[1 0 8] R o b e rt G . S a rg e n t. V a lid a tio n a n d V e r if ic a tio n o f S im u la tio n M o d e ls . P ro c e e d in g s o f th e W in te r

S im u la t io n C o n fe re n c e , 1992 .
[1091 h t tp : / /w w w .a n td .n is t .i io v /w a h n h o m e .s h tm l . . . ,
[110] Charles E. Perkins and Pravin Bhagvvat. Highly Dynamic Destination-Sequenced Distance-Vector

Routine (DSDV) for mobile computers. Proceedings of the conference on Communication
Architectures, Protocols and Applications, pp 234-244, S1GCOM 94.

fill] http://enterprisel6.opnet.coni'4dcĵ LModels_Ŝ txliSujjiiH|
[i p c ^ “ T o h M in a T D e lw a r an d D o n a ld A lle n . E v a lu a tin g th e c o m m u n ic a tio n P e r fo rm a n c e o f an

Ad-Hoc Wireless Network. IEEE Transaction on Wireless Communication, vol. 1,

no, 3, 2002.

http://www.antd.nist.iio

Appendices

A. STRUCTURES USED IN LORA-CBF ALGORITHM

This Appendix describes the structures used in LORA-CISI algorithm. 1 he

specification provided here has been written in proto-C, a combination of standard C

language notation and OPNET functions that can be employed as an implementation

guideline.

A.l Data structures used in LORA-CBF

A .1.1 Cluster Table
r, , , . . t^hle of its members with the followingEach cluster-head maintains a routing tame 01 *

attributes:

• Node Address.

• Type o f node (Member or Gateway).

• Location (Latitude and Longitude).

A. 1.2 Cluster Neighbour Table
Each cluster-head maintains a routing table with the information of its Cluster-Head

Neighbours and the gateways through which the Cluster-Head can be reached.

Adjacent Cluster-head Address.

Adjacent Cluster-head Location.

Gateway or Gateways (Address and Location).

APPENDICES

A. 1.3 Hello Message
The Hello message is broadcasted by the cluster-head according to a specific period o f

time (Figure A .l). The attributes of the Hello message are:

I ---
--

--
--7

v
£|!7

V11.- • -• ''*<̂__ ■ _ . __... X...... ■ X

f igure A .l: lleflo Message.

Type: Phis field determines the type ol the packet that has been sent (Hello, Location
Request, Location Reply, Data, Acknowledgement).

Type o f node: This field determines the type of the node that has sent the message, i.e.
Undecided, Member, Gateway or Cluster-head.

Hop Count: This field indicates the number oi hops from the souice node.

Hunt Members: This field indicates the number o f members that belongs to the cluster.

BEST: This field determines the destination node.

Source: This field determines the address ol source.

Source node latitude: This field indicates the latitude o f the source node.

Source node longitude: This field determines the longitude ol the source node.

Cluster-head neighbour address: This field indicates the address o f the Cluster-head
neighbour.

Cluster-head neighbour latitude: This field indicates the latitude o f the Cluster-head
neighbour.

Cluster-head neighbour longitude:
head neighbour.

This field determines the longitude o f the Cluster

APPENDICES

Location Request Packet (LREO)
Location request packets allow the source node to request a location o f the destination

node (Figure A.2). The attributes o f the location request packet include:

- —

Figure A.2: Location Request Packet (LREQ).

Type: This field determines the type of the packet that has been sent (Hello, Location
Request, Location Reply, Data, and Acknowledgment).
Type of node: This field determines the type of the node that has sent the message,
Undecided, Member, Gateway or Cluster-head.

Hop Count: This field indicates the number o f hops from the source node.

TTL: This field determines the time to live for the packet.

Broadcast ID: This field indicates the ID o f the packet being transmitted.

DEST: This field determines the destination node.

Source: This field determines the address o f source.

Source node latitude: This field indicates the latitude o f the source node.

Source node longitude: This field determines the longitude o f the source node.

APPENDICES

A. 1.5 Data Packet
The transmission o f the data packet is then based on the location o f the source, the

neighbours and the destination (Figure A.4). Data Packets have the following attributes:

Type Type Of node Seq „number

\

Source Source Jatilude Source longttudn

DEST DesLielitude Dost longitude

k------------ \ --------- --- -̂-------—---------------

Figure A, 4: Data Packet.

Type. This field determines the type oi the packet that has been sent (Hello, Location
Request, Location Reply, Data, Acknowledgment).

Type of node. This field determines the type of the node that has sent the message,
Undecided, Member, Gateway or Cluster-head.

Seqjxumber. This field determines the sequence o f the number of the packet being
transmitted.

Source: This field determines the address ot source.

Source node latitude. This field indicates the latitude o f the source node.

Source node longitude'. This field determines the longitude of the source node.

DFST: This field determines the destination node.

Dest latitude. This field indicates the latitude o f the destination node.

Dest__/ongitude: This field indicates the longitude of the destination node.

APPENDICES

A.1.6 Acknowledgment of Data Packet
The maintenance o f the location information ol the source and destination is based on

data and acknowledgment of data packets. Acknowledgment ol a Data Packet has the

following attributes (Figure A.5):

Type • This field determines the type o f the packet that has been sent (Hello, Location
Request, Location Reply, Data, Acknowledgment).

Undecided, Member, Gateway or Cluster-head.

Seq number: This Field determines the sequence ol the number oi the packet being
transmitted.

Source: This field determines the address o f source.

Source node latitude: This field indicates the latitude oi the source node.

Source node longitude. This field determines the longitude of the source node.

bEST: This field determines the destination node.

b est latitude: This field indicates the latitude oi the destination node.

best__ longitude : This field indicates the longitude oi the destination node.

Type Type of node

M

Sou rce

v 1 ■ k . ■ .n n — .

D E S T

Figure A.5: Acknowledgment of Data Packet (At K).

Type o f node: This field determines the type o f the node that has sent the message,

APPENDICES

A. 1.4 Location Reply Packet (LREP)
The destination node has to send a response back to the source giving its location and

confirming the receipt of LREQ packet (Figure A.3). this is done by means oi sending

a LREP packet. The attributes of the LREP are:

Figure A 3 : Location Reply Packet (LREP).

Type\ This field determines the type ol the packet that has been sent (Hello, Location
Request, Location Reply, Data, Acknowledgment).

Type of node: This Held determines the type o f the node that has sent the message,
Undecided, Member, Gateway or Cluster-head.

Hop Count: This field indicates the number o f hops from the source node.

DestSeqNb. This field determines the sequence number o f the packet being transmitted.

Source: This field determines the address ol source.

Source node latitude: This field indicates the latitude o f the source node.

Source node longitude: This field determines the longitude oi the source node.

DEST: This field determines the destination node.

best latitude: Phis field indicates the latitude ol the destination node.

best longitude: This field indicates the longitude oi the destination node.

APPENDICES

B. Program Code for LORA-CBF

B . l /* P r o c e s s m o d e l C fo r m file : L O R A -C B F .p r .c */

/* P o r t io n s o f th is f ile c o p y r ig h t 1 9 9 2 -2 0 0 2 b y O P N E T T e c h n o lo g ie s , In c . * /

/* This variable carries the header into the object file */
static const char LORA-CBF_clusters_and_members_only_pr_c [j =
"MIL_3_Tfile_Hdr_ 90A 30A modeler 7 3E75F921 3E75F921 1 elpOOra aquinor 0 0
none none 0 0 none 0 0 0 0 0 0
I f .
5

//include <string.h>

/* OPNET system definitions */
//include <opnet.h>

#if defined (cplusplus)
extern "C" {
//endif
FSM_EXT DECS
«if defined (cplusplus)
} 1* end o f 'extern "C " */
«endif

/* Header Block */
«include <math.h>
!* Packet types */

«define REQUEST PA C K ETTY PE 7
11«define REPLY PACKET TYPE

«define HELLO PA C K ETTY PE 19

«define DATA PACKET TYPE 21

//define ACK RREQ
//define ACK DATA

/* Node Types *f

//define Undecided 1
2^/define Member

//define C lusterjiead 3

//define Gateway 4

^ Input and output streams *7
«define SRC STRM 0 // from upper layer

«define RCV STRM 1 // from mac layer

«define SEND STRM 0 // toward mac layer

«define DISCARO STRM 1 // towards upper layer
-1«define BROADCAST

APPENDICES

/* Remote intrpt or self intrpt codes */

//define REP_CODE
//define HELLO CODE
#define UNDECIDED
//define CLUSTERJdEAD
#define MEMBER
//define R R E Q R E P L Y C O D E
//define DATA REPLY CODE

60000
200000
300000
400000
500000
600000

30000 //self intrp code in order to serve buffer

/* Offset */
//defineOPTION 10000

/* Maximum number of nodes in the net */
//define N 64

/* Transition macro */

//define UPPER _LAYER_ARVL (op_intrpt_type() = O PCJNTRPT_STRM &&
opJntrpt_strm () = SRC_STRM)
#define LOWER LAYER ARVL (op_intrptJype() = OPC_INTRPT_STRM &&
op intrpt_strm() = RCV_STRM)
//define TypeU ndecided (op intrpt_type() = OPC INd RPT_SELF &&
(op intrpt codeO ” UNDECIDED))
//define Type Cluster head (op_intrpt_type() = OPC_INTRPT_SELF &&
(op intrpt codeQ ” CLUSTER_HEAD))
//define Notice_To_Serve_Buffer (op_intrpt_type() == OPC INTRPT SELF &&
o p in trp tc o d e () == R E PC O D E)
//define Retransmit_RREQ (op intrpt type () —= OPC_IN IRPT R LM O IE &&
((int)(opJntrpt_code()/OPTION))*OPTION == R REQ JREPLY CO D E)
//define R etransm itD A TA (op__intrpt_type () == OPC IN rRPT_REMOTE &&
((int)(op_intrpt_code()/OPTION))*OP I ION = DA 1A REPLY CODE)

//define IN SERVICE 1
//define DOWN 0
//define ACTIVE 1
//define INACTIVE 0

/* infinity */
//define IN FIN ITY -10

int pk transmited, pk received;
double latency;
double delay start - 0.0;
double delay stop - 0.0;

169

APPENDICES

/* Request sent status */
typedef enum Request_Status_Tvpe

{
OFF = 0, // Request waiting for reply
WAITING FOR REPLY = 1 // Request was not sent
} Request Status Type;

/* Hello Module (used when HELLO MODE is activated) */
typedef struct

{
Evhandle evt;
Evhandle evt_cluster;
Evhandle evt_undecided;
Evhandle evtjnem ber;
Packet* hello_msg_template;
} Hello_Module;

typedef struct
{
int dest;
int hopCount;
int lastHopCount;
int nextHop;
} RoutingTableEntry; // a routing table entry;

typedef struct
{
Evhandle evtcluster;
Evhandle evt undecided;
Objid id;
double previa_position_x;
double previa_position_y;
int cluster head;
int Seq_number;
double timer, livejim er;
double activejim er, member_timer;
double gateway_timer;
int status_of_node;
int transmission;
int direction;
int previa_direction;
double registrationtim e;
int status;
double latitude;
double longitude;
double previajatitude;

double previa„longitude;

} Cluster Table;

APPENDICES

Cluster_Table nodeid[N];

typedef struct

int
int
int

Member_id[N];
Gw[N];
Ch[N];

} Member Table;

M em berT able ClusterheadfN];

typedef struct
{
int Gw[N];
} Ciateway Table;

G atew ay?ab le G atew ayG atew ay[N];

typedef struct
{
int ClusterfN];
} C lu ste rh ead tab le ;

C lu sterJiead tab le Cluster[N];

typedef struct
{
int Member_Neighbor[N];
} Register Meinber;

Register_Member Member_Neighbor[Nj;

typedef struct

double
Boolean
double
double
double

Evhandle

double
double
int

int
int
int

direction;
status;
num__c lusters;
latitude;
longitude;
counter;
evt;
timer;
flag;
previa latitude;
previajongitude;
previotim er;

} Cluster _Head_Neighbour;

APPENDICES

typedef struct
{
int direction;
int status;
double timer;
double latitude;
double longitude;
double previalatitude;
double previalongitude;
double previotim er;
} Member

typedef struct
{
int

N eighbour Attributes;

status;
double timer;
Evhandle evt;
double latitude;
double longitude;
int direction;
double previa latitude;
double previa longitude;
double previotim er;
} CIuster Head Member;

typedef struct
{
int sequencenum ber;
double expirationTime;
RequestJStatus Type status;
int ttU
Evhandle evt;
} RequestSentAttributes;

typedef struct
{
int
double
Evhandle
} RequestSeenAttributes;

broadcastlD;
expirationTime;
evt;

typedef struct
{
int
double
Evhandle
} ReplySeenAttributes;

sequence „number;
expirationTime;
evt;

APPENDICES

typedef struct
{
int sequencenum ber;
double expirationTime;
} DataSeenAttributes;

typedef struct
{
int
double
} AckSeenAttributes;

typedef struct
{
double
double
double
} LocationAttributes;

sequencejium ber;
expirationTime;

latitude;
longitude;
timer;

typedef struct
{
int
} RetrasmissionAttributes;

counter;

typedef struct
{
double
} RegisterAttributes;

Register Attributes

timer;

Register__Cluster[N] [N] [N] ;

Cluster Head Neighbour
M em berN eighbourA ttributes
Eluster Head Member

Cluster NeighbourfNjfN];
Member_Neighbour[N] [N] ;
CI uster Mem berf N J [N] ;

void LORA-CBF_pk_send_to_mac_layer(Packet *pk. ml nextHop),

void LORA-CBF_pkj>rint(Packet* p k jtr) ;

as b k s f

Packet* LORA-CBF_dataj5k_dequeue(ini
Boolean L O R A X B F J a W j k j s J r e s h _ e n o u fcm i

void buhbleSortfar(double pos[]|21, ml max),

APPENDICES

void LORA-CBF_entry_update_or_create_from_rreq(Packet* rreq_pk_ptr);
void LORA-CBF_become_member(Packet* hello pk ptr, int source, double
latitude receiver, double longitude_receiver, double latitude, double longitude);
void LÔRA-CBF_register_cluster_head(Packet* hello pk ptr, int source, double
latitude_receiver,"double longitude_receivcr, double latitude, double longitude);
void LORA-CBF_register_member_and_cluster_head(Packet* hello jk _ p t r , int source,
double latitude receiver, double longitude_receiver, double latitude, double longitude,
double Latitude cluster, double Longitude_cluster, int Cluster_Ncighbor),
int LORA-CBF~buffer_size_get(int destination);
void LORA-CBF_data_pk(Packet* data_pk_plr);
Boolean LORA-CBF_buffer_is_empty(int destination);
void LORA-CBF_data_pk_receive(Packet* data_pk_ptr);
void LORA-CBF_ack_data_pk_receive(Packet* ack_data_pk_ptr);
void LORA-CBF_rreq_pk_generate(int destination);
void LO R A -C B Fbuffer serve(int destination);
void 1 ORA-CBF_become_member_from_undecided(Packet* hello_pk_ptr, int source,
double latitude receiver, double longitude j-eceiver, double latitude, double longitude);
void LORA-CBF member_from_cluster_head(Packet* hello_pk_ptr, int source, double
latitude receiver, double longitude_receiver, double latitude, double longitude);
void LORA-CBF register_member(Packet* hello_pk_ptr, int source, double
Latitude cluster, double Longitude_c!uster, double latitude double longitude, int
Cluster_Neighbor, double latitude_receiver, double longitude_receiver);
void LORA-CBF data_pk_renewals(int destination);
Boolean LORA-CBF ack 7 req _ p k js Jresh_enough(Packet* ack rrcqJ>k_ptr);
int nextCluster sourceJrom_rrep(Packet* r r e p j k j l r , double latitude, double
longitude, double sourcejatitude, double sourcejongitude int source)
B o o le an p red ic tin g _ p o s itio n _ n e x t_ c lu s te r(in t nextCluster, double latitude, double

!nt"nèxtCluster dest Jrom _data(Packet* d a ta jk _ptr, double latitude, double longitude,
double dest latitude, double destjongitude, int destination),
void Next Member. destJïom „cluster(PackeC d a ta jk _ p tr , double latitude, double
longitude double dest latitude, double destjongitude, mt nextClustei), longitude, double d estjau iu u , double latitude,int nextCluster_sourceJrom „ack_data(i aeKu aeK_ua i - J » ,
double longitude double source latitude, double sourcejongitude, tnt source),
void Next Member source from clusterjrep(Packet* r r e p j k p t r , double latitude,
double longitude double sou rceja t tude dout te b double
void Next Member_source_from_cluster acK_u<um. ^ ; .
latitude, double longitude, double sourcejatitude, double sourcejongitude,

nextCluster); Hestinationfint dest, double latitude, double longitude);
Boo ean pred,c,ulg_po > ^ ^ double |a(,tud(. double longitude);
Boolean pred. cnn g j o s u o , ¡ s fresh enough(Packet* ack_data_pk_p.r);

.« à “ ! J S ; " ï
doufcl« destjalilude, double de p l j , , . double latitude, double
void NextJvIem berjsource rr P ^ sourcejongitude, int nextCluster, int source);
ongitude, double source^ a i ’̂ .w packet* ack data__pkj3tr, double latitude, double

void Next_Member_source ac w source longitude, int nextCluster, int source);
longitude, double sourcejatitude, double souiv*. b

APPENDICES

void LORA-CBF_become_member_gate\vay(Packet* helio_pk_ptr, int source, double
latitudereceiver, double longitudereceiver, double latitude, double longitude);
void LORA-CBF_register_member_and_cluster_only(Packet* hello_pk_ptr, int source,
double Latitude_cluster, double Longitude cluster, double latitude, double longitude,
int Cluster_Neighbor, double latitude receiver, double longitude receiver);
double factor_Member_Neighbour(int nextHop);
double factor_Cluster_Neighbour(int nextCluster);
double factor_Cluster_Member(int dest);
double factor_source(int source);

/* End o f Header Block */

#if idefined (VOSD_NO_FIN)
#undef BIN
#undef BOUT
#defmeBIN FIN_LOCAL__FIELD(last_iine_passed) = _JLINE__ - _block_origin;
#defineBOUT BIN
#defmeBINIT FIN_LOCAL_FIELD(last_line__passed) = 0; _block_origin = __LINE__;
#else
#defineBINIT
#endif /* undefined (VOSD_NO_FIN) */

/* State variable definitions */
typedef struct

{
/* Internal state tracking ior FSM */

node_id;
nodeaddr;
DEBUG;
HE LEO MODE;
TTL_START;
TR;
hello jn o d u le ;
hello dist;
HELLO INTERVAL;
CLUSTER INTERVAL;

RequestSentfN];
RequestSeen[N][N];
rnyBroadcastlD;
NET DIAMETER;
NODE TRAVERSAL TIME;
N ET_TRA V ERS A L T IM E;
BROADCAST RECORD TIME;
A C TIV E R O U TE JO M EO U T;
MY ROUTE TIMEOUT;
mySeqNb;

FSM SYS STATE
/* State Variables */
Objid
int
int
int
int
double
H elloM odule
Distribution *
double
double
RequestSentAttributes
RequestSeenAttributes
int
int
double
double
double
double
double
int

APPENDICES

int
int
LocationAttributes
RetrasmissionAttributes
int
ReplySeenAttributes
Distribution *
double
Stathandle
int
Stathandle
double
double
double
double
Stathandle
Stathandle
double
double
Stathandle
double
Stathandle
Stathandle
double
double
DataSeenAttributes
AckSeenAttributes
double

TIMER RENEW;
ackNb;
Location[N];
Retransmission! N] [N] ;
Data seq_number;
ReplySeen[N][N];
transm itdist;
Range_predicted;
retransm issionshndl;
PacketRetransm it;
latency lindi;
latency start;
delay;
tot delay;
averagedelay;
average delay lindi ;
bufferpackets J in d 1 ;
buffer time;
latency_stop;
pk received lindi;
EXPIRATIONTIM E;
eficiency_hndl;
pk_transmited J in d I ;
M INIM UM TIM E;
M INIM UM DELAY;
Dataseen[N]|N];
Ackseen(N][N];
CONVERTCLUSTER;

} LORA-CBF_clusters_and_members_on!y_state;

#defme pr_state_ptr ((LORA-CBF_clusters_and_members_only_state*)
SimI_Mod_State_Ptr)
A deline n o d e j d
A deline n o d e ad d r
A deline DEBUG
A define HELLO MODE
A define TTL START
A define TR ’
A deline h e llo m o d u le
A define h e llo d is t
A deline HELLO INTERVAL
A deline CLUSTER INTERVAL
A deline R eq u es t S en t
A deline RequestSeen
A deline myBroadcastID
A deline NET DIAMETER
Adeline NODE TRAVERSAL J LML
A deline NET ERA VERSA LJEIM E

pr_statc__ptr->nodeJd
pr_state_ptr->node_addr
pr_state_ptr->DEBUG
pr_state_jilr->HELLO MODE
pr_state_ptr->TTL_START
pr_state_ptr->TR
pr_state_ptr->hello_module
pr_state_ptr->hello_dist
pr_state__ptr->HELLOINTERVAL
pr_state_ptr->CLUST§R INTERVAL
pr_state__ptr->RequestSent

pr_state_ptr->RequestSeen
pr_state_ptr->myBroadcastID
pr_state_ptr->NET_DIA METER

pr_state_ptr->NODE_TRAVERSAL_TJME
pr_state_ptr->NET_TRAVERSAL TIME

176

APPENDICES

#define BROADCAST RECORD TIME pr_state_ptr-
>BROADCAST_RECORD_TIME
//define ACT1VE_R0UTE_TIM E0UT pr_state_ptr->ACTIVE ROUTE TIMEOUT
//define M Y_R O U TE_T I ME OU T
//define mySeqNb
//define TIMER_RENEW
//define ackNb
//define Location
//define Retransmission
//define Data_seq_number
//define ReplySeen
//define transmit_dist
//define Range_predicted
//define retransmissions hndl
//define Packet Retransmit
//define latency J in d l
#define latency_start
//define delay
//define tot delay
//define average_delay
//define av e rag ed e lay h n d l
//define buffer_packets_hndl
//define buffer time
//define latency_stop
//define pk received J in d l
//define EXPIRATIO N JTM E
//define eficiency hndl
//define pk transmited hndl
//define MINIMUM TIME
//define MINIMUM DELAY
//define Dataseen
//define Ackseen
//define CONVERT CLUSTER

pr_state_ptr->MY_ROUTE TIMEOUT
pr_state_ptr->mySeqNb
pr_statejptr->TIMER_RENEW
pr_state_ptr->ackN b
pr_state_ptr->Location

pr_state_ptr->Retransmission
pr_state_ptr->Data_seq_n uni ber
pr_state_ptr->ReplySeen
pr_state__ptr->transmit_dist
pr_state_ptr->Range_predicted
pr_state_ptr->retransmissions lindi
pr state_ptr->Packet Retransmit
pr_state_ptr->latency lindi
pr_state_ptr->latency start
pr_state_ptr~>delay
pr_state_ptr->tot delay

pr_state_ptr->average delay
pr_state_ptr->average delay hndl
pr_state_ptr->buffer_packets hndl
pr state_ptr->buffer time
pr_state_ptr->latency stop
pr_state_ptr->pk_receivedhndl
pr_state_ptr->EXPIRATION_TIME
pr_state_ptr->eficiency hndl
pr_state_ptr->pkjransm ited lindi
pr" state _ptr->MINIMUM TIME
pr_state_ptr->M 1NIM UMJ3EL A Y
pr_state_ptr->Dataseen
pr state_ptr->Ackseen
pr_state_ptr->CONVERT CLUSTER

APPENDICES

/* This macro definition will define a local variable called */
/* "op_sv_ptr" in each function containing a FIN statement. */
/* This variable points to the state variable data structure, */
/* and can be used from a C debugger to display their values. */
#undef FIN PR EA M B LE
//define FIN PREAMBLE LORA-CBF clusters and members only state
*op_sv_ptr = pr_state_ptr;

/* Function Block */

enum { block origin = ___LINE__};

111
/**************** LORA-CBF_pk_send_to_mac_layer ()*********/
111

void LORA-CBF_pk_send_to_mac layer(Packet *pk, int nextHop)
{

Ici* icijDtr;

/*
/* Send packet (pk) to the MAC layer interface. The routine also
/* installs an ICI in order to indicate the next hop address to
/* which the packet should be sent.
*/

// set IP header
// PreviousHop field = source IP address
°p_j)k nfd_set(pk,"PreviousHop",node_addr);
// NextHop field = destination IP address
°P-Pknfd_set(pk,"NextHop",nextHop);
// set TR source field for Transmission Range purpose
°p_pk nfd set (pk,"TR„source",nodeJd);
// print packet
LORA-CBF_pk_print(pk);
// create and install an ici to communicate the packet destination
H to the MAC layer interface.
ici_j)tr = op_ici_crcate("LORA-CBF_noticeJo_send");
op ici_attr_set(ici ptr,"Packet Destination ,nextHop),
° P jc i install(ici ptr);
// send packet to mac layer
°P~Pk_send(pk, S END_S TRM) :

printf(" > Packet succesfully sent to MAC layerVn");
\

APPENDICES

/********************* PRINT PACKET *********************/
/rk**^
void LORA-CBF_pk_print(Packet* pk_ptr)

ttl, pkType,nextHop,direction, previousHop,dest,num_members,
destSeqNb, broadcastID,hopCount,Type_of_node,source;
next_cluster, Transmission, seq_number;
timer,latitude,longitude;
source latitude, sourcejongitude;
dest latitude, destjongitude;

/* Print the packet given in parameter
V

// get the type o f the packet
°p_pk_nfd_get(pk_ptr,"Type",&pk'rype);
°p_pk_nfd_get(pk_ptr,"NextHop",&nextIlop);
°P_pk_nfd_get(pk__ptr,"PreviousHop",&previousHop);
°P__pk_nfd_get(pk_ptr,"SRC",&source);
°p_pk_nfd_get(pk_ptr,"DEST",&dest);
°P_pk_nfd_get(pk_ptr,"HopCount",&hopCount);
°P_pk_nfd_get(pk_ptr,"Next_Cluster",&next_cluster);
0P-Pk_nfd_gct(pk_ptr,"Dest latitude",&dest_latitude);
°P_P^_nfd_get(pk_ptr,"Dest_longitudeM,&dest_longitude),
°p_pk_nfd_get(pk_ptr,"Seq_number",&seq_number);
0P-Pk_nfd_get(pk_ptr,"SRC_direction",&direction);

timer= op sim time();

int

int
double
double
double

/*

switch(pkType) {
case DATA PACKET TYPE: // DAI A

{

op_pk_nfd get(pk_ptr,"Source_latitude", &source_latitude);

Î ^ * *’̂ * ”^ * * * °^ '* ♦ * * * ****** */\n")-nrintfif" MU /»
^ ' 7 j. j, a. j. * * n\ a T A ***+**************AnMVnrintR" /******************* DATA Packet ''**)>

. } a .^ * * lk*******************,,,***************An''V
printf(" /* From = %d\n",previousHop);
p rin iff /* To = %d\n",nextUop);
printfC /♦ Timer = %An”, timer); An„v
printtY” --- -- n ’’
Printf(" /* Source = %d\n7source);
Printf(" /♦ Destination -% d \n .dest),
PrintfC /* Sourcejatitude - %f\n",source Jat.tude);

APPENDICES

printf(" /* Source longitude = %An",source_longitude);
printf(" /* Sequencenum ber = %d\n",seq_number);
printf(" /* An");
switch(nodeid[node_addr].status_of_node) {
case Undecided: { // Undecided
printf(" /* Type of node = Undecided An");
break;

}
case Member: { // Member
printf(" /* Type of node = Member
break;

}
case C lusterhead: { // C lusterjiead
printf(" /* Type o f node = C lusterjiead
switch(Transmission) {
case ACTIVE: {
printf(" /* Status
printf(" /*
break;

case INACTIVE: {
printf(" /* Status
break;

break;
}

= Active

}

= Inactive

}

}

An");
An");

An");

An");

An");

case Gateway: { // Bridge
printfi[" /* Type o f node = Bridge An),
break;

printf("
break;

}
} ,» * * * * * » * ♦ * ♦ * * ***»***********A ii");

}

case REQUEST PACKET TYPE: // RREQ received

{
°P_pk_nfd_get(pk_ptr,"TTL",&ttl);
°P_pk_nfd _get(pk_ptr,"BroadcastID",&broadcastID);
Orint IV" /*********#***♦ ♦ ****************%****printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(

*****/ ♦ ♦ ♦ t * # * * * * * * * * » * * * , . , . , . , . , . , - ^ *An")'
/*******♦♦♦**♦♦♦* REQUEST Packet ♦ ♦♦♦******/\n»);'
/**************************** *********** ***y\jyty

/* TTL - %d\n",ttl);
/--
/* From == %d\n",previousHop);
/* Timer = % An",timer);
A......................

•An");

-An");

APPENDICES

printf(" /* source = %d\n",source);
printf(" /* Destination = %d\n",dest);
printf(" /* HopCount = %d\n",hopCount);
printf(" /* BroadcastID = %d\n",broadcastID);
printf(" /* An");
switch(nodeid[node_addr].status_of_node) {
case Undecided: { // Undecided
printf(" /* Type o f node = Undecided
break;

}
case Member: { // Member
printf(" /* Type o f node = Member
break;

}
case C lusterhead: { // C lusterhead
printf(" /* Type o f node
switch(Transmission) {
case ACTIVE: {
printf(" /* Status
printf(" /*
break;

case INACTIVE: {
printf(" /* Status
break;

Active

}

Inactive

}

Cluster head

An");
An");

An");

break;
}

case Gateway: { // Bridge
printf(" /* Type o f node
break;

Bridge

}

An");

An");

An");

An");

print (>*• /********* J******+*********************hn");
break;

case A C K R R E Q : // Acknowledge from the rreq

/ « * o » * « * i* * * t t* * M O O * O M .to * * * * * * * * w yI
/♦**♦♦****** RREQ Packet ***********/\n");

printf("
printf("
Printfl" . UrtnV
printf(" /♦ From * %d\n",previousHopj,
printf(" /* To = %d\nAncxtHop):
Printf(" /* Timer * %f\n".timer);
printiH” /
printf("

— -An");
/* Next Cluster = %d\n",next .cluster);

APPENDICES

printf("
printf("
break;

/* Destination = %d\n",dest);
/* *** + *************************** * * * * * An") *

}

case REPLY_PACKET_TYPE: // RREP received
{

°p_pk_nfd_get(pk_ptr,"DestSeqNb",&deslSeqNb);

if(nextHop > -1)
printf(" /******************* REPLY Packet ****** An");
else
printf(" /********** BROADCAST HELLO Packet **An");
printf(" y************************************* *An");
printf(" /* From = %d\n",previousHop);
printf(" /* To = %d\n",nextHop);
printf(" /* Timer = %An",timer);
p rin tff / * ... An");
printf(" /* source = %d\n",source);
printf(" /* destination = %d\n",dest);
printf(" /* Dest Latitude = %An",dest_latitude);
p rin tff /* D estjongitude = %An",destJongitude);
printf(" /* DestSeqNb = %d\n",destSeqNb);
p rin tff /* An");
switch(nodeid[node_addr].status_of_node) {
case Undecided: { // Undecided
printf(" /* Type o f node = Undecided An");
break;

}
case Member: { // Member
printff" /* Type o f node = Member
break;

}
case Cluster head: { // Cluster head
printf(" I* Type o f node ~ Cluster_head
switch(Transmission) {
case ACTIVE: {
Printff" /* status
printf(" /*
break;

- Active An");
An");

Î
case INACTIVE: {
printfc* /* Status « Inactive An");
break;

An");

An");

APPENDICES

}
case Gateway: { // Bridge
printf(" /* Type o f node = Bridge An");
break;

printf("
break;

}
}

/̂* ********************************** * */\n"

}

case HELLO PACKET TYPE: // HELLO PACKET Received
{

°P_pk_n fd_get(pk_ptr, " Ty pe_ofnode ", &Type_of_node);
°P_plc_nfd_get(pk_ptr,"Longitude", &longitude);
°P -P k_nfd_get(pk_ptr,"Latitude", Platitude);
°P_Pk_nfd_get(pk_ptr,"Transmission", &Transmission);
°P_pk_nfd_get(pk_ptr,"Num Members", &num_members);
printf("\n /************************************ * An");
if(nextHop > -1)
printf(" /***************** REPLY HELLO Packet *An");
else
printf(" /********* BROADCAST HELLO Packet ***An");
printf(" /++*** ***************************** ****/\x\ ");
printf(" /* From = %d Source = %d\n", previousHop, source);
printf(" /+ To = %d Destination = %d\n", nextHop, dest);
p rin tff /* An");
p rin tff /* Timer = %f\n",timer);
printf(" / * ... An");
printf(" /* An");
switch(nodeid[node_addr].status_of_node) {
case Undecided: { // Undecided
Printf(" /* Type o f node - Undecided An");
break;

}
case Member: { // Member An"
print**" /• Type o f node -M cm ocr
break;

}
case C lu s te r„ h e a d : { / / Cluster_hea heacj An
printi'C /* Type of node I ./od\n" ium members);
P rirnff /* Number o f Members /ud ’
switch(Transmission) {
case ACTIVE: { . a^ v
Printf(" /* Status = Active
p rim ff /*
brrcak;

}
ease INACTIVE: {

APPENDICES

printf(" /* Status
break;

= Inactive A n1*);

break;

}
case Gateway: { // Bridge
printf(" /* Type o f node
break;

= Bridge An");

printfC
printfC
printf(*
break;

r An");
/* Latitude = % f Longitude = %f\n",latitude, longitude);

*** * ** * * ** ** * * ****** ****** ******* *An")■

}

case A C K D A T A : // A C K D A T A packet received

print f(" /************ ************************* */\i]"yi
printf(" /********* ACK DATA Packet ***********An'');
printf(" /^ ******************************** *****An”)’,
printfC' /* From = %d\n",previousHop);
printf(" /* To = %d\n",nextHop);
printf(" /* Timer = %f\n'\timer);
printf(" .. An");
printf(" /* Destination = %d\n",dest);
printf(" /* source = %d\n",source);
PrintfC' /* Dest Latitude = %i\n",dest_latitude);
printf(" /* D estjongitude = % f\n",destJongitude);
printf(" /* An");
switch(nodeid[nodc_addr].status_of_node) {
case Undecided: { // Undecided
Printf(" /* Type o f node = Undecided An),
break;

case Member: { // Member
printf(" /* Type o f nodei__ • Member

case C lusterJtead: { / / Cluster J ie a d = hca(j
printfC' /* Type o f node ‘ -
switch(Transmission) {
case ACTIVE: { . An"y
printfC’ /* Status =* Active
printf(" /*
break;

An");

An");

APPENDICES

case INACTIVE: {
printf(" /* Status
break;

}
break;

= Inactive

}

}

An");

case Gateway: { // Bridge
printf(" /* Type of node = Bridge An");
break;

}
}

print f(" /*********************************** * An");

break;
}

}
}

/**/
/***************** check if pk sent by node within TR ***********/
Z**/

Boolean LORA-CBF_pk_is_injr(Packet * pk_ptr)

{
O b jid so u rce id;
d o u b le x ,y ,z ;
d o u b le la titu d e ,lo n g itu d e ,a ltitu d e ;
d o u b le x__source,y_source ,z_source;

double dist;
Boolean result^ OPC__FALSE;

/*
/* C h eck w h e th e r th e so u rce n o d e o l the p ack e t is w ith in
/* R an g e _ p re d ic te d fro m th e cu rren t n ode o r not.
*/

/ / R ead th e O b jid o f th e so u rce node
°p_pk nfd_get(pk_ptr,"TR_source ,&source_i),
/ /G e t th e p o s itio n o f th e c u rren t n o d e . 0 , p „ p x
opJ manodejtos g e t (n o d e j d . & la titu d e ,& lo n g .tu d e , & a ltn u d e , & x , & y , & z);

//G e t th e p o sit ion o f th e so u rce n o d e . ,
o p _ im a _ n o d e _ p o s_ g e t (s o u r c e J d , & la titu d e ,& lo n g .tu d e , & a ltitu d e , & X_ so u rce ,

& y__source, & z so u rce);

(« - - «) • (« ~ c e , .

z__source));

if ((dist > 0.0) && (dist <= TR))

APPENDICES

{
result= OPCTRUE;

}

return result;
}

l t l
y*********************** HANDLE HELLO MESSAGE ************/
///
void LORA-CBF_heIlo_msg_reeeive(Packet* he!lo_pk_ptr)

/* Phis routine processes the upcoming hello message.
V
// begin

H packet read
op_pk_nfd_get (hello_pk_ptr,"PreviousHop",&previousHop);
°P_Pk_nfd_get (hello_pk_ptr,"NextHop",¿nextHop);
op_pk_nfd_gel(hello_pkjnr,"SRC",¿source);
op pk nfd get (hello_pk_ptr,"DEST ",&dest);
HN.B. hop count field is incremented by 1 at reception

°P_pk_nfd_get (hello_pk_ptr,"HopCount",&hopCount);
°P_pk_nfd set (helIo_pk_ptr,"HopCount",hopCount+l);
°P_pk_nfd_get (hello_pk _ptr,"HopCount",&hopCount);
°P_pk_nfd get (hello_pk_ptr,"Type_of_node",&Type_of_node);
°P_pk nfd get (hellojkj>tr,"Latitude",¿lalitude_receiver);
°P-Pk_nfd get (hello_pk_ptr,"Longitude",¿longitude_receiver);
°P_pk nfd get (hello_pkj3tr,"Latitude_cluster",&Latitude_cluster);
°P_pk_nfd get (hello_pk_ptr,"Longitude_cluster",&Longitude_cluster(;
°P_pk nfd get (hello j>kjMr,"Cluster_ Neighbor",¿Cluster_Neighbor);
°P._pk nfd get (heIlo_pk_ptr,"Transmission", ¿transmission);
°P_pk nfd get (hello_pk_ptr,"NumMembers", ¿num members);

i f (nextHop = BROADCAST)

// var
ini i, nextHop, nummembers;

source, dest, hopCount,Cluster_Neighbor;
previousHop,Type of node, transmission, Members;
latitude, longitude, altitude, x_pos,y_pos,z_pos;
Latitude_cluster,Longitude_cluster;
latitude_receiver, longitude receiver;
comp code;

ini
int
double
double
double
Compcode

18«

APPENDICES

printf(" > A BROADCAST Hello Packet Received (from node
%d)\n", source);

}
else

printf(" > A Reply Hello Packet Received (from node %d)\n",source);

}
node_id = op_topo_parent (op_id_self());
comp code = op ima_obj_pos_get (node_id, ¿¿latitude, ¿¿longitude, &altitude,
&x_pos, &y_j>os, &z_pos);

/* This line tests the completion code, and upon detecting iailure, calls op_sim_end () to
$ j

/* immediately end the simulation and print and error message to the standard output
device,*/ ^
/* and the opnet message area.

if (comp code — OPC_COMPCODE_FAILURE)
°p_sim_end ("get attributes failed",

switch(nodeid[node_addr].status_of_node) {

case Undecided:

if ((Type_of_node — Cluster_head) && (hopCount — 1))

LORA-CBF_become_member_from_undecided(helloj)k_ptr, source,

latitude_ receiver, longitude_receiver, latitude, ongi u

}
else

op jpk destroy (hello p k jitr);
} '

break;
} // End o f the case Undecided

case Member:

if ((Type o f node » C lusterhcad) && (hopCount — 0)
{

if(nodeidjnode a d d r] , cluster .head source)

{ , . , . Q iiello message from its {{ClusterPrintf(" > The {{M ember % d}} has recencd

%d}}\nH, node addr, source); tqiitude receiver,
hORA-CBF become _ mcmber(heUo_pk j r t r , so
i°ngitude receiver, latitude, longitude),

APPENDICES

else

if ((op sim time () - nodeid[node_addr].member_timer) < EXPIRATION TIME)
{

printf(" > The {{Member % d}} has received a Hello message from the {{Cluster

%d}}\n", n o d ead d r, source);LORA-CBF_become_member_gateway(hello_pk_ptr, source, latitude_receiver,

longitudereceiver. latitude, longitude);
}

else

printf(" > The {{Member % d}} hasn't received any hello packet from its {{Cluster
head %d) }\n",node_addr, nodeid[node_addr].cluster_head);
printff > Changing its state to Member o f the new {{Cluster head %d} }\n", source);

LORA-CBF_become_member(hello_pk_ptr, source, latitude_receiver,

longitude receiver, latitude, longitude);
}

i

else if ((Type o f node == Member) && (hopCount = 1))

il (nodeidfnode addrj.cluster head != nodeid[source].cluster_head)

printf(" > T h e {{Member %d}} has received a Hello message from one {{Member

% d}} o f different cluster\n",node_addr, source);
LORA-CBF register member(hello_pk_ptr, source, Latitude_cluster,
Longitude cluster, latitude, longitude, Cluster_Neighbor, latitude_receiver,

longitude receiver);

. ~ i
else

printf(u > The {{Member %d}} has received a Hello message from one {{Member

%d}} o f the same cluster\n",node_addr, source);
LORA-CBF regisler member and_cluster_only(hellojpk_ptr, source,
L atitu d es I uster, Longitude_cIuster. latitude, longitude, Cluster_Neighbor,

latitude receiver, longitude receiver);
\/

{
op j tk destroy (hello_pkjttr);

break;

' u i nd o f case Member

188

APPENDICES

case Cluster head:

{
if ((T y p e o fn o d e == Cluster head) && (hopCount == 1))

{
printf(" > Receiving a Hello msg from {{Cluster head %d } }\n",source);

Members = 0;
for (i=0; i<N; i++)

{
d ((Cluster_Member[node_addr][i].status = IN SERVICE) && ((op sim time () -
Cluster_Member[node_addr][i]. timer) < EXPIRATIONTIM E))

Members++;

else

<

}

{

}

}

d (Members <= num members)

printf(" > There are two C lusterjiead in the same Cluster\n");
p rin tff > The {{Clusterjiead % d}} has {{%d m em bers)} and the {{Clusterjiead
0/°d}} has {{%d members) }\n", node_addr, Members, source, num members);
Printf(H > Converting the Cluster head %d into a memberVnnodejiddr);

LORA-CBIJm em ber from cluster head(hello_pk_ptr, source, latitudej-ecciver,

longitude receiver, latitude, longitude);

else if ((Type o f node — Member) && (hopCount — D)

I ()RA-CBI register member and cluster head(hello pk ptr, source,
•}titude receiver, longitude receiver, latitude, longitude, Latitude_cluster,
w0ngitude_cluster. Cluster Neighbor);

189

APPENDICES

}

else if ((Type__of_node —= Undecided) && (hopCount 1))

{

printf(" > Receiving a Hello packet from {{undecided node /od]} \n , source),

op pk destroy (hello_pk_ptr);

}

break;
}

I

}

i im ii i i i i i im iiiim iiii i i i i i i i iM ***************/
/********* Become Member from Undecided
iinii11111111111111111111111111

void I ORA CRF become member from_undecided(Packet* hello_pk_ptr, int source,
d o u b l e d receiver, double loniitudelreceiver, double latitude, double longt.ude)

{

int T y p e o f jio d e ;

° p e v _ c a n c e l(h e lio iTiodule.evt);

'lusterfnode addr].Clustcr|source] - source;
odeid[node_addr].cluster_head = source;
odcid[nodc_addr].member_timer - op_sim_ttme A

-luster Neighbour[node_addr] [source].prev
Ciuster_Neighbour[node_addr] source], a b tu d e ,^

"luster Neighhour[node_addr][source].pre\i
Cluster Neighbour[nodejjddr][source].longitude,

Cluster Neighbour[node_addr][source].pre\10~
Cluster Neighbour[node_addr][sourcc].ti ,

-luster Neighbour!node_addr][source].status I L timef)''luster:Neighbour|node_addr][source].t.mer - op_s,m Jtm et),

„ . . . | latitude = latitude_receiver;
- uster_Neighbour[node_addr sou • = iongilude receiver;
-luster Neighbour!node_addr][sourcel.longitude ~

APPENDICES

printf(" > Registrating the attributes for the {{Cluster Head % d}} at the {{node
%d}} \n",Cluster[node_addr].Cluster[source], node addr);

nodeid[node addr].status of node = Member;
Type_of_n°de = Member;

°p_pk_nfd__set (hello_pk_ptr, "HopCount",0);
°P_pk_nfd_set (hello_pk_ptr, "SRC",node_addr);
°p_pk_nfd set (hello_pk_ptr, "DEST",node_addr);
°p_pk_nfd_set (hello_pk_ptr, "Type o f node", Type_of_node);
°p_pk_nfd_set (hello_pk_ptr, "Latitude", latitude);
°p_j)k_nfd_set (hello_pk_ptr, "Longitude", longitude);
°P_pk_nfd set (hello_pk_ptr, "C lusterNeighbor", source);
°P_pk_nfd_set (he!lo_pk_ptr, "Latitudecluster", latitude_receiver);
°p__pk nfd set (hello_pk_ptr, "Longitude cluster", longitude receiver);

LORA-CBF_pk_send_to_mac_layer(helIo__pk_ptr, BROADCAS f);
nodeid [node_addr] .evt_cluster = op_intrpt_schedule_self(op_sim_time () +
(CONVERT CLUSTER + op_dist_outcome(transmit_dist)), CLUSTER_HEAD);

printf (" - Packet sent back to Cluster Head (from node %d)\n",node_addr);

}

11
/* * * * * * * * * L O R A -C B F _ b e c o m e _ M e n ib e r * /

l i l l l l l l l l f l

void LORA-CBF become_member(Packet* hello pk ptr, int source, double
latitude_receiver, double longitude_receiver, double latitude, double longitude)

{

int Type ofjiode;

°p__ev cancel (nodeid [nodeaddr] .evt_c l uster);

(luster[node_addr].Cluslerjsource] * source;
nodeidjnode addr).cluster head = source;
nodeid|node addr].member timer = op_sim_time ();

luster_Neighbour[node addr][source].previa latitude =
Cl uster__Neighbour[node_addr][source]. latitude;

usier_Neighbour[node addrjfsource].previa longitude =
Cluster_Neighbour[node_addr] [source], longitude;

uster_Neighbour[node addr](source].previo timer =
Cluster_Neighbour[nodeaddr] [source], tinier;

APPENDICES

Clustcr_Neighbour[node_addr][source].status = IN SER V ICE;
Cluster_Neighbour[node_addr] [source].timer = op_sim_time ();

Cluster_Neighbour[node_addr] [source]. latitude = latitude_receiver;
Cluster_Neighbour[node_addr] [source], longitude = longitude_receiver;

printf(" > Registrating the attributes for the {{Cluster Head %d}} at the {{node
% d}} \n",source, node addr);

n o d e id [n o d e _ a d d r] .s ta tu s o f no d e - M em b er;

T y p e o f n o d e = M em b er;

° p _ p k _ n fd _ s e t (h e llo _pk_ptr, "H o p C o u n t" ,0);
° p _ p k _ n fd _ s e t (h e llo _ p k _ p tr , "T y p e_ o f_ n o d e" , 1 y p e_ o f_ n o d e);

° p _ p k _ n fd _ s e t (h e llo _ p k _ p tr . "S R C ", n o d e_ ad d r);
o p _ p k _ n fd _ se t (h e llo _ p k _ p tr , "D E S T ", so u rce);
°p_pk_nfd_ set (hello_pk_ptr, "Latitude", latitude);
°P_pk nfd set (hello__pk_ptr, "Longitude", longitude);
°P_pkjifd_set (hello_pk_ptr, "CIuster_Neighbor", source);
op_pk nfd jset (hello_pk_ptr, "Latitude_cluster", latitude_receiver);
0P~pk_nfd_set (hello_pk_ptr. "Longitude_cluster", longitude_receiver),

L O R A -C B F _ p k _ se n d to m a c la y e rth e llo p k _ p tr , B R O A D C A S 1),

• c^hpdule se lf(o p s im _ tim e () +n o d e id [n o d e a d d r l.e v t^ c lu s te r * o p jn t r p t . s c h e d u p C L U S T E R H E A D);
(C O N V E R T lC L U S T E R + o p _ d is t_ o u tco m e (tran sm it_ d is t)) , c u u s _

. , i- c lu s te r H ead (fro m n o d e % d)\n " ,n o d e _ ad d r);p r in t f (" - P ack e t se n t b ack to C lu s te r i te a u i.

}

iiiiiiiiiiiiiiiiiihiiiiiiiiiiiiiiiiiiiiiiiiiiii'lllllllllllJ l'lllll̂ llllll l l̂ ll̂ i » y ********* I
I * * * * * * * * * * * * l o R A -C B F becomeJ W e m b e r J r o m ^ a t c a>

IllllllllllllllllllllllllllllllllllWIIIli'llllllll1111111111111111111111

,v tP ncket* h e llo p k _ p tr, in t so u rce , d o u b le
v o id L O R A -C B F b e c o m e _ m e m b e r_ g a te w a y (l d d o u b le lo n g itu d e)
la titu d e .re ce iv e r , d o u b le lo n g itu d e _ re c e .v e r, d o u b le la n .u d e ,

l
in t T y p e o f n o d e ;

°P-_cv canceKnodeid[nodejiddr].evt^cluster),

Cluster)node addr].Cluster[$ource] - source;

Cluster Neighbour[node__addr][sourcej.previaJati
Cluster_Ncighbour[node_addr][source].Jat'Wde^ ^

f luster N eighbour) node_addr)lsw rce]pr®^-^^^e.
Cluster Neighbour [node_addr][s

APPENDICES

C lu s te r_ N e ig h b o u r[n o d e_ ad d r] [so u rce].p rev io _ tim er -
C lu s te r_ N e ig h b o u r[n o d e_ ad d r] [so u rce].tim er;

C lu s te r_ N e ig h b o u r[n o d e_ ad d r] [so u rce].s ta tu s = IN S E R V IC E ;
C lu s te r_ N e ig h b o u r[n o d e_ ad d r] [so u rce].tim e r = o p _ sim _ tim e ();

Cluster_Neighbour[node_addr][sourceJ. latitude = latitude_receiver;
Cluster_Neighbour[node_addr][source].longitude = longitude_receiver;

p rin tf(" > R eg is tra tin g the a ttrib u tes fo r the {{C luster H ead % d } } at th e {{node

% d}} \n " ,so u rc e , n o d e_ ad d r);

n o d e id |n o d e ad d r].sta tu s_ .o f_node - M em b er;

T ype_of_ n o d e = M em b er;

°p__pk_nfd_set (h e llo _ p k _ p tr , "H o p C o u n t , K j

° p _ p k n fd se t (hello__pk_ptr, " I ype__of_.no e , yPc- _
°p__pk_nfd_set (h e llo _ p k _ p tr , "S R C , n o d e_ a r),
°P__pk n fd se t (h e llo _ p k _ p tr , "D E S I ", so u rce),
°P_pk~nfd set (hello_pkjptr, "Latitude", latitude);
o p jk ln f d ls e i (hello_pk_ptr. "Longitude1, longitude)
op pk nfd set (hello pk ptr, "Clustep Neighbor « f»'
op pk nfd set (hello jk _ p t r . "Latitude_cluster a i udercs e v e ,
o p i l n f d l s e t (h e llo _ p k p tr, " L o n g itu d e .c lu s te r , lo n g .tu d e_ re ee .v e r) ,

L O R A -C B F _ p k _ se n d _ to _ m a c _ la y e r(h e llo _ p k _ p tr , B R O A D C A S T),

n o d e id [n o d e a d d r j.e v t c lu s te r = o p _ in t rp t_ s c h e d u le se 'j i . .^ C L U S T E R _ H E A D) ;
(C O N V E R T C L U S T E R + op_d ist__outcome(tran sm it_

p r in tf (" . P ack e t se n . back to C lu s te r H ead (fro m n o d e % d)\n '\n o d e _ a d d r) ;

W /// //jf/ // // // /^(C,/i{^ r h e a d * * * * * * * * * * * * * /
* * * * * * * * * * | X)R A -C B F M e m b e r J r o m C u* « „

LO R A -C B F m e m b e r fro m c lu s te r head (P acket* h e llo p k .ptr, in t sou rce ,
L* la titu d e rece iv e r , d o u b le lo n g itu d e rece iv e r, d o u b le la titu d e , d o u b le longi

1 /»ili id/» \

{
m t ly p e o f n o d e ;

°P_ev_cancel(node id [nodeaddr].evt_c lu s te r).

C lu ste r) n o d e _ a d d r] .C lu s te r[so u rc e] so u

> 'o d e i d [n o d e _ a d d r] . c l u s t e r _ h e a d - s o u « • , i m e Q ;

n o d e id jn o d e a d d r] .m e m b e r_ u m c r P~

APPENDICES

Cl uster_Neighbour[node_addr] [source].previajatitude =
Cluster_Neighbour[node_addr][source].latitude;

Cluster_Neighbour[node_addr] [source], previaJongitude =
Cluster_Neighbour[node_addr][source].longitude;

Cluster_Neighbour[node_addr][source].previo_timer =
Cluster_Neighbour[node_addr][source].timer;

C lu s te r_ N e ig h b o u r[n o d e_ ad d r] [so u rce].s ta tu s = IN _ S E R V IC E ;
C lu s te r_ N e ig h b o u r[n o d e_ ad d r] [so u rce].tim e r = o p _ s im _ tim e ();

Cluster_Neighbour[node_addr][source].latitude = latitude_receiver;
Cl uster_Neighbour[node_addr] [source]. longitude = longitude_recei ver;

printf(" > Registrating the attributes for the {{Cluster Head % d}} at the {{node
%d}} \n",source, node addr);

nodeidfnode addr].status_of_node = Member;
Typeofnode = Member;

°p_pk_jifd set (hello_pk_ptr, "HopCount",0);
°P~pk~ nfd "set (hello__pk_ptr, "Type_of_node", Type_of_node);
°p_pk_nfd_set (hello_pk_ptr, "SRC", node_addr);
°P J>k__nfd set (hello_pk_ptr, "DEST", source);
°P__pk nfd set (hello_pk_ptr, "Latitude", latitude);
°p_pk nfd set (hcllo_j>k_ptr, "Longitude", longitude);
0P__pk nfd set (hello_pk_ptr, "Cluster_Neighbor", source);
°PJ3k nfd_set (hello _pk_ptr, "Latitude_cluster", latitude_receiver);
°P-Pk_nfd_set (hello_pk__ptr, "Longitude_cluster", longitude_receiver);

1 -O R A -C B F jp k se n d _ to _ m ac ja y e r(h e llo _ p k _ _ p tr , B R O A D C A S T),

nodeid[node_addr].evt_ciuster = op_ Jntrptjschedulcj»elf(op_sim „time () +
(C O N V E R T C L U S T E R t op„dist_outcome(transmit_dist)), C L U S T E R _ H E A D);

printf (" - Packet sent back to Cluster Head (from node %d)\n'\node_addr);

}

APPENDICES

11
/* * * * * * L O R A -C B F _ R e g is t e r _ M e m b e r * * * * * * * * * * * * * * * * * * * /

11

v o id L O R A -C B F _ re g is te r_ m em b er(P ack e t* h e l lo _ p k j3 tr , in i so u rce , d o u b le
L a titu d e_ c lu s te r, d o u b le L o n g itu d e_ c lu ste r, d o u b le la titude, d o u b le lo n g itu d e , int
C lu s te r N e ig h b o r, d o u b le la titu d e rece iv er, d o u b le lo n g itu d e_ rece iv e r)

T y p e o fn o d e ;

if ((op_sim_time () - Member_Neighbour[node_addr][source].timer) >

M IN IM U M T IM E)

Member Neighbor!node_addrJ.Member_Neighborfsource] — source,

Member Neighbour[node_addr][source].previa latitude
Member_Neighbour[node_addr][source].latitude.

M e m b e r Neighbour[nodejaddr] [source] .p rev ia_longitu e
M em ber_Neighbour[node_addr] [source].longitude;

Member N e ig h b o u r[n o d e _ a d d r][so u rc e] .previo timer
Member_Neighbour[node_addr] [source] .timer;

M em b er N e ig h b o u r[n o d e _ a d d r][so u rc e] .s ta tu s IN _ S E R V I ,
Member _Neighbour[node_addr][source].timer °P -Sinl-

Member Neighbour[node_addr)[source].latitude ^fnnaitude receiver’
M e m b e r ~ N e i g h b o u r [n o d e _ a d d r] [s o u r c e] . longitude - longrtudejtctive ,

P-irnf," > Regisiraiing ,he m .r ib u ,« for ,l,c » M e m b e r « !) „ ,be « « * « »

\n",source, node addr);

if «op sim time 0 . C to » e -_ N « i8 h b o o ,|o o d e> *]|C lp « ..N » e hbo,»imer) >

M IN IM U M T IM E)

{
C!uster[nodc_addr].ClusterlClusler_Neighbor]-Clustcr_Neighbor,

tMiBter_Neighbour[node_addr][CIuster Neighbor^prew it^de;
C lu s te r Neighbourlnode_addrl[Cluster_Neignu j

^'luster Neighbour[node_addr|lCluster N e tg h b O T]T rt\w „^8 ^^^^
Cluster_Neighbour[node_addr][(-lustt _ fc

Cluster Neighbour)node_addr)K Neighbor].timer-
Cluster Ncighbour!node_addrllt - ̂ SERVICE;

Cluster_Neighbour[nodeaddr)(Cluster_Ncighbor]

APPENDICES

Cluster_Neighbour[node_addr][Cluster_Neighbor].timer = op_sim_time();
Cluster_Neighbour[node_addr][Cluster_Neighbor].latitude = Latitudecluster;
Cluster_Neighbour[node_addr][Cluster_Neighborj. longitude = Longitude_cluster;

printf(" > Registrating the attributes for the {{Cluster Head % d}} at the {{node
%d}} \n",Cluster_Neighbor, node_addr);

n o d e id [n o d e _ a d d r] .s ta tu s_ o f_ n o d e = M em b er;
T y p e _ o f_ n o d e = M em b er;

°p_pk_nfd_set (hello__pk_ptr, "HopCount",0);
°p_pk_nfd_set (heüo_pk_ptr, "Type_of_node", Type_of_node);
0p_pk_nfd_set (hello_pk_ptr, "SRC", node_addr);
°P_pk_nfd_set (hello_pk__ptr, "DEST", source);
°p_pk_nfd_set (hello_pk_ptr, "Latitude", latitude);
°p__pk_nfd set (hello_pk_ptr, "Longitude", longitude);
°P_pk_nfd_set (hello_pk_ptr, "Cluster_Neighbor", Cluster_Neighbor);
°p__pk_nfd_set (hello_pk_ptr, "Latitude_cluster", Latitude_cluster);
°p_j)k_nfd_set (hello_pk_ptr, "Longitude_cluster", Longitude_cluster);

LORA-CBF_pk_send_to_mac_layer(hello_pk_ptr, BROADCAST);

printf (" - Packet sent back to node Cluster Head (from node %d)\n",node_addr);

}

}

o p _ p k _ d es tro y (h e llo _ p k _ p tr);

} '

'lll11111'11111111̂ 1111̂ 111111. *********/
* * * * * * * * * * * * * * * * * L O R A -C B F _ R e g is t c r _ M e m b e r t o n i)

'iii1111111111111111111111111111
•oid LORA-CBF_register_member_and_cluster_only(I’ack e l* h c ll(U p k jtr^ n l source.

louble L a titu d e cluster, d o u b le Longitude_cluster, ou t rece iv e r)
ut C lu s te r N e ig h b o r , d o u b le la titu d e_ rece iv e r, d o u b le lo n g itu _

f((op sim time () - Member_Neighbour[node_addr][source].timer) >

M IN IM U M T IM E)

Member_Neighbor[node_addr].Member_Neighbor[source] = source;

Member Neighbour[node_addr]lsource].pre\ia_ a
Member Neighbour[node_addr]|source]. a > - =

Member Neighbour!node addr][source].prcvia ° ‘ b
Member Neighbour!nodc_addr]lsourcel.longitude.

Member_Neighbour[node_addr] [source].previotim er =
Member_Neighbour[node_addr] [source], timer;

Member_Neighbour[node_addr][source]. status = IN SER V ICE;
Member_Neighbour[node_addr] [source], timer = op sim time ();

Member_Neighbour[node_addr] [source] .latitude = latituderecei ver;
M em berN eighbourjnodeaddr] [source], longitude = longitudereceiver;

printf(" > Registrating the attributes for the {{Member % d}} at the {{node % d}}
\n",source, node_addr);

}
if ((op sim time () - ClusterJ'leighbour[node_addr][CIuster_Neighbor].timer) >
M IN IM U M TIM E)

{
Cluster[node_addr].Cluster[Cluster_Neighbor] = Cluster_Neighbor;
Cluster_Neighbour[node_addr][Cluster_Neighbor].previa_latitude =

Cluster_Neighbour[node_addr][Cluster_Neighbor].latitude;
Cluster_Neighbour[node_addr][Cluster_Neighbor].previa_longitude =

Cluster_Neighbour[node_addr][Cluster_Neighbor].longitude;
Cluster_Neighbour[node_addr][Cluster_Neighbor].previo_timer =

Cluster_Neighbour[node_addr][Cluster_Neighbor].timer;

Cluster Neighbour[node_addr][Cluster_Neighbor).status — IN_ShRVICE,
Cluster_Neighbour[node_addr][Cluster_Neighbor].timer — op_sim_time(),

Cluster_Neighbour[node_addr][Cluster_Neighbor].latitude — Latitude_cluster,
Cluster~Neighbour[node~addr][Cluster_Neighbor].longitude = Longitude_cluster;

printf(" > Registrating the attributes for the {{Cluster Head % d}} at the {{node
%d}} \n",Cluster_Neighbor, node_addr);

}
0P_J>k_ destroy (hello_pk_ptr);

}

APPENDICES

ll
/* * * * * * * * * L O R A -C B F _ R e g is te r_ M e m b c r a n d C lu s te r - h e a d * * * * * * * /
/ / / / / / / / / / / / / / / / / / ^

v o id L O R A -C B F _ re g is te r_ m em b er_ an d _ c lu s te r_ h ea d (P a ck e t* h e llo _ p k _ p tr , in t so u rce
d o u b le la titu d e_ rece iv e r, d o u b le lo n g itu d e_ rece iv e r, d o u b le la titu d e , d o u b le lo n g itu d e ,
d o u b le L a titu d e_ c lu s te r, d o u b le L o n g itu d e_ c lu ste r, in t C lu s te rN e ig h b o r)

{
i f ((C lu s te r_ N e ig h b o r != n o d e_ ad d r) & & (C lu s te r_ N e ig h b o r != -1) & &
((o p _ s im _ tim e () - C lu s te r_ N e ig h b o u r[n o d e_ ad d r][C lu s te r_ N e ig h b o r] .tim e r) >
M IN IM U M T IM E))

{
C lu s te r_ N e ig h b o u r[n o d e_ ad d r][C lu s te r_ N e ig h b o r] .p rev ia J a t i t u d e =

C lu s te r_ N e ig h b o u r[n o d e_ ad d r][C lu s te r_ N e ig h b o r]. la titu d e ;
C lu s te r_ N e ig h b o u r[n o d e_ ad d r] [C lu s te r^ N e ig h b o r] .p rev ia_ lo n g itu d e =

C lu s te r_ N e ig h b o u r[n o d e_ ad d r][C lu s te r_ N e ig h b o r] .lo n g itu d e ;
C lu s te r_ N e ig h b o u r[n o d e _ a d d r][C lu s te r_ N e ig h b o r] .p re v io _ tim e r =

C lu s te r_ N e ig h b o u r[n o d e_ ad d r][C lu s te r_ N e ig h b o r] .tim e r;

C lu s te r_ N e ig h b o u r[n o d e _ a d d r][C lu s te r_ N e ig h b o r] .s ta tu s = IN _ S E R V IC E ;
C lu s te r_ N e ig h b o u r[n o d e _ a d d r][C lu s te r_ N e ig h b o r] .tim e r = o p _ s im _ tim e () ;

C lu s te r_ N e ig h b o u r[n o d e _ a d d r][C lu s te r_ N e ig h b o r] .la titu d e = L a titu d e_ c lu s te r;
C lu s te r_ N e ig h b o u r[n o d e _ a d d r][C lu s te r_ N e ig h b o r] .lo n g itu d e = L o n g itu d e _ c lu s te r ;

C lu s te rh ead [n o d e _ a d d r] .C h [C lu s te r_ N e ig h b o r]= C lu s te r_ N e ig h b o r;

p r in tf (" > R eg is tra tin g th e {{ C lu s te r J ie a d N e ig h b o r % d } } * ** \n" ,
C lu s te rN e ig h b o r) ;

if ((op_sim_time () - Cluster_Member[node_addr][source].timer) > M IN IM U M T IM E)

C lu s te r Member[node_addr][source] .previa_1 atitude
ClusterJMember[node_addr] [so u rce].la titu d e ;

Cluster_Member[node_addr][source].previa longitude -
Cluster_Member[node_addr] [source]. longitude;

Cluster_Member[node__addr] [source].p rev io _ tim er =

Cluster_Member[node_addr] [source], timei;

C lu s te r M em b er[n o d e _ a d d r][so u rc e] .s ta tu s = IN -S E R V IC E ;
Cluster_Member[node_addr][source].tinier op_sim_time (),

Cluster Member[node-addr][source].latitude = latitude-receiver;
Cluster:Member[node-addr][source].longitude = longitude-receiver;

Clusterhead[node-addr].Memberjd[source]« source;

APPENDICES

printf (" > Registrating the {{Member %d} }\n",source);
}

op pk destroy (hello_pk_ptr);
} ‘

IIIH H III
I * * * * * * * * * L O R A -C B F _ R e g is te r_ C lu s te r -h e a d * * * * * * * * * * * * * * * /
IIIH IIIIIIIIIH IIIH III

void LORA-CBF_register_cluster_head(Packet* hello_pk__ptr, int source, double
latitudereceiver, double longitude receiver, double latitude, double longitude)

{
Cluster_Neighbour[node_addr][source].previa latitude =

Cluster Neighbour[node_addr][source].latitude;
Cluster_Neighbour[node_addr][source].previa longitude =

Cluster_Neighbour[node_addr][source].longitude;
Cluster_Neighbour[node_addr] [source].previo_ timer =

Cluster_Neighbour[node_addr][source].timer;

Cluster_Neighbour[node_addr][source].status = IN SE R V IC E ;
Cluster_Neighbour[node_addr][source].timer = op sim time();

Cluster Neighbourfnode addr][source].latitude = latitude receiver;
Cluster_Neighbour[node_addr][source].longitude = longitude receiver;

Clusterhead[node_addr].Ch[source]= source;

printf (" > Registrating the {{ Cluster_head Neighbor % d}} **********\n ,,) source);

op pk destroy (hello_pk_ptr);
}

APPENDICES

lll
yyy***************** L O R A -C 'B F d a ta p k () ***** * * * * * * * * * * * * y

lllîîllllll

void LORA-CBF_data_pk(Packet* data_pk_ptr)
{

int
Boolean
double
double
double
Compcode

dest, nextCluster;
resu ltcluster = O PC FA LSE;
latitude, longitude, altitude;
x_p°s, y_pos, z_pos;
dest latitude, dest longitude;
comp_code;

/*
/* Receive the upcoming data packet stream from the
/* upper layer and before to send it.
/* First the packet is placed in a queue and send RREQ
*/
// read packet
°p_pk_nfd_get(data_pk_ptr,"DEST",&dest);

printf(" - Function LORA~CBF_data_pk(destination %d)\n",dest);

printf (" > Check Routing table for the destination. \n");
if ((Location[dest].latitude != 0.0 && Location[dest].longitude != 0.0) &&
((op sim time () - Locationfdest] .timer) < EXPIRA I ION_ IIM E) ||
(Cluster_Member[node_addr][dest].latitude != 0.0 &&
Cluster_Memberfnode_addr][dest].longitude != 0.0) && ((op_sim_time () -
Cluster_Member[node_addr][dest].timer) < EXPIRATION I IME))

L O R A -C B F _ d a ta_ p k _ q u eu e (o p _ p k _ co p y (d a ta _ p k _ p tr)) ;

node id = op topo_parent (op_id_selt());
comp code ~ op ima obj_pos_get (node_id, &.latitude, &longitude, &altitude,
&x_pos, &y_pos, <fez_pos);

/* T his line tests the completion code, and upon detecting failure, calls op_sim end () to
<7
/* immediately end the simulation and print and eiroi message to the standard output
device,*/
/* and the opnet message area. */

if (comp code =rï=: OPC COMPCODE FAILURE)
op sim end (Mget attributes iaileci , , 5)>

dest latitude = Location[dest].latitude;
dest longitude ~ Locationfdest].longitude;

200

APPENDICES

op_pk nfd set (datajk_j)tr,"D est latitude",dest latitude);
°p_pk_nfd_ set (data_pk_ptr,"Dest longitude",dest longitude);
op_pk_nfd_set (data_pk_ptr,"DEST",dest);
op_pk_nid_set (data_pk_ptr,"SRC",node_addr);
°p_pk_nfd_set (data_pk__ptr,"Source latitude",latitude);
op_pk_nfd_set (data_pk_ptr,"Source longitude",longitude);
op_pk_nfd_set (data_pk_ptr,"Seq_number",Data_seq_number);
printf("

if (nodeid[node_addr].status_of_node == Cluster head)
{

if (((Clusterhead[node_addr).Member id[dest] — dest) || (node addr == dest)) &&
((op sim time () - Cluster_Member[node_addr][dest].timer) < EXPIRATION TIME))

op_pk_nfd_set (data_pk_ptr, "Next_Cluster",node_addr);

// send data packet
LORA-CBFj)k_send_to_m acJayer(data_pkj)tr,dest);

delay start = op sim time ();

else
{
//Finding the next Cluster head

nextCluster = nextCIuster_dest_from_data(data_pk_ptr, latitude, longitude,
dest latitude, destjongitude, dest);

//Finding the next Member to the destination

Next_Member_dest_from_cluster(data_pk__ptr, latitude, longitude, destJatitude,deslJon
gitude,nextCluster);

delay start = op sim_time ();
}

else if (nodeid|node addr].status_of_node =— Member)

printf(" > Looking for the nearest cluster_head to the destination \n");

nextCluster — nextCluster_dest__lrom__data(data_pk_ptr, latitude, longitude,
destjatitude, destjongitude, dest);
result cluster — predicting_position__next_clustei(nextCluster,latitude,longitude);

if (resu ltc luster = OPC_l RUE)
{

201

APPENDICES

printf (" > The NextCluster {{%d}} has been seen for the Member {{%d}} \n",
nextCluster, node_addr);

°P_pk_nfd_set (data_pk_ptr,"Type_of_node",nodeid[node addr].status_of_node);
LORA-CBF_pk_send_to_macJayer(data_pk_ptr,nextCluster);
de lay sta rt = o p s im tim e ();

' }
else

{
printf(" > There is not way to trasmit directly to the next Cluster {{%d}},\n",
nextCluster);
printf(" > instead we are looking for another gateway !!! \n");

// Finding the nearest Gateway
Next_Member_dest_data(data_pk_ptr,latitude,longitude,dest_latitude,destJongitude,ne
xtCluster,dest);

delay start = op sim time ();
}

}
}

else
{

printf(" > Data packet is inserted into buffer. \n");
// insert packet into buffer
LORA-CBF_data_pk_queue(data _pk_ptr);

latency start = op sim_time ();

//Generate RREQ
LORA-CBFjreq_pk_generate(dest);

}

printf(" - Function LORA-CBF_data_pk() done\nM);

} // End o f LORA-CBF_data_pk

APPENDICES

///
/ * * * * * * * * * * * * SORT * /

lll

void bubbleSort(double pos|][2], int max)
{

int i, j;
double temp[1][2];

{
for (i = 0; i < max; i++)

for (j = i + 1 ; j < max; j++)

{
if (pos|j][0] < pos[i][0])

{
tempfOJlO] = pos[i JfOJ;
temp[0][I] = pos[i][l];
pos[i][0] = posOJ[0];
pos[i][l] = posO][ll;
pos[j][0] = temp|0][0];
P°s[J][11 = tentp[0][l];

î
}

}
}

//vo id LORA-CBF_data_pk_qucue(Packct* pack) //
-//

void LORA-CBF_data_pk_queue(Packet* pk)

{
int destination;

/*
/* Queue data packet in the corresponding sub-queue.
V

// Read the DEST field (packet's final destination) in order to have index o f subqueue
°p__pk nfd get(pk,,'DEST",&destination);
// Enqueue packet in the correct subqueue
i f (op subq_pk_insert(destination,pk,OPC_QPOS TAIL) != OPC QINS OK)

~{
printf(" > Fail to insert packet in subqueue \n");
op pk destroy(pk);

}

203

APPENDICES

else
{

printf(" > %d data packets waiting for destination %d\n", LORA-
CBF_buffer_size_get(destination),destination);

' }
}

/ / in t L O R A -C B F _ b u ffe r _ s iz e _ g e t (in t d e s t in a t io n)

int LORA-CBF_buffer_size_get(int destination)

{
/*
/* Return the number o f data packets waiting
/* for this destination.

V
return op_subq_stat(destination, OPC_QSTAT_PKSIZE);

}

/ / B o o le a n L O R A -C B F _ b u fT e r _ is _ e m p ty (in t d e s t in a t io n) / /

Boolean LORA-CBF bufferjs_em pty(int destination)

{
/*
/* Check whether the given sub-queue (the one whose
/* index equals to destination) is empty or not.
/* Return O P C JR U E if buffer is empty. OPC_FALSE otherwise.
V

return op subq_empty(destination);
}

204

'
I Ipppll

i. • ■

APPENDICES

///
/* * * * * * * * * * * * * * * * * H A N D L E D A T A * /

IIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIliïlIIIIIIIII

void LOR_A-CBF_data_pk_rcceive(Packet* data_pk_ptr)
{

// var
int
int
double
double
double
Boolean
Compcode
Packet*

previousHop, dest, nextCluster;
source, seq_number, type of node;
source_latitude, source longitude;
latitude, longitude, altitude, x_pos, y__pos, z pos;
dest longitude,dest latitude;
result, result cluster;
com pcode;
ack_data_pk_ptr;

/*
/* This function receives the upcoming data packet from the MAC Layer
*/

// Read data packet
°P_pk_nfd__get (data__pk_ptr,"Type_of_node",&type_of_node);
°p__pk_nfd_get (data_pk_ptr,"PreviousHop",&previousHop);
°P_pk_nfd_get (data_pk_ptr,"SRC",&source);
°P_.pk„_nfd_get (data_pk_ptr,"DEST",&dest);
op_pk_nfd_get (data_pkj3tr,"Next_Cluster",&nextCluster);
op_pk_nfd_get (data_pk_ptr,"Dest_longitude",&dest_longitude);
op_pk_nfd_get (dataj)k_ptr,"Dest_latitude", &dest_latitude);
°P_pk__nfd_get (data_pk__ptr,"Source_latitude", &source_latitude);
op_pk_nfd_get (data_pkj5tr,"Source_longitude",&sourceJongitude);
°P_pk_nfd_get (data_pk_ptr,"Seq_number",&seq_number);

printf(" - Function LORA-CBF_data_pk_receive(destination is %d) from (source
%d)\n", dest, source);

node id ~ op_topo_parent (op_id__self());
comp code — op ima_obj_pos_get (node_id, &latitude, &longitude, &altitude,
&x_j)os, &y_pos, &z_pos);

/* This line tests the completion code, and upon detecting failure, calls op_sim__end () to
*/
/* immediately end the simulation and print and error message to the standard output
device,*/
/* and the opnet message area.

if (comp code == OPC COMPCODE_FAILURE)
op_sim_end ("get attributes failed",
printf("

205
-

i l

APPENDICES

// check packet final destination

if (dest == nodeaddr)
{
// pk has reached its destination
printf(" > Data packet has reached its destination^");

delay_stop = o p s im tim e ();

delay = de!ay_stop - delay_start;

°P_stat_write (average_delay_hndl,delay);

if(LORA-CBF_data_pk_is fresh_enough(data_pk_ptr) — OPC TRUE)
{
printf(" > Receiving the {{packet %d} }\n",seq_number);
op stat write (pk_received_hndl,seq_number);

latency = 0.0;

// send packet to upper layer
printf(" > Data packet sent to app_manager layer\n");

op_pk_send(data_pk_ptr,DISCARD_STRM);
} '
else // DATA PAcket seen less than BROADCAST RECORD TIME ago
{

// DATA discarded
printf(" > DATA Packet already has been received\nM);

°p_pk _destroy(data_pk_ptr);
}
printf(" > The destination node now will send back an acknowledge packet to the
{{source node %d}} \n", source);

// Create a c k d a ta packet
ack data_pk_ptr - op pk create_lmt("ACK_DA 1 A");

op pk nfd set (ack _data_pk_ptr,MDES I ", dest);
°P_pk nfd set (ack~data_pk_j3tr,"Dest latitude",latitude);
°P_pkjifd set (ack data j3k_ptr,"Dest_longitude",longitude);
°P_pk_nfd_set (ack_data_pk_ptr,"Next__Cl uster",nextCluster);
op_pk n fd set (ack_data__pk_j)tr," S RC" ,so urce);
°P_pk_nfd set (ack_data_pk_ptr,"Source_latitude ,source_latitude);
oP-Pk nfd set (ack__data__pk_ptr,"Source_longitude ,source_longitude);
op pk nfd set (ack_data _pk ptr,"Seq_number ,seq_number);

APPENDICES

if (nodeid[node_addr].status_of_node = C lusterhead)
{
//Finding the nearest Cluster head

nextCluster = nextCluster_source_from_ack_data(ack_data_pk_ptr, latitude, longitude,
source latitude, source longitude, source);

// Finding the nearest Gateway

Next_Member_source_froi'n_cluster_ack_data(ack_data_pk_j>tr,latitude,longitude,sourc
e latitude,source longitude,nextCluster);

} "
else if (nodeid[node_addr].status_of_node = Member)

{
printf(" > Looking for the nearest cluster head to the source \n");

nextCluster = nextCiuster_source_from_ack_data(ack_data_pk_ptr, latitude, longitude,
source latitude, sourcejongitude, source);

result cluster = predictingj>osition next_cluster(nextCluster,latitude,longitude);

if (resulteduster = OPC TRUE)
{

printf (" > The NextCluster {{%d}} has been seen for the Member {{%d}} \n",
nextCluster, node_addr);

LORA-CBF_pk_send_to_macJayer(ack_data_pk_ptr,nextCluster);
}

else
{

printf(" > There is not way to trasmit directly to the next Cluster {{%d} },\n",
nextCluster);
printf(" > instead we are looking for another gateway !!! \n");

// Finding the nearest Gateway

Next Member source_jick_data(ack_data__pk_ptr,latitude,longitude,source__latitude,sou
rce longitude,nextCluster,source);

}
>

else if (nodeidfnode_addrJ.status_of_node =s== Cluster_head)

printf(" > Predicting the position of the destination \n);

result — predicting jxisition __destination(dest,latitude, longitude);
if (result “ OPC TRUE)

{ '

207 ■ ■ - ■
:. . ■ ' ;.

APPENDICES

printf(" > The destination node is in the same cluster !!! \n");
LORA-CBF_pk_send to_mac layer(data_pk_ptr,dcst);

}
else

{
// Finding the next Cluster head to the destination

nextCluster = nextCluster_destJrom_data(data_pk_ptr, latitude, longitude,
destjatitude, dest_longitude, dest);

// Finding the nearest Gateway

Next_Member_dest_from_cluster(data_pk_ptr, latitude, longitude, destjatitude,
dest longitude, nextCluster);

}

else if ((nodeid[node_addr].status_of_node == Member) && (nextCluster !=
nodeaddr))

/ / V eri fy in g i f th e n ex t_ c lu s te r has b een seen less th a n E X P IR A T IO N T IM E

printf (" > Verifying if the next cluster has been seen for the Member less than
EXPIRATION TIME \n");

result cluster ~ predicting_position__next_cluster(nextCluster, latitude, longitude);

if (result_cluster = OPC_TRUE)
{

printf (" > The NextCluster {{%d}} has been seen for the Gateway {{%d}} \n",
nextCluster, node addr);

LORA-CBF_pk_send to_mac Iayer(data_pk_ptr,nextCluster);

}
else

{
printf(" > There is not way to trasmit directly to the next Cluster {{%d}},\n",
nextCluster);
printf(" > instead we are looking for another gateway !!! \n");

// Finding the nearest Gateway

Next Member dest data(data__pk_ptr, latitude, longitude, destja titude, destjongitude,
nextCl uster,dest);

}

print*» 1 - Function LORA-CBF_data_pk_receive() done\n");

}

208

APPENDICES

i i i i ii i i i i i i ii im iii i i im
/* * * * * * * * * * * * * * js P a c k e t f re s h e n o u g h * /

111

Boolean LORA-CBF_data_pk_is_fresh_enough(Packet* data_pk_ptr)

{
// var
Boolean result = OPC_FALSE;
int source, dest, seq_number;

/*
/* Check whether the BroadcastlD o f the request
/* is greater than the last seen. If so, RREP is
/* automatically processed. Else, node checks
/* whether RREP packet was seen less than
/* RECORD BROADCAST TIME seconds ago. If so, RREP
/* must be discarded. Else, it is processed.
V

// Read RREQ fields
op_pk_nfd_get (data_pk_ptr,"Seq_number",&seq_number);
°P_pk_nfd_get (data_pkjptr,"SRC",&source);
°p_pk_nfd_get (data_pk_ptr,"DEST",&dest);

if((Dataseen[source][dest].sequencejiumber < seq_number) ||
((Dataseen[source][destj.sequence_number==seq_number) &&
(op_sim_time()> Dataseen[source][dest].expiration I ime)))

{
result = O P C T R U E ;
// update RequestSeen repository
Dataseen [source] [dest].sequence_number=seq_number;
D ata see n [so u rce] [d e s t] .ex p ira tio n T im e= o p _ sim _ tim e()+ B R O A D C A S T R E C O R D TI
ME;

}
return result;
}

APPENDICES

ll
I* * * * * * * h a n d l e A C K D A T A * /

l f l l l l l l l j l

void LORA-CBF_ack_data_pk_receive(Packet* ack_data_pk_j)tr)
{

int
int
double
double
Ici*
Compcode
Boolean
Packet*

/*
/* This function receives the upcoming data packet from the MAC Layer.
*/

source, dest, nextCluster, previous hop;
ty p e o fn o d e ;
destlongitude, dest latitude, source !atitude, source longitude;
latitude, longitude, altitude, x_pos, y_pos, z_pos;
ici_ptr;
com pcode;
result, ré su lte luster = OPC FALSE;
data_pk_ptr;

// Read data packet

°P_pk_nfd_get (ack„data_pk_ptr,"Type_of_node",&type_of_node);
op_pk_nfd_get (ack_data__pk_ptr,"PreviosHop”, &previous_hop);
op_pk_nfd_get (ack_data_pk_ptr,"SRC",&source);
op_pk_nfd_get (ack_data_pk_ptr,"DES 1 ",&dest);
°P_pk_nfd_get (ack_data_pk_ptr,"Next_ClusterM,&nextCluster);
°P_pk_nfd_get (ack_data_pk_ptr,"Destjongitude",&dest_longitude);
op j>k nfd get (ack_data__pk_ptr, "D estJ atitude , &dest_latitude);
op pk nfd get (ack data pk ptr,"SourceJatitude , ¿¿.source Jatitude),
°P_pkInfd~get (ackldataj)kj)tr,"SourceJongitude",& sourceJongitude);

printf(" - Function LORA-CBF_ack_data__pk_receive(source is %d) from
(destination %d)\n",source,dest);

node id = op_topo_parent (op id_self());
comp code ~ op ima obj_jpos_get (n o d e jd , & latitude, &longitude, ¿¿altitude,
&x_pos, &y_pos, &z_pos);

/* This line tests the completion code, and upon detecting failure, calls op_sim_end () to
*/
/* immediately end the simulation and print and error message to the standard output
device,*/
/* and the opnet message area.

if (comp code == OPC_COMPCODE_FAILURE)
op sim end ("get attributes failed",
printf("
// check packet final destination

APPENDICES

if (source — node addr)
{

// pk has reached its destination
printf(" > A C K D A T A packet has reached its destination^");

Data_seq_number++;

°p_pk_destroy (ack_data_pk_ptr);

data_pk_ptr = LORA-CBF_data_pk_dequeue(dest);

°p_pk_destroy (data pk ptr);

printf(" > Schedule a notice to serve the buffer \n");
printf(" > Updating the position of the {{Destination node %d}}\n",dest);

Location[dest].latitude = dest latitude;
Location[dest].longitude = destlongitude;
Locationfdest]. timer = o p s im tim e ();

// Serve buffer
ici_ptr = op ici create ("LORA-CBF_notice_to_serve");
op_ici_attr_set (ici_ptr, "dest", dest);
o p jc i jn s ta l l (ici_ptr);
opjntrpt_schedule_self (op_sim_time(), R EPC O D E);

}
else // ACK DATA PAcket seen less than BROADCAST RECORD TIME ago

{
// ACK DATA discarded
printf(" > ACK DATA Packet already has been received\n");

op_pk destroy(ack data_pk_ptr);
}

}
else if ((nodeid[node_addr].status_of_node = Member) && (nextCIuster !=
node addr))

// Verifying if the next_cluster has been seen less than EXPIRATION TIME

result cluster = predicting_position_next__cluster(nexlCluster,latitude,longitude);

if (resu ltc l uster = OPC__TRUE)

printf C > Hie NextCIuster {{%d>} has been seen for the Gateway {{%d}} \n",
nextCIuster, nodeaddr);

L O R A -C B F _ p k _ se n d _ to _ m a c Ja y e r(a c k _ d a ta _ p k _ p tr ,n e x tC lu s te r) ;

else
{

printf(" > There is not way to trasmit directly to the nex tC luster {{%d} },\n"
nextCluster);

printf(" > instead we are looking for another gateway !!! \n");

// Finding the nearest Gateway

Next_Member_source_ack_data(ack_data_pk_ptr,latitude,longitude,source latitude sou
rce longitude,nextCluster,source);

}
}

else if (nodeid[node_addr].status_of_node = Cluster head)
{

printf(" > Predicting the position of the source \n");

result = predicting_position_source(source, latitude, longitude);

if (result == O PC T R U E)
{

printf(" > ACK DATA has reached its cluster destination !!! \n");

op_pk_nfd_set (ack_data_pk_ptr, "Next_Cluster",node_addr);

LORA-CBF_pk_sendto_mac_layer(ack_data_pk_ptr,source);
}

else

printf(" > The {{Clusterjiead % d}} is looking for the nearest Cluster to the
{{source %d}}\n", node_addr, source);

nextCluster =
nextCluster source_from_ack_data(ack_data_pk_ptr,latitude,longitude,source latitude,
source longitude,source);

// Finding the nearest Gateway

Next Member source_froni_cluster__ack_data(ack_data__pk_ptr,latitude,longitude,sourc
e latitude,source longitude,nextCluster);

}

p rin tff } - Function LORA-CBF ack_data„pk_receive() done\n");

}

APPENDICES

/A
/ / P a c k e t* L O R A -C B F _ d a ta _ p k _ d e q u e u c (in t d e s t in a t io n)
/A

7/
//

7/

Packet* LORA-CBF_data_pk_dequeue(int destination)
{
Packet* data_pk_ptr;

/*
/* Return the first packet (first in) from
/* the indicated data buffer.
*/

// If buffer not empty
if (LORA-CBF_buffer_is_empty(destination) == O PC FA LSE)

{
// get data packet from queue
data_pk_ptr = o p su b q pk remove(destination,OPC_QPOS HEAD);

}
else

printf(" > ERROR: buffer empty \n");

return data_pkjptr;
}

iii
I * * * * * * * * * * * * * * * * * G e n e r a te R R E Q a * /

IIIIH IIIIIIIIIIIIIillllllllllllllllllllllllllU H IIIIIH IIIIIIII

void LORA-CBF_rreq_pk_generate(int destination)

{
double latitude, longitude, altitude, x_pos, y_pos, z_pos;
Packet* rreq_pk_ptr;
Compcode comp_code;
/♦
/* Initiate the discovery process by generating a RREQ for a given
/* destination.
*/
printf(M - Function LORA-CBF_rreq„pk„generate(destination %d)\nM, destination);

// Create a request type packet
rrecLpk ptr ~ op_pk_create_fmt("LORA-CBF_RREQ);

node id = op to p o jw e n t (op__id_seli());
comp code ^ op ima obi pos__get (node_id, &latitudc, ^longitude, &altitude,
& x j)o s, &y_pos, & / J50S);

13

,'5-s d.-sj lællii

APPENDICES

/* immediately end the simulation and print and error message to the standard output
device,*/

if (comp_code = OPC_COMPCODE_FAILURE)
o p s im e n d ("get attributes failed",

// set RREQ fields
°p_pk_nfd_set (rreq_pk_ptr,"TTL",RequestSent[destination].ttl);
°p_pk_nfd_set (rreq_pk_ptr,"DEST",destination);
°p_pk_nfd_set (rreq_pk_ptr,"BroadcastID",myBroadcastID);
°p_pk_nfd_set (rreq_pk_ptr,"SRC",node_addr);
op_pk_nfd_set (rreq_pk_ptr,"Source latitude",latitude);
°p_pk nfd set (rreq_pk_ptr,"Source longitude",longitude);

//increment node's boadcastID
myBroadcastID-H-;

// send to mac layer
printf(" > RREQ packet has been generated \n"); LORA-
CBF_pk_sendJo_mac_layer(rreq_pk_ptr, BROADCAST);

printf(" - Function LORA-CBF_rreq_pk_generate() done\n");

lllilllllllllllllllllllllllillllllflllllllllHIIIIIillllllllflHI
/ * h a n d l e REQUEST * * * * * * * * * * * * * * * * * * * /

lllllllllllllllllllllllllllllljllllllllllllllllllllllllllllllllll

void LORA-CBF_rreq_pk_receive(Packet* rreq_pk_ptr)

/*
/* Process the received RREQ. I his procedure decides
/* whether node should generate a RREP packet lor the
/* requested destination or simply forward it to t e
/* neighbouring nodes.... --------
A Note that RREQ is automatically discarded if seen
/* less than BROADCAST_RECORD_TIME seconds ago

/* and the opnet message area.

int
double
Boolean
Compcode

dest, type__of_node, previous_hop;
latitude, longitude, altitude, x_jx>s, y__pos, z pos*
resu\t= OPC_FALSE; ‘ ’
comp code;

printfC - Function LOIU-CBF_rrcqj>k_receive()\n");

APPENDICES

// reading packet

0P_pk_nfd_get (rreq_pk_ptr, "Type of node", &type_of_node);
op pk nfd get (rreq_pk_ptr, "PreviousHop", &previous hop);
°p_pk_nfd_get (rreq_pk_ptr, "DEST", &dest);

node id = op topo parent (op_id_self());
comp code = op_ima_obj_pos_get (node id, &latitude, &longitude, &altitude,
&x_pos, &y_pos, &z_pos);

/* This line tests the completion code, and upon detecting failure, calls op sim end () to
*/
/* immediately end the simulation and print and error message to the standard output
device,*/
/* and the opnet message area.
*/

i f (co m p co d e = = O P C _ C O M P C O D E _ F A IL U R E)
o p _ s im _ e n d ("g e t a ttr ib u te s failed",

i f (n o d e id [n o d e _ ad d r] .s ta tu s_ o f_ n o d e = M em b er)

{
/ / ch eck i f R R E Q has a lread y been seen
if(LORA-CBF_rreq_pk_is_fresh_enough(rreq_pk_ptr) = O PC T R U E)

{
//re q u e s t N E V E R seen O R S E E N m ore than B R O A D C A S T R E C O R D T IM E ago

printf(" > RREQ is fresh enough: request handled \n");

// the node is an intermediate node

LORA-CBF_ireq_pk_forward(rreq_pk_ptr);

else //request seen less than BROADCAST_RECORD_TIME ago

{
// RREQ discarded
printf(" > Request seen less than BRODCAS f RECORD l IME ago: RREQ
discarded\n");
op pk destroy(rreq_pk_ptr);

}
}

else if (nodeid[node addr].status_of_node == Cluster_head)

{
//check if RRIiQ has already been seen
i f (L O R A - C B F _ r r e q j k _ i s _ fre sh _ en o u g h (rreq _ p k _ p tr) - 0 1 C _ I R U E)

//request NEVER seen OR SEEN more than BROADC AS 1 _RECORD TIME ago

APPENDICES

printf(" > RREQ is fresh enough: request handled \n");

if (((Clusterhead[node_addr].MemberJd[dest] = dest) && ((op sim time () -
Cluster Memberfnode_addr][dest].timer) < EXPIRATION TIME)) || (node addr ==
dest))

{
result = O PC T R U E ;
}

else

{
}

if (result = OPC TRUE)
/l

printf(" > RREQ has reached its Cluster_ head destination: node replies\n");
LORA-CBF_rrep_pk__generate_from_destination(rreq_pk_ptr);

}
else // the node is an intermediate node

{
LORA-CBF_rreq_pk forvvard(rreq_pk_ptr);

}
}
else //request seen less than BROADCAST RECORD ! IMF: ago

{
// RREQ discarded
printf(" > Request seen less than BRODCASI_RECORD_T IMF: ago: RREQ
discarded\n");
op_pk destroy!rreq_j3k_ptr);

printf(" - Function LORA~CBF_rreq_pk_receive() done\n),

}

else

{
o P - P k _ d e s t r o y (r r e q _ p k _ _ p tr) ;

} '
}

APPENDICES

111
/* * * * * * * * * * * * * * jjj r e q u e s t f re s h e n o u g h * /
///

Boolean LORA-CBF_rreq_j)k_is_fresh_enough(Packet* rreq _pk__ptr)
{

// var
Boolean result = O PC FA LSE;
int source, dest, broadcastID;

/♦
/* Check whether the BroadcastID o f the request
/* is greater than the last seen. If so, RREQ is
/* automatically processed. Else, node checks
/* whether RREQ packet was seen less than
/* R EC O R D B R O ADC AST TIME seconds ago. If so, RREQ
/* must be discarded. Else, it is processed.
*/

// Read RREQ fields
°P_pkjifd_get (rreqj)kj3tr,"BroadcastID",&broadcastID);
op_pk_nfd_get (rreq_pk_ptr,”SRC",&source);
0P_pk_nfd_get (rreq_pk_plr,"DEST",&dest);

if((RequestSeen|source][dest].broadcastID < broadcastID) ||
((RequestSeen|source][dest].broadcastID==broadcastID) && (op sim time()>
RequestSeen[source][dest].expirationTime)))

{
result = O PC T R U E ;
// update RequestSeen repository
RequestSeen[source][dest].broadcastID=broadcastID;
RequestSeen[source][dest].expirationTime=op_sim_time()+BROADCAST RECORD
TIME;

}
return result;

}

APPENDICES

/A
// void LO RA -C B F_rreq_pk_forw ard(Packet* r r e q p k p t r)

7/
//

void LORA-CBF_rreq_pk_forward(Packet* rreq_pk j>tr)
{

int ttl, hopCount;
double latitude, longitude, altitude, x_pos, y__pos, z_pos;
Compcode com pcode;

/*
/* Node does not have a fresh enough entry
/* (or does not have an entry at all) to answer
/* the received RREQ, so it decides to forward
/* it. Node increments the Hop Count field
/* and decrements the TTL field.
/* Note that packet is sent to mac layer only if
/* TTL > 0.
*/

°P~pkjifd_get (rreq_pk_ptr,"lTL",&ttl);
°P_J)k_nfd_get (rreq_pk_ptr,"HopCount",&hopCount);

if(ttl > 1)
{

printff' > Node forwards request\n",ttl);

node_id = op topo_parent (opjd_self());
comp code = op_ima_obj_pos_get (node_id, &latitude, &longitude, &altitude,
&x__pos, & yj30s, &z_pos);

/* This line tests the completion code, and upon detecting failure, calls op sim end () to
*/
/* immediately end the simulation and print and error message to the standard output
device,*/
/* and the opnet message area. */

if (comp code ~= O P C COMPCODE FAILURE)
op sim end ("get attributes failed",

°P-J>k_nf(j set (rreq_pk_ptr,"TTL",ttl-l);
°p__pk nfd_set (rreq__pk_ptr,"HopCount",hopCount+1);

// send to mac , , , DDAa a c
LORA-CBF pk send to_mac_layer(rreqj3k_ptr, BROADCAST);

}

mm.

else
{

APPENDICES

printf'C > TTL expired: rreq destroyed\n");
°P_pk_destroy(rreq_pk_ptr);

/A 7/
/ / v o id L O R A -C B F _ r r e p jp k _ g e n e r a te _ fr o m _ d e s t in a t io n (P a c k c t* r r cq p k p tr) / /

void LORA-CBF_rrep_pk_generate_from_destination(Packet* rreq pk ptr)

/*
/* This function is called when a RREQ has reached its
/* destination and node wants to reply.
/* Once the RREQ packet is generated, the procedure unicat
/* it back to the node upstream (node from which RREQ was
/* received).
*/

// Read the received RREQ packet
op_pk_nfd_get (rreq_pk_ptr,"PreviousHop",&previousHop);
op _pk nfd get (rreq__pk_ptr,"SRC”,&source);
°P_pk_nfd_get (rreq_pk_ptr,"DESr", &dest);
op pk nfd get (rreq_pk_ptr,"Source_latitude' ,&source_latitude);
°P_pk~nfd~get (rreq_pk_ptr,"SourceJongitude",&sourceJongitude);

// Create reply packet
rrcP_pk_ptr = op_pk_create_fmt("LORA-CBF_RREP);

// Assign source and dest to the reply packet
°P_pk nfd_set(rrep_pk_ptr,"HopCount ,0);
0P-_pk_nfd_set(rrep__pk_ptr/,SourceJongitude",source_longitude);
op_pk_nfd_set(rrep_pk_ptr,"SourceJatitude ,source_latitude),
op__pknfd_set(rrep_pk_j)tr,"SRC",source);
op_pknfd_set(rrep_pk__ptr,"DES 1 , dest),

/A

Packet*
int

n-ep_pk_ptr;
previousHop,nextCluster, dest;
source;
source latitude,sourcelongitude;
latitude, longitude, altitude, x j:>os, y_pos, z pos;
dest latitude, dest longitude;
comp code;

int
double
double
double
Compcode

°p_pk destroy (rreq pk .ptr);

APPENDICES

//increment node's boadcastID
mySeqNb++;

op_pk_nfd_set(rrep_pk_ptr,"DestSeqNb",mySeqNb);

printf(" > RREP has been generated from {{Cluster % d}}: unicast it to {{Source
%d}} \n",node_addr,source);

node id = op_topo_parent (op_id_self());
comp_code = op_ima_obj_pos_get (node_id, &latitude, &longitude, &altitude,
&x_pos, &y_pos, &z_pos);

/* This line tests the completion code, and upon detecting failure, calls op sim end () to
*/
/* immediately end the simulation and print and error message to the standard output
device,*/
/* and the opnet message area. */

if (com pcode = OPC_COMPCODE_FAILURE)
op sim end ("get attributes tailed",
printf(" >>\n");

if(Clusterheadfnode addr].Member_id[dest] = - dest)

dest latitude — Cluster_Member[node_addr][dest].latitude,
dest longitude — Cluster Member!node_addr][dest].longitude,

op pk_nfd_set(rrep__pkj3tr,"Dest_latitude ,dest_latitude),
op pk_nfd_set(rrep_pk_j)tr,"Dest_longitude ,dest_longitude),

}
else if (node addr = - dest)

op j)k_nfd_set(rrep_pk_ptr,"Dest_latitude ,latitude),
0P_pk_nfd_set(iTepj3k_ptr,"Dest J ongitude ,longitude),

// Finding the nearest cluster to the source

nextCluster = nextCluster_source_fTom_rrep(rrep_pk__ptr, latitude, longitude,
sourcejatitude, source longitude, source);

// Finding the fares! Gateway

Next Member source_from_cluster_rrep(rrep_pk_ptr,latitude,longitude,
source latitude, source longitude, nextCluster);

}

Ill
/*********************** h a n d l e REPLY ********************/

lll

void LORA-CBF_rrep_pk_receive(Packet* rrcp pk plr)
{
// var
int
int
int
double
double
int
Boolean
double
Compcode
Packet*
Ici*

/*
/* Receive RREP and decide whether to update or create
/* the corresponding entry and whether to forward or
/* discard the received RREP.
*/

I I begin
printf(" - Function LORA-CBF_rrepj3k_receive()\n");
// packet read

°P_pk_nfd_get (rrep_pkj)tr,"Type_of_node",&type_of_node);
°P__pk__nfd_get (irep_pk_ptr,"PreviousHop",&previous_hop);
°P_pk_nfd_get (rrep_pkj3tr,MHopCount",&hopCount);
°P__pk„nfd_set (rrep_pk_ptr,"HopCount",hopCount+1);
op_pk_nfd_get (rrep_pk_ptr,"NextHop",&nextHop);
op_pk_nfd_get (rrep_pk_ptr,"HopCount",&hopCount);
°P__pk_nfd_get (rrep_pk_ptr,"Dest_longitude",&dest_longitude);
op_pk_nfd_get (rrep__pk_ptr,’’DestJatitude", &dest_latitude);
°p_pk__nfd_get (rrep j5k_ptr,’’SourceJongitudeM,&source_longitude);
°P_pk„nfd_get(rrep_pk_ptr,"SourceJatitude”,&sourceJatitude);
°plpk.. nfd get (rrep_pk_ptr,"SRCH,&source);
°PJPk_nfd_get (rrep_j>k j>tr,"DES T",&dest);
°P_pk_nfd_get (rrep_pk_ptr,”Next_Cluster’’,&nextCluster);
0P_pk_nfd_get (rrep_pk__ptr,”DestSeqNb”>&seq_nb);

node id = op_topo_j>arent (op_id se 1 f());
comp code * opJma_obj_pos_get (nodeJd , ^latitude, &Iongitude, &altitude,
&x_pos, &y_pos, &z pos);

source, nextCluster;
hopCount.nextFIop, type_of_node, previous hop;
dest;
source latitude,source longitude;
dest longitude,dest latitude;
seq_nb;
result, result cluster = OPC FALSE;
latitude, longitude, altitude, x_pos, y_pos, z_pos;
com pcode;
ack_rreq_pk_ptr;
ici_ptr;

APPENDICES

/* This line tests the completion code, and upon detecting failure, calls op sim end () to
*

/* immediately end the simulation and print and error message to the standard output
device,*/
/* and the opnet message area. */

if (comp_code = OPC_COMPCODE_FAILURE)
o p s im e n d ("get attributes failed",

printf("

if (n o d ead d r = source)
{

// check if RREP has already been seen
if(LORA-CBF_rrep_pk_is_fresh_enough(rrep_pk_ptr) == OPC TRUF)

{
//request NEVER seen OR SEEN more than BROADCASTRECORD TIME ago

printf(" > RREP is fresh enough: request handled \n");

// destroy RREP

printf(" > Reply has reached its cluster destination !!! \n");
°p_pk destroy (rrep_pk_ptr);

printf(" > Schedule a notice to serve the buffer \n");

printf(" > Updating the position o f the {{Destination node %d) }Vn",dest);

Locationfdest]. latitude = destjatitude;
Location[destj.longitude = destjongitude;
Location | dest]. timer = op_sim_time ();

// Serve buffer

ici_ptr ~ op ici create ("LORA-CBF_notice__to_serve");
op ici attr set (ici ptr, "dest", dest);
° P jc iJ n s ta l l (ici_ptr);
op _intrpt_schedule__self (op sim_time(), REP_C ODE);

printf (" - Function LORA-CBF_rrep_pk_receive () done \n ");

else //Reply seen less than BROADCASI RECORD FIME ago

S r • » B H O D C A ir.R B C O R D .TIM E RREP

discardcd\n");
oppkdestroy(rrep_pk_pir);

APPENDICES

}
 ̂ }

else if (nodeid[node_addr].status_of_node = Member)
{

// Verifying if the nex tcluster has been seen less than EXPIRATION TIME

printf (" > Verifying if the next cluster has been seen for the Member less than
EXPIRATION TIME \n");

result cluster = predicting_position_next_cluster(nextCluster, latitude, longitude);

if(result cluster == OPC TRUE)
{

printf (" > The NextCluster {{%d}} has been seen for the Member {{%d}) \n",
nextCluster, node addr);

LORA-CBF_pk_send to_mac_layer(rrep_pk_ptr,nextCluster);
}

else
{

printf(" > There is not way to trasmit directly to the next Cluster {{%d}},\n",
nextCluster);
printf(" > instead we are looking for another gateway !!! \n");

Next_Member_source_rrep(rrep__pk__ptr,latitude,longitude, source_latitude,
source longitude, nextCluster, source);

}

else if (nodeid[node_addr].status_of_node == Cluster_head)

if(((Clusterhead[node_addr].Member_id[source] == source) || (node_addr == source))
&& ((op sim time () - Cluster_Member(node_addr][source].timer) <
EXPIRATION TIME))

{
result = OPC TRUE;

}
else

{
}

if (result = OPC TRUE)
{

// check if RREP has already been seen
i f(TORA-CBF rrep__pk_ is_fresh_enough(rrep_ pk_ptr) OPCJFRIJE)

//request NEVER seen OR SEEN more than BROADCASI RECORD TIME ago

printf(" > RREP is fresh enough: request handled \n");

// destroy RREP
printf(" > Reply has reached its cluster destination ! ! ! \n");

// Create ack_ rreq packet
ack_rreq_pk_ptr = op__pk_create_fmt("ACK_RREQ");

°p_pk_nfd_set (ack_rreq_pk_ptr,"DEST", dest);
°p_pk_nfd_set (ack_rreq_pk_ptr,"DestJatitude",dest latitude);
°p_pk_nfd_set (ack_rreq__pk_ptr,"Dest longitude",dest longitude);
op_pk_nfd_set (ack_rreq_pk_ptr,"Next_Cluster",node_addr);
°p_pk_nfd_set (ack_rreq_pk_ptr,"SRC",source);
°p__pk_nfd_set (ack rreq_pkj)tr,"DestSeqNb",seq_nb);

LORA-CBF_pk_send to_macJayer(ack_rreq_pk_ptr,source);

op_pk_destroy (rrep_pk_ptr);

printf (" - Function LORA-CBF_rrep_pk_receive () done \n ");
}

else //reply seen less than BROADCAST RECORD TIME ago
{

// RREP discarded
printf(" > Reply seen less than BRODCAST RECORD TIME ago: RREP
discarded\n");
°p_pk_destrov(rrep_pk_ptr);
} ‘
}
else

{
printf(" > The {{Cluster head %d}} is looking for the nearest Cluster to the
{{source %d}}\n", node addr, source);

nextCluster = nextCluster_source__from_rrep(rrep_pk_ptr, latitude, longitude,
source latitude, source longitude, source);

// Finding the nearest Gateway

Next. Member_source_from_cluster_iTep(rrep_pk_ptr,latitude,longitude,
sourceJatitude, source longitude, nextCluster);

}
}

else

{
°P_P^ destroy (rrepj3k_ptr);

}
}

APPENDICES

111
/************** jjj p^p|y enough **********************/
i H i i i i i i i i n

Boolean LORA-CBF_rrep_pk_is_fresh_enough(Packet* rrep_pk_ptr)

{
// var
Boolean result = OPCJFALSE;
int source, dest, myseqNb;
/*
/* Check whether the BroadcastID o f the request
/* is greater than the last seen. If so, RREP is
/* automatically processed. Else, node checks
/* whether RREP packet was seen less than
/* RECORD BROADCAST TIME seconds ago. If so, RREP
/* must be discarded. Else, it is processed.
V

// Read RREP fields
°p_pk nfd_get (rrepjpk_ptr,"DestSeqNb",&myseqNb);
°P_pk„nfd_get (rrepj3k_ptr,"SRC",&source);
°p_pk nfd get (rrep_pk_ptr,"DEST",&dest);

if((ReplySeen[source]|dest].sequence_number < myseqNb) ||
((ReplySeen[source][dest].sequence_number==myseqNb) && (op sim time()>
ReplySeen[source][dest].expirationTime)))

{
result = O PC T R U E ;
// update ReplySeen repository
ReplySeen [source] [dest] .sequence_number=myseqNb;

ReplySeen[source][dest].expirationTime=op_simJime()+BROADCAST_RECORDjn
ME;

}
return result;

}

APPENDICES

lll
y*********************** J3UÜL.E SO RT * *y
iin im iiiiiiiiiii

voici bubbleSorlfar(double pos[][2], int max)

{
int i, j;
double temp[l][2];

for (i = 0; i < max; i++)

{
for (j = i + 1 ; j < max; j++)

{
if(pos(j][0]>pos[i][0])

(
temp[0][0] = pos[i][0];
tem p[0j[lj = pos[i][lj;
pos[i][0] = posfjJJO];
p °s |i][I]= p o sO][l];
pos[j][0] = tempf0][0];
pos(j][I] = temp[0][l];

}

// ini LORA-CBF_buffer_servc(int destination) //
-//

void LORA-CBF buffer_serve(int destination)

i
Packet*
int
double
double
Boolean
Compcode

data_pk_ptr;
nextCluster;
latitude, longitude, altitude, x pos, y_pos, z pos*
destlatitude, dest longitude;
resuit cluster = OPC FALSB;
comp^code;

/*
/* This routine is called when a new entry is available for

/* a given destination.

APPENDICES

printf(" - Function LORA-CBF_buffer_serve(destination %d)\n",destination);

n o d e id = op_topo_parent (op id_self());
comp_code = op ima_obj_pos_get (node id, &latitude, ¿¿longitude, ¿¿altitude,
&x_pos, &y_pos, &z_pos);

/* This line tests the completion code, and upon detecting failure, calls op sim end () to
*/
/* immediately end the simulation and print and error message to the standard output
device,*/
/* and the opnet message area. */

if (comp_code = OPC_COMPCODE_FAILURE)
o p s im e n d ("get attributes failed","",

la tencystop = op sim time ();

latency = latency stop - latency_start;

op_stat_ write (latency hndl, latency);

// get packet from sub-queue

printf(" > Get packet from buffer\n");

data_pk_ptr = opj3k createJm t("LORA-CBF DATA");

data_pk_plr = LORA-CBF_data__pk_dequeue(destination);
LORA-CBF data pk queue(op_pk_copy (data__pk_ptr));

destja titude = Location[destination].latitude;
dest longitude = Location[destinationj.longitude;

°p__pk nfd set (data_pkj)tr,"D estjatitude",destjatitude);
°P_pk_nfd_set (dataj}k_ptr,"DestJongitude",destJongitude);
°P_pk._nfd_set (data_pk_ptr,"DEST",destination);
°P_pk_nfd_set (data_pk__ptr,"SRC",node_addr);
°p__pk nfd_set (data_pk_ptr,"Source latitude",latitude);
°P_pk_nfd_set (data__pk_ptr,"SourceJongitude",longitude);
°p_pk nfd set (data_pk_ptr,"Seq_number",Data_seq_number);

if (nodeid[node_addr].status_of_node — Cluster_head)

if (((Clusterheadlnode_addr].Member_id[destination] = destination) || (node_addr ==
destination)) && ((op3im_time () - Cluster_Member[node_addrJ[destination],timer) <
EXPIRATION TIME))

APPENDICES

{
°P_pk_nfd_set (data_pk_ptr, "Next_Cluster",node_addr);

I I send data packet
LORA-CBF_pk_send_to_mac_layer(data_pk_ptr,destination);

delay_start = op_sim_time ();
}

else
{

//Finding the next Cluster head

nextCluster = nextCluster dest from data(data_pk _ptr, latitude, longitude,
destjatitude, dest Jongitude, destination);

//Finding the next Member to the destination

Next_Member_dest_from_cluster(data_pk_ptr,latitude,longitude,dest latitude,dest Ion
gitude,nextCluster);

d e lay s ta rt = o p s im tim e ();
}

}
else if (nodeid[node_addr].status_of_node = Member)

{
printf(" > Looking for the nearest cluster head to the destination \n");

nextCluster = nextCluster_dest_from_data(data_pk_ptr, latitude, longitude,
dest latitude, dest longitude, destination);
result cluster = predicting_position_next_cluster(nextCluster,latitude,longitude);

if (resu ltc luster = OPC_TRUE)
{

printf (" > The NextCluster {{%d}} has been seen tor the Member {{%d}} \n",
nextCluster, node addr);

LORA-CBF_pk_send_to_macJayer(data_pk_ptr, nextCluster);

delay start = op sim time ();
}

else

p rin tff > There is not way to trasmit directly to the next_Cluster {{%d}} ,\n",
nextCluster);
printf(" > instead we are looking for another gateway i ! i \n");

APPENDICES

// Finding the nearest Gateway

Next_Member_dest_data(data_pk_ptr,latitude,longitude,dest_latitude,destJongitude,ne
xtCluster, destination);

delay_start = o p s im tim e ();

}
}

printf(" - Function LORA-CBF_buffer_serve() done\n");

}

IIIIIIIIIIIIIIIIIIIIIIIIIIWIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHII
/* * * * * * * * * * * * * * js rCpjy f resh e n o u g h * /

lll

Boolean LORA-CBF_ack_rreq_pk_is_fresh_enough(Packet* ack rreq pk_ptr)

{

// var
Boolean result = O PC FA LSE;
int source, dest, mvseqNb;
/*
/* Check whether the BroadcastlD o f the request
/* is greater than the last seen. It so, RREP is
/* automatically processed. Else, node checks
/* whether RREP packet was seen less than
/* RECORD BROADCAST_TIME seconds ago. If so, RREP
/* must be discarded. Else, it is processed.
*/

// Read RREP fields
op__pk nfd get (ack rreq_pk__ptr,"DestSeqNb ,&myseqNb),
°P_pknfd_get (ackrreq_pkjptr,"SRC ",&source);
°P_pk nfd_get (ack rreq_pk_ptr,"DESl ",&dest);

if((ReplySeen[source][dest].sequence ̂ number < myseqNb) ||
((ReplySeen[source][dest].sequence_number==myseqNb) && (op_sim_time()>
RepIySeen [source] [dest] .expiration I ime)))

{
result * OPC. TRUE;
// update RepIySeen repository'
ReplySeen[source][dest].sequence_number-myseqNb;

2 2 9

APPENDICES

ReplySeen[source][dest].expirationTime=op_sim_time()+BROADCAST_ RECORD TI
ME;

}
return result;

}

lll
/ * * * * * * * * * * * * * * h a n d l e a c k r r e q * * * * * * * * * * * * * * * * * /
i Ti i i i i i i i i i i h i i

void LORA-CBF_ack_rreq_pk_receive(Packct* ack rreq pk _ptr)

{
// var

int cluster;
int dest;
double dest longitude,destjatitude;
lei* ic ip tr ;

/*
/* Receive ack rreq from its cluster head
V

// begin
printf(” - Function LORA-CBF_ack_rreq_pk__receive()\n),

// packet read
°p_pk_nfd_get (ack_rreq_pk_ptr,"DEST",&dest);
op_pk_nfd_ get (ack_rreq_pk_ptr,"Dest_longitude , &dest__longitude),
o p p k _nfd_get (ack_rreq__pk_ptr,"Destjatitude , &dest_latitude),
op pk nfd get (ack rreq_pk_ptr, "Next_Cluster , &cluster),

// check if ACK RREQ has already been seen
if(LORA-CBF ack_rreq_pk__is_fresh._enough(ack_rreq_pk_ptr) OPC_ 1 RUE)

printf(" > ack rreq has reached its source !!!\n),

op _pk destroy (ack rreq pk ptr);

printf(" > Schedule a notice to serve the butler \n);

print«" > Updating the position o f the {{Destination node %d} ¡\n \dest);

Location|dest],latitude = destjatitude,
Location [dest]. longitude ~ destjongitude,
Eocationjdest).tinier - op_sim_time ().
nodeid[node_addr].clusterhead = cluster,

// Serve buffer

• •
• -V ' • _ :

APPENDICES

ici_ptr = op ici create ("LORA-CBF notice to serve");
°p_jci_attr_ set (ici_ptr, "dest", dest);
0P_id install (ici_ptr);
°p_intrpt_schedule_self (op_sim_time(), REP CODE);

printf(" - Function LORA-CBF_ack_rreq_pk_receive() done\n")*
}

else //ACK RREQ seen less than BROADCAST RECORD TIME ago
{
// ACK RREQ discarded
printf(" > ACK RREQ seen less than BRODCAST RECORD TIME ago*
A C K R R E Q discarded\n");
°p_pk_destroy(ack_rreq_pk_ptr);

}
}

iin iii
/********** NextCIuster Source ****************/

iiiiiiiiiiiiiiiiiiiiiiiiiiiif iiiiiiiiiiiiiiiiiiiiiiiiiiiin iiiiiin i

int nextCluster_source_from_rrep(Packet* rrep pk ptr, double latitude, double
longitude, double source latitude, double source longitude, int source)

{
int max, j,i, nextCluster;
double latitude neighbour, longitude neighbour;
double d istne ighboursource;
double pos[N][2];

max — j = 0;

for (i=0; i<N; i++)
{

if ((Cluster_Neighbour(node_addr][i].status — IN SE R V IC E) && ((op sim time () -
Cluster_Neighbour[node_addr][i].timer) < EXPIRATION TIME))

{
latitude_neighbour = Cluster_Neighbour[node_addr]fi]. latitude;
longitudeneighbour = Cluster_Neighbour[node_addr](iJ. longitude;

printf(" > Cluster neighbour %d\n", i);

dist neighbour source = sqrt((longitude_neighbour-

sourceJongitude)*(longitude_neighbour-sourceJongitude) + (latitude_neighbour-
sourceJatitude)*(latitudejieighbour-source_latitude));

//dist_node_source = sqrt((longitude-sourceJongitude)*(longitude-source longitude) +
(latitude-sourceJatitude)*(latitude-sourceJatitude)); ;

p °sfjJ[0]= dist neighbour_source;

231

P°sLi][l] = (double)i;
j++;
max = j;

}
if (max == 0)

{
printf (" > There is not another Cluster head to transmit the packet !!! \n"V

}
else if (max >= 1)

{
bubbleSort(pos, max);
nextCluster = pos[0][1];

printf(" > The nearest C lusterjiead to the source {{%d}} is {{%d}} \n", source
nextCluster);

°p_pk_nfd_set (rrep_pk_ptr, "Next_Cluster",nextCluster);
}

return nextCluster;
}

iiH iiiiiiH iiiin iii
/************ Member Source ****************/
lll

void Next_Member_source_rrep(Packet* rrep_pk_ptr, double latitude, double
longitude, double sourcejatitude, double source_longitude, int nextCluster, int source)

. „« te addr][i].status = IN.SERVICE) && ((o p .s im jim e () -
K Ï 3 S A) < EXP.RAT.ON_T.ME))

latitude gateway = Member_Neighbour|node addr][t] latitude;
lon g d u d t gateway = Member_Neighbour[node_addr][,].long,tude;

double
double
double
double
double

int max, i, j, nextHop;
latitude_gateway, longitude_gateway, factor;
dist next_gateway_source;
interval time, intervallatitude, interval longitude;
future latitude, futurejongitude, dist_predicted;
pos[N][2];

max = j = 0;

for (i=0; i<N; i++)

APPENDICES

printf(" > Member %d \n", i);

//dist_node_source = sqrt((longitude-source_longitude)* (longitude-source Jongitude) +
(latitude-source_latitude)*(latitude-source_latitude));

distnextgatewaysource = sqrt((longitude_gateway-
source_longitude)*(longitude_gateway-source_longitude) + (latitude_gateway-
source_latitude)*(latitude_gateway-source_latitude));

//dist_node_next_gateway = sqrt((longitude-longitude_gateway)*(longitude-
longitudegatew ay) + (latitude-latitude_gateway)*(latitude-latitude_gateway));

P°sU][0]= dist_next_gateway_source;

pos[j][l] = (double)i;
j++;
max = j;

}
}
if (max = 0)

{
}

else if (max >= 1)
{

bubbleSort(pos, max);

printf(M > Predicting the position ol the next Hop \n),

for (i=0; i<j; i++)
{

nextHop = pos[i][l];

printf(" > nextHop =%d\n",nextHop),

if ((Mcmber_Neighbour[node_addrJ[nextIlop].previa latitude !=0.0) && (nextCluster

!= nextHop))

print«*" > next Hop has previa latitude %d %f\n", nextHop,
Member_Neighbourtnode_addrJInextHopJ.prev.a_lat.tude);

interval time = Member_Neighbour[node addrJ[nextHopJ.timer -
Member Neighbour[node_addr][nextHop].prev.o ,
interval latitude = (Member_Neighbour[node_add] nextHop .latitude -
Member Neighbour[node_addr][nextHop].prevta latitude) intervaljime,
interval Tonghude * (Member_Neighbournode^ddr] [nextHop .long.tude -
Member_Neighbour[node_addr][nextHop].prev.a_long.tude)/mterval_t.me;

233

APPENDICES

if ((op sim time () - Member Neighbourfnode addrïïnextHop].timer) >
MINIMUM JDELAY)

{
printf(" > Next Hop has been seen %d %An", nextHop,
Member_Neighbour[node_addr][nextHopJ.timer);

factor = factor_Member_Neighbour(nextHop);

fu turejatitude = (Member_Neighbour[node_addr] [nextHop]. latitude +
(interval latitude * factor));
futurejongitude = (Member_Neighbour[node_addr] [nextHop]. longitude +
(interval longitude * factor));
dist predicted = sqrt((latitude - futurejatitude) * (latitude - future latitude) +
(longitude - futurejongitude) * (longitude - futurejongitude));

printf(" > Next Hop has distance %d %f\n", nextHop, dist_predicted);

if ((dist predicted < Range_predicted) || (Range_predicted == dist_predicted))
{

nextHop = pos[i][1];
break;

}
}
else

printf(" > Next Hop has been seen %d %f\n", nextHop,
Member_Neighbour[node_addr] [nextHop]. timer);

future latitude = MemberJ^eighbour[node_addr] [nextHop]. latitude;
future longitude = Member_Neighbour[node_addr][nextHop].longitude;

dist predicted — sqrt((latitude ~ future_latitude) (latitude ■ futurejatitude) +
(longitude - futurejongitude) * (longitude - futurejongitude)),

printf(" > Next Hop has distance %d %AnM, nextHop, dist_predicted);

if ((dist_predicted < Range_predicted) || (Range_predicted == dist_predicted))
{

nextHop = pos[i][1];
break;

}
}
}
else

i
}

}
}

APPENDICES

printf(" > The nearest Gateway to the Next_Cluster {{%d}} is {{%d}
\n",nextCluster, nextHop);
// send reply packet
LORA-CBF_pk_send_to_macJayer(rrep_pk_ptr,nextHop);

}

»

ll
/************]\jcxj Member Source from Cluster ************/

ll

void Next_Member_source_from_clusterjTep(Packet* r r e p p k p tr , double latitude,
double longitude, double source latitude, double source longitude, int nextCluster)
{
int max, i,j , nextHop;
double latitude_gateway, longitude gateway, factor;
double dist_next_gateway_source;
double interval time, interval latitude, intervaljongitude;
double futurejatitude, future longitude, dist ̂ predicted;
double pos[N][2];

max = j = 0;

for (i=0; i<N; i++)
{

if ((Cluster Member[node_addr]|i].status == IN_SERVICE) && ((op sim time () -
Cluster Member[node_addr][i].timer) < EXPIRATION TIME))

{
latitudegatew ay = Cluster_Member[node_addr][i]. latitude;
longitudegatew ay = Cluster_Member[node_addrj[i].longitude;

printf(" > Member %d \n", i);

//disl_node_source = sqrt((Jongitude-sourceJongitude)*(Iongitude-source longitude) +
(latitude-source latitude)*(latitude-source latitude));

dist_next_gateway_source — sqrt((longitude_gateway-
source_longitude)*(longitude_gateway-source_longitude) +
(latitude gateway-source latitude)*(latitude__gateway-source_latitude)),

//dist node next gateway = sqrt((longitude-longitude_gatcway) (longitude-
longitude_gateway) + (latitude-latitude_gateway)*(latitude-latitude_gateway));

Poslj]I0]~ dist next_gateway„source;
posOjfl] - (double)i;
j++;
max = j;

}
}

235

APPENDICES

if (max = 0)

{
}

else if (max >= 1)
{

bubbleSort(pos, max);

printf(" > Predicting the position o f the next Hop \n");

for (i=0; i<j; i++)
{

nextHop = pos[i][1];

printf(" > Next Hop =%d\n", nextHop);

if ((Cluster_Member[node_addr] [nextHop].previalatitude != 0.0) && (nextCluster !=
nextHop))

{
printf(" > Next Hop has previa latitude %d %f\n", nextHop,
Cluster_Member[node addr][nextHop].previa latitude);

interval J im e = Cluster_Member[node_addr][nextHop].timer -
Cluster_Member[node_addr][nextHop].previo_timer;
interval latitude — (Cluster_Member[node_addr][nextHop].latitude -
Cluster M e m b e r [n o d e _ a d d r] [nextHop].previa_latitude)/interval_time;
interval” longitude = (Cluster_Member[node^addr][nextHop].longitude -
Cluster Member[node_addr][nextHop].previaJongitudc)/interval_time;

if ((op sim time () - Cluster_Member[node_addrj[nextI lop].timer) >
MINIMUM” DELAY)

printf(" > Next Hop has been seen %d % f \n", nextHop,
Cluster_Member[node_addr] [nextHop] .timer);

factor = factor Cluster Member(nextHop);

fu tu reja titudc = (Cluster_Member[node_addr][nextHop].latitude + (interval„latitude *
factor));
future longitude = (Cluster_Member[node_addr][nextHop].longttude +
(intervaljongitude * factor));

dist predicted = sqrt((latitude - futureJatitude) * (latitude - fu turejatitude) +
(longitude - future longitude) * (longitude - luture_longitude));

printfC > Next Hop =%d. distance =%. 1 ôftn1', nextHop, dist_predicted);

if((dist_predicted < R angejredicted) || (dist. predicted — Range_predicted))

APPENDICES

{
nextHop = pos[i][1];
break;

}
}

printf(" > Next Hop has been seen %d % f \n", nextHop,
Cluster_Member[node_addr] [nextHop].timer);

future latitude = Cluster Memberfnode addr][nextHop].latitude;
future longitude = Cluster_Member[node_addr][nextHop].longitude;

dist_predicted = sqrt((latitude - futurejatitude) * (latitude - future latitude) +
(longitude - future longitude) * (longitude - futurejongitude));

printf(" > Next Hop =%d, distance =%ftn", nextHop, dist predicted);

if ((dist_predicted < Range__predicted) || (dist_predicted = Rangepredicted))
{

nextHop = pos[i][1];
break;

}
}

}

}
}

prinlf(" > The nearest Gateway to the Next_Cluster {{/ od)} is {{^d}}
\n",ncxtCluster, nextHop);

// send reply packet
LORA-CBF_pk_send_to_macJayer(rrep_pk_ptr,nextHop);

}

237

APPENDICES

IIIIIIIIIIIIIIIIIHIII
/********** Predicting the position next C luster **************/

ll

Boolean predicting_position_next_cluster(int nextCluster, double latitude, double
longitude)

/i
double interval time, interval latitude, interval longitude, factor;
double futurejatitude, futurejongitude, dist_predicted;
Boolean resu ltcluster = O PC FA LSE;

if ((ClusterJvIeighbour[node_addr][nextCluster].status == IN SERVICE) &&
((op sim time () - Cluster_Neighbour[node_addr][nextCluster J. timer) <
EXPIRATION TIME))

{
printf(" > Predicting the position of the nextCluster %d\n", nextCluster);

if (Cluster_Neighbour[node_addrJ[nextCluster].previajatitude != 0.0)

{
printf(" > Next Cluster has previa latitude %d %f\n", nextCluster,
Cluster Neighbour[node_addr][nextCluster].previaJatitude);

interval Jim e = Cluster_Neighbour[node_addr][nextCluster].timer -
Cluster_Neighbour[node_addr] [nextCluster].previojimer;
interval latitude = (Cluster_Neighbour[node_addr][nextCluster].latitude -
Cl uster _Neighbour[node_addr] [nextCluster].previaJatitude)/interval_time;

interval longitude = (Cluster_Neighbour[node_addr][nextCluster].longitude -
ClusterjNeighbour[node_addr][nextCluster].previaJongitude)/intervaljime;

if ((op_sim_time () - Cluster Neighbour[node_addr|[ncxtCIuster].tinier) >
MINIMUM DEI.AY)

{
printf(" > Next Cluster has been seen %d %f\n", nextCluster,
Cl uster_Neighbour[nodeaddr] [nextCI uster].ti mer);

factor = factor_Cluster_Neighbour(nexlC luster);

fu turejatitude = (Cluster_Neighbour|node_addr][nextCluster). latitude +

(interval latitude * factor));

future longitude — (Cluster_Neighbourfnode_addr][nextCluster].longitude +
(interval longitude * factor));

dis, predicted « sqrt((la,itude - futurejatitude) * (latitude - futurejatitude) +
(longitude - futurejongitude) * (longitude - futurejongitude)),

p rin lff > Next Cluster has distance %d nextCluster, dist .predicted);

iJ: cYJJJ-r . ■ ■ ;

}

else
{

printf(" > Next Cluster has been seen %d %f\n", nextCluster,
Cluster_Neighbour[node_addr][nextCluster].timer);

futurejatitude = ClusterJ'Jeighbour[node_addr] [nextCluster].latitude;
futurejongitude = Cluster_Neighbour[node_addr] [nextCluster]. longitude;

dist_predicted = sqrt((latitude - futurejatitude) * (latitude - future latitude) +
(longitude - futurejongitude) * (longitude - futurejongitude));

printf("

else

> Next Cluster has distance %d %ftn", nextCluster, dist predicted);
}

}

{
printf(" > Next Cluster has previa latitude %d %f\n", nextCluster,
CIuster_Neighbour[node_addr][nextCluster].previaJatitude);

futurejatitude = ClusterJvleighbour[node_addr] [nextCluster]. latitude;
futurejongitude = Cluster Neighbour[node_addr][nextCluster],longitude;

dist predicted =: sqrt((latitude * futurejatitude) (latitude - futurejatitude) -t
(longitude - futurejongitude) * (longitude - futurejongitude)),

printf(" > Next Cluster has distance %d %f\n", nextCluster, dist_predicted);
}

if ((distpredicted < Rangejredicted) || (Range_predicted = dist_predicted))

{
result cluster = OPC TRUE;

}
return result cluster;

}

Ill
/************ NextCluster Destination ******************/

111

APPENDICES

int nextCluster_dest_from_data(Packet* data_pk_ptr, double latitude, double longitude,
double dest latitude, double dest longitude, int destination)

max = j = 0;

for (i=0; i<N; i++)
{

if ((Cluster_Neighbour[node_addr][i].status = IN SERVICE) && ((op_sim time () -
Cluster Neighbour[node_addr][ij.timer) < EXPIRATION TIME))

{
latitudeneighbour = CIuster_Neighbour[node_addr][i]. latitude;
longitude neighbour = Cluster_Neighbour[node_addr][i]. longitude;

printf(" > Cluster^neighbour %d\n", i);

dist neighbour dest = sqrt((longitude_neighbour-
dest longitude)*(longitude neighbour-destjongitude) + (latitude jieighbour-
destJatitude)*(latitude_neighbour-dest_latitude));

//dist_node_dest = sqrt((Jongitude-destJongitude)*(longitude-dest Jongitude) +
(latitude-dest latitude)*(latitude-dest_latitude));

pos|j](0j= dist neighbour dest;
P0SUJl 1] = (double)i;

if (max == 0)

prin ,f(" > There is not another Cluster_head to transmit the pack e t!!! \n");

}
else if (max >= 1)

{
bubbleSort(pos, max);

nextCluster ~ pos|0][l];

double
double
double

int max, j,i, nextCluster;
latitude neighbour, longitude neighbour;
d istne ighbourdest;
pos[N][2];

240

printf(" > The nearest Cluster head to the destination {{%d}} is {{%d}}
\n",destination, nextCluster);

°P_pk_nfd_set (datajpk_ptr, "Next_Cluster",nextCluster);
}

return nextCluster;
}

i n n

/*****]yexi M em ber Destination from C luster ************/
111

void Next_Member_dest_from_cluster(Packet* data_pk_ptr, double latitude, double
longitude, double dest latitude, double dest longitude, int nextCluster)

{

int max, i, j, nextHop;
double latitude_gateway, longitude_gateway, factor;
double dist_next_gateway_dest;
double interval time, interval latitude, intervaljongitude;
double futureJatitude, future longitude, dist predicted;
double pos[N][2];

max = j = 0;

for (i=0; i<N; i++)
{

if ((Cluster_Member[node_addr][i].status — IN SER V IC E) && ((op sim time () -
Cluster Member[node_addr][i].timer) < EXPIRA1 ION_ 1IME))

{
latitudegateway = Cluster__Member[node_addr][i]. latitude;
longitude_ gateway = Cluster_Member[node_addr][i].longitude;

printf(" > Member %d Vn", i);

//dist node dest = sqrt((longitude-destjongitude)*(longitude-dest_longitude) +
(latitude-dest_latitude)*(latitude-dest_latitude));

dist next gateway dest = sqrt((!ongitude_gateway-
dest_longitude)*(longitude_gateway-dest_longitude) + (latitudegatew ay-
dest latitude)*(latitude_gateway-dest_latitude));

//dist node next gateway = sqrt((longitude-longitude_gateway)*(Iongitudc-
longitude gateway) + (latitude-latitudc_gateway) (latitude-latitude gateway));

pos[j]|()]= dist nextj»ateway_dest;
posHJtl] - (double)i;

APPENDICES

j++;
max = j;

}
}

if (max == 0)
(
\

}
else if (max >= 1)

{
bubbleSort(pos, max);

printf(" > Predicting the position o f the next Hop \n");

for (i=0; i<j; i++)
{

nextHop = posfi][1];

printf(" > nextHop %d\n", nextHop);

if ((Cluster_Member[node_addr][nextHop].previa latitude != 0.0) && (nextCluster !=
nextHop))

{
printf(" > next Hop has previa latitude %d %f\n",nextHop,
Cluster _Member[node_addr][nextHop].previaJatitude);

interval time = Cluster_Member[node_addr][nextHop].timer -
Cluster Member[node_addr][nextHop].previo_timer;

interval latitude = (Cluster_Memberfnode_addr][nextHop].latitude -
Cluster_Member[node_addr][nextHop].previa_Iatitude)/interval_time;

interval longitude = (C!uster_Member[node_addr][nextHopJ.longitude -
Cl uster_Member[node_addr] [nextHop].previa_longitude)/intervaHime;

if ((op sim time () - ClusterJvfember[node_addr][nextHop].timer) >
MINIMUM DELAY)

{
printf(" > next Hop has been seen %d %f\n", nextHop,
Cluster Member[node_addr][nextHop].timer);
factor = factor_Cluster Member(nextHop);

future latitude - (Cluster jMember[node_addr][nextHop].latitude + (interval latitude *

factor));

future longitude » (Cluster>lember[node_addr][nextHopj.Jongitude +
(interval longitude * factor));

a p p e n d ic e s

dist_predicted = sqrt((latitude - futurejatitude) * (latitude - futurejatitude) +
(longitude - futurejongitude) * (longitude - futurejongitude));

printf(" > next Hop has distance %d %An", nextHop, distpredicted);

if ((dist__predicted < Range_predicted) || (Rangepredicted == dist predicted))
{

nextHop = pos[i][1];
break;

printf(" > next Hop has been seen %d %An", nextHop,
CIuster_Member[node_addr][nextHop]. timer);

fu turejatitude = ClusterJVfember[node_addr] [nextHop]. latitude;
future longitude = ClusterM ember[node_addr] [nextHop],longitude;

dist_predicted = sqrt((latitude - futurejatitude) * (latitude - futurejatitude) +
(longitude - futurejongitude) * (longitude - futurejongitude));

printf(" > next Hop has distance %d %An", nextHop, dist predicted);

if ((dist_predicted < Range_predicted) || (Range predicted == dist predicted))
{

nextHop = pos[i][l];
break;

î

{

}

printf(" > The nearest Gateway to the Next__Cluster {{% d}} is {{% d}}
\n",nextCluster, nextHop);

// send reply packet , ri .
LORA-CBF pk send to macJayer(dataj)k_ptr,nextH op);

}

■ • .

APPENDICES

llllllllllllllll̂ ¡¡̂ l¡llllllll̂ ¡IÎ IIIIIIIÎ IIIIIIIIIIIIIIIIIIIIIIIIIIHIII¡IIIIIIIIIIH
/*********** JVextCIuster Source *******************/
IIHIIIIIIIIIIIIHIIIHIHIUIIIH

int nextCluster„source_from_ack_data(Packet* ack_data_pk_ptr, double latitude,
double longitude, double sourcejatitude, double sourcejongitude, int source)

{
int
double
double
double

max, j,i, nextCluster;
latitudeneighbour, longitudeneighbour;
d istneighboursource;
pos[N][2];

max = j = 0;

lor (i=0; i<N; i++)
{

if ((Cluster_Neighbour[node_addr][i].status =:= IN SER V IC E) && ((op sim time () -
Cluster_Neighbour[nodeaddr][i].timer) < EXPIRATION TIME))

{ '
latitude_neighbour = CIuster_Neighbour[node_addr][i]. latitude;
longitudeneighbour = Cluster_Neighbour[node_addr][i]. longitude;

printf(" > Cluster neighbour %d\n", i);

dist„neighbour_source = sqrt((longitude_neighbour-
source Iongitude)*(longitude„neighbour-sourcelongitude) + (latitude neighbour-
source latitude)*(latitude neighbour-source latitude));

//d is tn o d e so u rc e = sqrt((longitude-source_Iongitude)*(longitude-source longitude) +
(latitude-sourcejatitude)*(latitude-source_latitude));

pos[j][0]= dist neighbour_source;
P°s[jJ[11 = (double)i;
j++;

m a x = j;
}

)
if (max == 0)

printf (" > There is not another Cluster „head to transmit the pack e t!!! \n");

else if (max >= 1)
{

bubbleSortfpos, max);
nextCluster ~ pos[0][1);

APPENDICES

printf(" > The nearest Cluster_head to the Source {{%d}} is {{% d}} \n",source,
nextCluster);

op_pk_nfd_set (ack_data_pk_ptr, "Next Cluster",nextCluster);
}

return nextCluster;
}

ll
I****** Next Member Source from Cluster ***********/

ll

void Next_Member_source_from_cluster_ack_data(Packet* ack data_pk_ptr, double
latitude, double longitude, double source latitude, double sourcejongitude, int
nextCluster)
{
int max, i, j, nextHop, source;
double latitude_gateway, longitude gateway, factor;
double ist node source, dist next gateway source, dist node next_gateway;
double interval time, in terval latitude, interval longitude;
double futurejatitude, futurejongitude, dist__predicted;
double pos[N][2];

max = j = 0;

for (i=0; i<N; i++)
{

if ((Cluster_Member[node_addr][i].status = IN SER V IC E) && ((op_sim_time () -
Cluster_Member[node_addr][i].timer) < EXPIRATION TIME))

{
latitude_gate\vay = Cluster_Member[node_addr][i]. latitude;
ongitudegatew ay = Cluster_Member[node_addr][i].longitude;

printf(" > Member %d \n", i);

//dist node source = sqrt((longitude-source_longitude)*(longitude-source longitude) +
(latitude-source latitude)*(latitude-source latitude));

dist_next_gateway_source = sqrt((longitude__gateway-
source_longitude)*(longitude_gateway-source longitude) + (latitudegatew ay-
source_latitude)*(latitude_gateway-source latitude));

//dist_node_next_gateway = sqrt((longitude-longitude_gateway)*(longitude-
longitude_gateway) + (latitude-latitude_gateway)*(latitude-latitude_gateway));

pos[j][0]= dist_next_gateway_source;
P°s[j][l] ~ (double)i;
j++;

245

APPENDICES

max = j;
}

}
if (max == 0)

!
}

else if (max >= 1)
{

bubbleSort(pos, max);

printf(" > Predicting the position of the next Hop \n");

for (i=0; i<j; i++)
{

nextHop = pos[i][l];

printf(" > nextHop =%d\n",nextHop);

if ((Cluster_Member[node_addr][nextHop].previa latitude != 0.0) && (nextCluster !=
nextHop))

{
printf(" > next Hop has previa latitude %d %An",nextHop,
Cluster_Member[node_addr] [nextHop] .previa latitude);

interval time = Cluster Member[node addr][nextHop].timer -
Cluster_Member[node_addr] [nextHop] .previotim er;

interval latitude = (Cluster_Member[node_addr][nextHop].latitude -
Cluster_Member[node_addr][nextHop].previa_latitude)/interval_time;

interval longitude = (Cluster_Member[node_addr] [nextHop]. longitude -
Cluster_Member[node_addr][nextHop].previa_longitude)/interval time;

if ((op_sim_time () - Cluster_Member[node_addr][nextHop].timer) >
MINIMUM _DELAY)

{
printf(" > next Hop has been seen %d %An",nextHop,
Cluster Member[node addr][nextHop].timer);

factor = factor_Cluster_Member(nextHop);

fu turejatitude = (Cluster_Member[node_addr][nextHop].latitude + (intervaljatitude *
factor));

future_longitude = (Cluster_Member[node_addr][nextI top].longitude +
(interval longitude * factor));

APPENDICES

dist_predicted = sqrt((latitude - futurejatitude) * (latitude - futurejatitude) +
(longitude - futurelongitude) * (longitude - future longitude));

printf(" > next Hop has distance %d %f\n",nextHop, dist_predicted);

if ((dist_predicted < Range_predicted) || (Range_predicted == dist predicted))
{

nextHop = pos[i][1];
break;

}
}

printf(" > next Hop has been seen %d %f\n",nextHop,
Cluster ÎVlember[node_addr][nextHop].timer);

futurejatitude = Cluster Member[node_addr][nextHop].latitude;
future longitude = ClusterJvlemberfnodeaddr][nextHop].longitude;

dist_predicted = sqrt((latitude - futurejatitude) * (latitude - futurejatitude) +
(longitude - future longitude) * (longitude - future longitude));

printf(" > next Hop has distance %d %i\n",nextHop, dist_predicted);

if ((dist_predicted < Range_predicted) || (Range_predicted == dist jiredicted))
{

nextHop = pos[i][l];
break;

}
}

}

else
{

}
}

}
printf(" > The nearest Gateway to the Next Cluster {{%d}} is {{%d}}
\n",nextCluster, nextHop);
// send reply packet
LORA-CBF_pk_sendJo_m acJayer(ack data_pk_ptr,nextHop);
}

247

APPENDICES

lll
J k k k k k k k k k k k k k k k k k k k I V l d T l h C r S O U T C C * * * * * k k k k k k k k k k k k j

lll

void Next_Member_source_ack_data(Packet* ack_data_pk_ptr, double latitude, double
longitude, double source latitude, double sourcejongitude, int nextCluster, int source)

{
int
double
double

double
double
double

max = j = 0;

max, i, j, nextHop;
latitude_gateway, longitude_gateway, factor;
dist_node_source, dist_next_gateway_source,
dist_node_next_gateway;
intervaljim e, interval latitude, interval longitude;
futurejatitude, futurejongitude, dist predicted;
P°s[N][2];

for (i=0; i<N; i++)

{
if ((Member_Neighbour[node_addr][i].status == IN SERVICE) && ((op sim time () -
Member_Neighbour[node_addr][i]. timer) < EXPIRATION TIME))

{
latitudegatew ay = Member_Neighbour[node_addr] [i]. latitude;
longitude_gateway = M ember_Neighbour[nodeaddr][i]. longitude;

printf(" > Member %d \n", i);

//d is tn o d eso u rce = sqrt((longitude-sourcejongitude)*(longitude-sourcejongitude) +
(latitude-source_latitude)*(latitude-source_latitude));

dist_next_gateway_source = sqrt((longitude_gateway-
source longitude)*(longitude_gateway-source_longitude) + (latitude_gateway-
sourceJatitude)*(latitude_gateway-source latitude));

//dist_node_next_gateway = sqrt((longitude-longitude_gateway)*(longitude-
longitudegatew ay) + (latitude-latitude_gateway)*(latitude-latitude_gateway));

PosO][0]— dist_next_gateway_source;
pos[j][l] = (double)i;
j++;
max = j;

}
}

if (max = 0)
{
}

248

APPENDICES

else if (max >= 1)
{

bubbleSort(pos, max);

printf(" > Predicting the position of the next Hop \n");

for (i=0; i<j; i++)
{

nextHop = pos[i][l];
printf(" > next Hop %d\n",nextHop);

if ((Member_Neighbour[node_addr] [nextHop].previalatitude != 0.0) && (nextCluster
!= nextHop))

{
printf(" > next Hop has previa latitude %d %f\n",nextHop,
Member_Neighbour[node_addr] [nextHop] .previalatitude);

interval time = Member_Neighbour[node_addr] [nextHop].timer -
Member_Neighbour[node_addr] | nextHop].previotim er;

intervallatitude = (Member_Neighbour[node_addr][nextHop].latitude -
Member_Neighbour[node_addr][nextHop].previa_latitude)/interval_time;

intervaHongitude = (Member_Neighbour[node_addr][nextHop|.longitude -
Member_Neighbour[node_addr][nextHop].previa_longitude)/intervalJime;

if ((op sim time () - Member Neighbourfnode addr][nextHop].timer) >
M IN IM UM DELAY)

{
printf(" > next Hop has been seen %d %An", nextHop,
Member_Neighbour[node_addr] [nextHop].timer);

factor = factor_Member_Neighbour(nextHop);

future latitude = (Member_Neighbour[node_addr][nextHop].latitude +
(intervaljatitude * factor));

future longitude = (Member_Neighbour[node_addr][nextHop].longitude +
(interval longitude * factor));

dist__predicted = sqrt((latitude - future latitude) * (latitude - futurejatitude) +
(longitude - future longitude) * (longitude - futurejongitude));

printf(" > next Hop has distance %d %f\n", nextHop, dist_predicted);

if ((dist_predicted < Range_predicted) || (Range_predicted == dist_predicted))
{

nextHop = pos[i][l];

249

APPENDICES

else
{

printf(" > next Hop has been seen %d %ftn", nextHop,
Member_Neighbour[node_addr] [nextHop].timer);

futurejatitude = Member_Neighbour[node_addr] [nextHop]. latitude;
futurelongitude = Member Neighbourfnode addr][nextHop].longitude;

dist_predicted = sqrt((latitude - future latitude) * (latitude - futurejatitude) +
(longitude - futurelongitude) * (longitude - futurelongitude));

printf(" > next Hop has distance %d %i\n", nextHop, dist_predicted);

if ((dist_predicted < Range_predicted) || (Range__predicted == dist_predicted))
{

nextHop = pos[i][1];
break;

}
}

}

else

{

}
}

}
printf(" > The nearest Gateway to the Next_Cluster {{%d}} is {{%d}}
\n",nextCluster, nextHop);

// send reply packet
LORA-CBF_pk_send to_mac_layer(ack_data_pk_ptr,next Hop);

}

250

APPENDICES

11
/******* Predicting the position of the destination *****/

11

Boolean predicting_position_destination(int dest, double latitude, double longitude)
{

double intervaljim e, intervallatitude, interval longitude, factor;
double future latitude, futurejongitude, dist predicted;
Boolean result = O PC FA LSE;

if ((Clusterhead[node_addr].Member id[dest] == dest) && ((op sim time () -
Cluster_Member[node_addr][dest].timer) < EXPIRATION TIME))

{
if (Cluster_Member[node_addr][dest].previa latitude != 0.0)

{
printf(" > Destination has previa latitude %d %f\n", dest,
Cluster_Member[node_addr][dest].previa latitude);

interval time = Cluster_Member[node_addr] [dest].timer -
Cluster_Member[node_addr][dest].previo timer;

interval latitude = (Cluster_Member[node_addr][dest].latitude -
Cluster_Member[node_addr][dest].previalatitiide)/intervalJime;

intervaI_longitude = (Cluster_Member[node addr][dest].longitude -
Cluster_M ember[node_addr][dest].previalongitude)/intervaltime;

f ((op sim time () - Cluster_Member[node_addr][dest].timer) > MINIMUM^DELAY)
{

printf(" > Destination has been seen %d %An", dest,
Cluster_Member[node_addr] [dest] .timer);

factor = factor_Cluster_Member(dest);

future latitude = (Cluster_Member[node_addr][dest].latitude + (interval latitude *
factor));
futurejongitude = (Cluster_Member[node_addr][dest].longitude + (intervallongitude
* factor));

dist predicted = sqrt((Iatitude - futurejatitude) * (latitude - future latitude) +
(longitude - futurejongitude) * (longitude - futurejongitude));

printf("

else

> Destination has distance %d %f\n",dest, dist_predicted);
}

{
printf(" > Destination has been seen %d % An", dest,
ClusterJvfember[node_addr] [dest] .timer);

251

APPENDICES

futurejatitude = Cluster_Member[node_addr]fdest].latitude;
futurejongitude = ClusterJVlember[node_addr] [dest]. longitude;

dist_predicted = sqrt((latitude - futurejatitude) * (latitude - futurejatitude) +
(longitude - futurejongitude) * (longitude - futurejongitude));

printf(" > Destination has distance %d %f\n",dest, dist_predicted);
}

}

else
{

printf(" > Destination has previa latitude %d %An", dest,
Cluster_Member[node_addr][dest].previa latitude);

fu turejatitude = Cluster_Member[node_addr] [dest]. latitude;
futurejongitude = ClusterJvlember[node_addr] [dest]. longitude;

dist_predicted = sqrt((latitude - futurejatitude) * (latitude - futurejatitude) +
(longitude - future jong itude) * (longitude - future jongitude));

printf(" > Destination has distance %d %f\n",dest, dist_predicted);
}

}
if ((dist_predicted < Range_predicted) || (Range_predicted = dist_predicted))

{
result = OPC TRUE;

}
return result;

}

252

APPENDICES

llin iH
l-k-k-k-k-k-k-k-k-k M dllbCr DCStÎlliltiOil ********************/

11

void Next_Member_dest_data(Packet* data_pk_ptr, double latitude, double longitude,
double destjatitude, double dest longitude, int nextCluster, int dest)
{
int max, i, j, nextHop;
double latitude_gateway, longitude gateway, factor;
double dist node dest, dist_next_gateway_dest, dist node next gateway;
double interval time, intervaljatitude, interval longitude;
double futurejatitude, future_longitude, dist_predicted;
double pos[N][2];

max = j = 0;

for (i=0; i<N; i++)

{ ‘
if ((Member_Neighbour[node_addr][i].status = IN SERVICE) && ((op s im jim e () »
M ember_Neighbour[nodeaddr][i].timer) < EXPIRATION TIME))

{
latitude_gateway = Member_Neighbour[node_addr][i],latitude;
longitude_gateway = Member_Neighbour[node addr][i].longitude;

printf(" > Member %d \n", i);

//dist_node_dest = sqrt((longitude-dest_longitude)*(longitude-dest Jongitude) +
(latitude-dest latitude)*(latitude-dest latitude));

dist_next_gateway_dest = sqrt((longitude_gateway-
destJongitude)*(longitude_gateway-dest_longitude) + (latitude_gateway-
destjatitude)*(latitude_gateway-destjatitude));

//dist_node_next_gateway = sqrt((longitude-longitude_gateway)*(longitude-
longitude_gateway) + (latitude-latitude_gateway)*(latitude-latitude_gateway));

pos[j][0]= dist next gateway dest;
P°s[j][l] = (double)i;
j++;
max = j ;

}
}

if (max == 0)

{
}

253

APPENDICES

else if (max >= 1)
{

bubb!eSort(pos, max);

printf(" > Predicting the position o f the next Hop \n");

for (i=0; i<j; i++)
{

nextHop = pos[i][l];
printf(" > nextHop =%d\n",nextHop);

if ((Member_Neighbour[node_addr][nextHop].previa latitude != 0.0) && (nextCluster
!= nextHop))

{
printf(" > Next Hop has previa latitude %d %An", nextHop,
Member_Neighbour[node_addr][nextHop].previa latitude);

interval time = Member Neighbourfnode addr][nextHop].timer -
Member_Neighbour[node_addr] [nextHop].previotim er;

intervalJatitude = (Member_Neighbour[node_addr][nextHop].latitude -
Member_Neighbour[node_addr][nextHop].previa_latitude)/interval time;

interval longitude = (Member_Neighbour[node_addr][nextHop].longitude -
Member_Neighbour[node_addr][nextHop].previa longitude)/interval time;

if ((op sim time () - Member_Neighbour[node_addr][nextHop].timer) >
M INIM UM DELAY)

{
printf(" > Next Hop has been seen %d %An", nextHop,
Member_Neighbour[node_addr] [nextHop] .timer);

factor = factor_Member_Neighbour(nextHop);
future Ja titu d e = (Member_Neighbour[node_addr] [nextHop]. latitude +
(interval latitude * factor));

future longitude = (Member Neighbour[node addr][nextHop].longitude +
(interval longitude * factor));

dist predicted = sqrt((latitude - future latitude) * (latitude - future latitude) +
(longitude - future longitude) * (longitude - future longitude));

printf(" > next Hop has distance %d %An",nextHop, dist_predicted);

if ((dist_predicted < Range_predicted) || (Range_predicted == dist_predicted))
{

nextHop = pos[i][1];
break;

254

APPENDICES

}
}

else

{
printf(" > Next Hop has been seen %d %f\n", nextHop,
Member_Neighbour[node_addr] [nextHop].timer);

future latitude = Member_Neighbour[node_addr] [nextHop].latitude;
futurelongitude = Member _Neighbour[nodeaddr] [nextHop]. longitude;

dist_predicted = sqrt((latitude - futurelatitude) * (latitude - future_latitude) +
(longitude - future longitude) * (longitude - future longitude));

printf(" > next Hop has distance %d %f\n",nextHop, dist_predicted);

if ((dist_predicted < Range_predicted) || (Range_predicted == dist predicted))
{

nextHop - pos[i][l];
break;

}
}

}

else

{
}

}
}

printf(" > The nearest Gateway to the Next Cluster {{%d}} is {{%d}}
\n",nextCluster, nextHop);

// send reply packet
LORA-CBF_pk_send_to_mac_layer(data_pk_ptr,nextHop);
}

APPENDICES

11
/******* Predicting the position of the source ******/
iiin

Boolean predicting_position_source(int source, double latitude, double longitude)

{
double interval time, interval latitude, interval longitude, factor;
double future latitude, future_ longitude, dist_predicted;
Boolean result = OPC_FALSE;

if ((Clusterhead[node_addr].Member_id[source] == source) && ((op _sim_time () -
Cluster_Member[node_addr] [source], timer) < EXPIRATION TIME))

{
if (Cluster _Member[node_addr] [source],previalatitude != 0.0)

{
printf(" > Source has previa latitude %d %I\n", source,
Cluster_Member[node_addr] [source], previalatitude);

in tervaltim e = Cluster_Member[node_addr][source].timer -
Cluster_Member[node_addr] [source] .previotim er;

intervallatitude = (Cluster_Member[node_addr][source].latitude -
Cluster_Member[node_addr] [source].previa Jatitude)/interval_time;

intervaljongitude = (Cluster_M ember[nodeaddr] [source],longitude -
Cluster_Member[node_addr][source].previa_longitude)/interval_time;

if ((op sim time () - Cluster_Member[node_addr][source].timer) >
MINIMUM DELAY)

{
printf(" > Source has been seen %d %f\n", source,
Cluster_Member[node_addr] [source], timer);

factor = factor_source(source);

future_latitude = (Cluster_Member[node_addr][source].latitude + (interval latitude *
factor));
future longitude = (Cluster_Member[node_addr][source].longitude +
(interval longitude * factor));

dist_predicted = sqrt((latitude - future latitude) * (latitude - futurejalitude) +
(longitude - futurejongitude) * (longitude - future longitude));

printf(" > Source has distance %d %f\n", source, dist__predicted);
}

else
{

256

APPENDICES

printf(" > Source has been seen %d %f\n", source,
ClusterJVlember[node_addr] [source] .timer);

future_latitude = Cluster Jvlember[node_addr] [source] .latitude;

futurejongitude = ClusterJvtember[node_addr] [source], longitude;

dist_predicted = sqrt((latitude - futurejatitude) * (latitude - futurejatitude) +
(longitude - futurejongitude) * (longitude - futurejongitude));

printf(" > Source has distance %d %fvn", source, dist_predicted);
}

}
else

{
printf(" > Source has previa latitude %d %i\n", source,
ClusterJVlember[node_addr][source].previa latitude);

future Ja titu d e = Cluster_Member[node_addr] [source] .latitude;
futurejongitude = Cluster Member[node_addr][source].longitude;

dist_predicted = sqrt((latitude - futurejatitude) * (latitude - future latitude) +
(longitude - futurejongitude) * (longitude - future jongitude));

printf(" > Source has distance %d %An", source, dist_predicted);
}

}
if ((dist_predicted < Range_predicted) || (Range_predicted = dist__predicted))

{
result = O PC TR U E;

}

return result;

}

APPENDICES

111
/* * * * * * Js A C K d a t a P a c k e t fr e sh e n o u g h * * * * * * * * * /

lll

Boolean LORA-CBF_ack_data_pk_is_fresh_enough(Packet* ack data pk ptr)
{

// var
Boolean result = O PC FA LSE;
int source, dest, seq_number;
/*
/* Check whether the BroadcastID of the request
/* is greater than the last seen. If so, RREP is
/* automatically processed. Else, node checks
/* whether RREP packet was seen less than
/* RECORD BROADCAST TIME seconds ago. If so, RREP
/* must be discarded. Else, it is processed.
*/

// Read RREQ fields
op_pk_nfd_get (ack_data_pk_ptr,"Seq_number",&seqjuimber);
°P_pk__nfd_get (ack_data_pk_ptr,"SRC",&source);
op_pk_nfd_get (ack_data_pk_ptr,"DEST",&dest);

if((Ackseen[dest][source].sequence_number < seq_number) ||
((Ackseenfdest][source].sequence_number==seq_number) && (op_sim_time()>
Ackseen| dest] (source].expirationTime)))

{
result = OPC TRUE;
// update RequestSeen repository
Ackseen [dest] [source]. sequence_number=seq_number;

Ackseen[dest] [source].expirationTime=op_sim_time()+BROADCAST_ RECORD _TIM
E;

}
return result;

}

APPENDICES

lll
I-k-k-k-k-k■k-k-k-k-k-k-k M e m b e r N e ig h b o u r * * * * * * * * * * * * * * * /

111

double factor_Member_Neighbour(int nextHop)
{

double diference, convert, factor;

diference = (o p s im tim e () - Member_Neighbour[node_addr] [nextHop].timer);

convert = diference - (tloor(diference));
if (convert <= 0.5)

{
factor = floor(op_sim_time () - Member_Neighbour[node_addr][nextHop].timer);

if (factor == 0.0)
{

factor = 1.0;
}

*}
else

{
factor = ceil(op_sim_time () - Member_Neighbour[node_addr][nextHop].timer);

}
printf(" > factor = %ftn",factor);
return (factor);
}

111
/ k k k k k k k k J ? ' | C l U S t e F N e i g h b o u r * * * * * * * * * * * * * * * * * k k k k j

llllllllllllllllin illlllllllllllllllllllllllllllllllllllH IH IIIIIIIIIIIIH H l

double factor_Cluster_Neighbour(int nextCluster)
{

double diference, convert, factor;

diference = (o p s im tim e () - Cluster Neighbour!node addr] [nextCluster].timer);

convert = diference - (floor(diference));

if (convert <= 0.5)
{

factor = floor(op_sim_time () - Cluster_Neighbour[node_addr][nextCluster].timer);

if (factor ==0.0)
{

factor = 1.0;
}

APPENDICES

}
else

{
factor = ceil(op_sim_time () - Cluster_Neighbour[node_addr][nextCluster|.timer);

}

printf(" > factor = %An",factor);

return (factor);
}

11
/****** factor Cluster Member DESTINATION********* k kk •kick j

iiiH iiim iiiii

double factorC luster Member(int dest)
{

double diference, convert, factor;

diference = (op_sim_time () - Cluster_Member[node_addr] [dest].timer);

convert = diference - (floor(diference));

if (convert <= 0.5)
{

factor = floor(op_sim_time () - Cluster_Member[node_addr] [dest].timer);

if (factor ==0.0)
{

factor = 1.0;
}

}
else

{
factor = ceil(op_sim_time () - Cluster_Member[node_addr][dest].timer);

}
printf(" > factor = %f\n",factor);

return (factor);

}

260

APPENDICES

///
/******* Factor Cluster Member SOURCE*************/

111

double factor_source(int source)
{

double diference, convert, factor;

diference = (o p s im tim e () - CIuster_Member[node_addr][source].timer);

convert = diference - (floor(diference));

if (convert <= 0.5)
{

factor = floor(op_sim_time () - CIuster_Member[node_addr][source].timer);

if (factor == 0.0)
{

factor = 1.0;
}

}
else

{
factor = ceil(op_sim_time () - Cluster Member[node_addr][source].timer);

}
printf(" > factor = %f\n",factor);
return (factor);
}

/* End o f Function Block */

/* Undefine optional tracing in FIN/FOUT/FRET */
/* The FSM has its own tracing code and the other */
/* functions should not have any tracing. */
#undef FIN T R A C IN G
#define FIN TRACING

#undef FOUTRETTRACING
#define FOUTRET TRACING

#if defined (__cplusplus)
extern "C" {
#endif
void LORA-CBF_clusters_and_members_only (void);
Compcode LORA-CBF_clusters_and_members_only init (void **);
void LORA-CBF_clusters_and_members_only_diag (void);
void LORA-CBF clusters and members only terminate (void);
void LORA-CBF_clusters_andjnembers_only_svar (void *, const char *, char **);

APPENDICES

#if defined (__cplusplus)
} /* end o f 'extern "C" */
#endif

/* Process model interrupt handling procedure */

void LORA-CBF_clusters_and_members_only (void)
{

int _block_origin = 0;
FIN (LORA-CBF_clusters_and_members_only ());
i f (l)

double
double
double
double
Compcode
Packet*
int

lei*
int
int

f lrs th e llo in trv l;
altitude, latitude, longitude, x_pos,y_pos,z_pos;
destjatitude, destjongitude;
source latitude, source longitude;
com pcode;
pkptr;
type, i, j, nextHop, previousHop, source,
Cluster_Neighbor, dest, max;
buffer;
destination,cluster, direction;
Members, num m em bers;

FSM E N TER (LORA-CBF_clusters_and_members_only)

F S M B L O C K S WITCH
{

/*... * j
/** state (Init) enter executives **/
FSM STATE ENTER FORCED NOLABEL (0, "Init", "LORA-
CBF_clusters_and_members_only [Init enter execs]")

FSM PROFILE SECTION IN ("LORA-CBF clusters and members only [Init enter
execs]", stateO_enter_exec)

{
/* Initialization of the process model. */
/* All the attributes are loaded in this routine and */
/* a self interruption is scheduled to initiate the */
/* the first Hello Interval */

n o d e jd = op topo parent (op id sel f());
op_ima_obj_attr_get(node_id,"Wireless LAN MAC Address",&node_addr);

op_ima_obj_attr_get(op_id_self(),"ACTIVE_ROUTE_TIMEOUT",&ACTIVE ROUT
ETIM EO U T);
op_ima_obj_attr_get(op_id_self(),"HELLO_MODE", &HELLO_MODE);
op_im a_objjittr_get(opJd_self(),"TTL", &TTL_START);

APPENDICES

op_ima_obj_attr_get(op_id_self(),"TR", &TR);

/* Constants */

HELLO JN T ER V A L
CLU STER IN TER V AL
EXPIRATIONTIM E
CONVERT_CLUSTER
BRO A D C A STR ECO R D TIM E
mySeqNb
ackNb
TIM ERREN EW
Data_seq_number
//Range_predicted
//Range_predicted
Range_predicted
//Range_predicted
PacketRetransm it
pkreceived
pk_transmited
to td e lay
averagedelay
delay
latency
MINIMUM TIME
M 1NIM UM DELAY

nodeid[node_addrj .transmission
nodeid[node_addr]. latitude
nodeid [nodeaddr] .longitude
nodeid[node_addr].direction

= 2.0
= 1.0
= 3.0
= 2.0
= 3.0
= 0;
~ 0;

= 1 ;

= 1;
= 0.001346; //150m
= 0.00179; //200m
= 0.0026962602390916; //300m
= 0.003143; //350m
= 0;
= 0;
= 0;
= 0.0;

= 0.0;
= 0 .0 ;

= 0.0;

= 0.8;
= 0.2;

= INACTIVE;
= 0.0;

= 0.0;

= 0;

transmit dist = op_dist_load("uniform_double", 0.0, 0.5);

/* Set priorities*/
op_intrpt_priority_set(OPC_INTRPT_STRM,RCV_STRM,20);
opJntrpt_priority_set(OPC_INTRPT_STRM,SRC STRM,5);

for (i=0; i<N; i++)
{
RequestSent[i].sequence_number=0;
RequestSent[i].status=OFF;
RequestSent[i].ttl=TTL START;
for(j=0; j<N ;j++)
{
RequestSeen[i][j].expirationTime = -1;
RequestSeen[i][j].broadcastID = -1 ;
ReplySeen[i][j].expirationTime = -1 ;

263

APPENDICES

ReplySeen[i][j].sequence_number = -1;
Dataseen[i][j].sequence number = -1;
Ackseen[i][j].sequence number =-l ;
Register_Cluster[i][j][i].timer = 0.0;
}
}

for (i=0; i<N; i++)
{
Location[i].latitude = 0.0;
Location[i]. longitude = 0.0;
Cluster_Neighbour[node_addr][i]. latitude = 0.0;
Cluster_Neighbour[node_addr][iJ. longitude = 0.0;
Cluster_Neighbour[node_addr][i]. timer = 0.0;
Cluster_Member[nodeaddr][i].latitude = 0.0;
Cluster_Member[node_addr][i]. longitude = 0.0;
Member_Neighbour[node_addr][i]. timer = 0.0;
Cluster_Neighbour[node_addr][i]. timer = 0.0;
}

for (i=0; i<N; i++)

{
for (j=0; j<N; j++)
{
Retransmission[i][j].counter = 0;
Clusterhead[i].Member_id[j] = 0;
Clusterhead[i].Gw[jJ = 0;
Cluster_Neighbour[i] |]]. status = DOWN;

}
}

retransm issionsjindl = o p s ta t r e g ("Retransmissions", OPC STAT INDEX NONE,
O P C S T A T GLOBAL); "
latency J in d l = op stat reg ("Latency", OPC STAT INDEX NONE,
O P C S T A T G L O B A L);
averagedelay J in d l = o p s ta t r e g ("A veragedelay", OPC STAT INDEX NONE,
O PC ST A T G L O B A L);
pkreceived J in d l = o p s ta t r e g ("Pk received", OPCJSTAT IN D EX J40N E,
O P C S T A T G L O B AL);
pk_transmited_hndl = op_stat_reg ("Pk transmited", O P C S T A T JN D E X NONE,
OPC_STAT_GLOBAL);
eficiency J in d l = op_stat_reg ("Eficiency", OPC_STATJNDEX_NONE,
O P C S T A T G L O B A L);
buffer_packets_hndl = op_stat_reg ("Buffer__packets", OPC STA7JINDEX NONE,
O PCSTA TJLO CA L);

264

APPENDICES

// Format the Hello Module and schedule the first broadcast of hello msg
if(HELLO_MODE)

{
/*init the hello_module */
hello_module.hello_msg_template = op_pk_create_fmt("HELLOPACKET");

/* trigger first intrpt for hello broadcast */
hello dist = op_dist_load ("uniform double", 0.0,1.0);
firs th e llo in trv l = op_dist_outcome(hello_dist);
hello_module.evt=
op_intrpt_schedule_self(op_sim_time()+first_hello_intrvl,UNDECIDED);

}
}

F S M P R O F IL E S E C T IO N O U T ("LORA-CBF clusters and members only [Init
enter execs]", stateO_enter_exec)

/** state (lnit) exit executives **/
FSM STATE EXIT FORCED (0, "Init", "LORA-CBF_clustersjmd_members_only
[Init exit execs]")

FSM_PROFILE_SECTION_IN ("LORA-CBF_clusters_and_members_only [Init exit
execs]", stateO_exit exec)

{
}

FSM PROFILE SECTION OUT ("LORA-CBF_clusters_and_members_only [Init
exit execs]", stateO exit_exec)

/** state (Init) transition processing **/
FSM TRANSIT_FORCE (1, statel_enter_exec, "default", "", "Init", "idle")
/*................. */

/** state (idle) enter executives **/
FSM STATE ENTER UNFORCED (1, statel enter exec, "idle", "LORA-
CBF_clusters_and_members_only [idle enter execs]")

FSM PROFILE SECTION IN ("LORA-CBF clusters and members only [idle enter
execs]", state 1 enter exec)

{
}

FSM PROFILE SECTION OUT ("LORA-CBF_clusters_and_members__only [idle
enter execs]", statel enter exec)

/** blocking after enter executives of unforced state. **/
FSM EXIT (3,LORA-CBF_clusters_and members only)

APPENDICES

/** state (idle) exit executives **/
FSM STATE EXIT UNFORCED (1, "idle", "LORA-
CBF_clusters_and_members_only [idle exit execs]")

FSM PROFILE SECTION IN ("LORA-CBF_clusters_and_members_only [idle exit
execs]", statel_exit_exec)

{
}

FSM PROFILE SECTION OUT ("LORA-CBF clusters and members only [idle
exit execs]", statel_exit_exec)

/** state (idle) transition processing **/
F S M P R O F IL E S E C T IO N IN ("LORA-CBF_clusters_and members only [idle trans
conditions]", state 1 trans conds)

FSM INIT COND (Type_Undecided)
F S M T E S T C O N D (Type_Cluster_head)
F S M T E S T C O N D (LOWER LAYER ARVL)
FSM TEST COND (UPPER LAYER ARVL)
FSM_TEST_COND (N o tic e T o S e rv e B u ffe r)
F S M D F L T C O N D
FSM TEST LOGIC ("idle")
F S M P R O F IL E S E C T IO N O U T ("LORA-CBF_clusters_and„members_only [idle
trans conditions]", statel trans conds)

FSM TR A N SITSW ITC Fl
{

F S M C A S E T R A N S IT (0, 2, state2_enter_exec,;, "Type Undecided","", "idle",
"Undecided")
FSM_CASE_TRANSIT (1, 3, state3_enter_exec,"Type_C luster_head","", "idle",
"C lusterhead")
FSM_CASE TRANSIT (2 ,4 , state4_enter_exec,"LO W ER _LA Y ER _A RV L","",
"idle", "Receiving")
FSM CASE TRANSIT (3, 5, state5_enter_exec,"U PPER_LA Y ER _A R V L","",
"idle", "Transmiting")
FSM_CASE_TRANSIT (4, 6, state6_enter_exec,"Notice_To_Serve_ B uffer","",
"idle", "Buffer")
FSM CASE TRANSIT (5, 1, statel_enter_exec,;, " d e f a u l t" ," id le " , "idle")

}
/*...*/

/** state (Undecided) enter executives **/
FS M STA TE JE N TER FO R C ED (2, state2_enter_exec, "Undecided", "LORA-
CBF clusters and members only [Undecided enter execs]")

FSM PROFILE SECTION IN ("LORA-CBF clusters and members only
[Undecided enter execs]", state2_enter_exec)

{

APPENDICES

/* Broadcast a Hello Message and schedule a self */
/* interrupt to the next hello interval */

if (HELLO MODE)
{

printf("\n {{node % d}} Node Undecided send a Hello msg :: ", nodeaddr);

n o d e id = op_topo_parent (op_id_self());
comp_code = op_ima_obj_pos_get (node_id, &latitude, &longitude, &altitude,
&x_pos, &y_pos, &z_pos);

/* This line tests the completion code, and upon detecting failure, calls o p s im end () to
*/
/* immediately end the simulation and print and error message to the standard output
device,*/
/* and the opnet message area. */

if (comp_code == OPC_COMPCODE_FAILURE)
o p s im e n d ("get attributes failed", "",

nodeid[node_addr].previa_latitude = nodeid[node_addr].latitude;
nodeid[node_addr].previa_Jongitude = nodeid [nodeaddr]. longitude;
nodeid [nodeaddr]. latitude = latitude;
nodeidfnodeaddr].longitude = longitude;
nodeid[node addr].timer = op sim time ();

/* Assign source and dest to the Hello packet */

op_pk nfd_set(hello module.hello_ msg template,"SRC",node addr);

op_pk_nfd_set(hello_module.hello_msg_template,"DEST",node_addr);

0P_pk_nfd_set(hello_module.hello_msg_template,"HopCount",0);

0P_pk„nfd_set(hello_module.hellojnsg_template,"Type_of_node",Undecided);

oP_pknfd_set(hellomodule.hello_msg_template,"Latitude",latitude);

op_pk_nfd_set(hello_module.hello_msg_template,"Longitude",longitude);

nodeid[node_addr].status_ofjiode - Undecided;

/* Send Packet */

LORA-CBF_pk_send_to_mac_layer(op_pk_copy(hello_module.hello msg template),
BROADCAST);

/* Update hello interval */

267

;

APPENDICES

hello module.evt = op_intrpt_schedule_self(op_sim_time () + HELLO INTERVAL,
CLUSTERHEAD);

printf(" - Next hello intrpt scheduled \n");
}

}

F S M P R O F IL E S E C T IO N O U T ("LORA-CBF_clusters_and_members_only
[Undecided enter execs]", state2_enter_exec)

/** state (Undecided) exit executives **/
FSM STATE EXIT FORCED (2, "Undecided", "LORA-
CBF_clusters_and_members_only [Undecided exit execs]")

F S M P R O F IL E S E C T IO N IN ("LORA-CBF_clusters_and_members_only
[Undecided exit execs]", state2_exit_exec)

{
}

F S M P R O F IL E S E C T IO N O U T ("LORA-CBF_clusters_and_members_only
[Undecided exit execs]", state2_exit_exec)

/** state (Undecided) transition processing **/
FSM TRANSIT FORCE (1, statel_enter_exec, ;, "default", "Undecided", "idle")
/*___________ ______________________________ * j

/** state (C lusterJiead) enter executives **/
FSM_STATE_ENTER_FORCED (3, state3 enter exec, "Cluster head", "LORA-
CBF clusters and members only [Cluster head enter execs]")

FSM PROFILE SECTION IN ("LORA-CBF_clusters_and„members_only
[Cluster head enter execs]", state3_enter_exec)

{
/* Broadcast a Hello Message and schedule a self* /
/* interrupt to the next hello interval */

if (HELLO MODE)
{

printf("\n {{node % d}} Node C lusterjiead send a Hello msg :: \n", node addr);

/* Update the Type o f node */

nodeid[node_addr].status_of_node = C lusterhead;

node id = op_topo_parent (op id selfQ);

APPENDICES

com pcode = opJma_obj_pos_get (n o d e jd , &latitude, &longitude, &altitude,
&x_pos, &y_pos, &z_pos);

/* This line tests the completion code, and upon detecting failure, calls op_sim_end () to
*/
/* immediately end the simulation and print and error message to the standard output
device,*/
/* and the opnet message area.
*/

if (comp_code = OPC_COMPCODE_FAILURE)
op_sim_end ("get attributes failed",

if ((nodeid[node_addr].transmission == ACTIVE && (op sim„time () -
nodeid[node_addr].active_timer <= EXPIRATIONTIM E)))

{
op_pk_nfd_set (hello_module.hello_msg_template,"Transmission",ACTIVE);

}

else
{

op_pk_nfd_set (hello module.hello msg template,"Transmission"JNACTIVE);
}

Members = 0;

for (i=0; i<N; i++)

{
if ((Cluster_Member[node_addr][i].status = IN SERVICE) && ((op s im jim e () -
Cluster_Member[node_addr][i].timer) < CLUSTER INTERVAL))

Members++;
{

}

}

}
op_pk _nfd_set (hello_module.hello_msg template,"HopCount", 0);
°P_pk_nfd_set (hello_module.hello_msg template,"Num Members", Members);
°P_pk_nfd_set (hello_module.hello_msg template,"Type_of_node",Cluster head);
op_pk_nfd_set (hello_module.hello_msg template,"Latitude",latitude);
°P_pk_nfd_set (hello_module.hello_msg_template,"Longitude",longitude);

jT ’j y- ' ■ ; ■ ■■■ .. _ ;

269

APPENDICES

/* Send Packet */

LORA-CBF_pk_send to_mac layer (op_pk_copy (hellom odule .hellom sgjem plate),
BROADCAST);

/* Update hello interval from Cluster */

nodeid[node_addr].evt cluster = op intrpt_schedule_self(op_sim time () +
CLUSTER INTERVAL, CLUSTER HEAD);

printf(" - Next hello intrpt scheduled from C lusterhead %d \n", node addr);
}

}
F S M P R O F IL E S E C T IO N O U T (”LORA-CBF_clusters_and_members_only
[C lusterjiead enter execs]", state3_enter_exec)

/** state (Cluster_head) exit executives **/
F S M S T A T E E X IT F O R C E D (3, "C lusterjiead", "LORA-
CBF clusters and members only [Cluster head exit execs]")
FSM PROFILE SECTION IN ("LORA-CBF_clusters_and_members_only
[C lusterjiead exit execs]", state3_exit_exec)

{
}

F S M P R O F IL E S E C T IO N O U T ("LORA-CBF_clusters_and_members_only
[Cluster head exit execs]", state3_exit_exec)

/** state (Cluster_head) transition processing **/
FSM TRANSIT FORCE (1, statel_enter__exec, "default", "", "Cluster head", "idle")
/*..*/

/** state (Receiving) enter executives **/
FSM STATE ENTER FORCED (4, state4_enter_exec, "Receiving", "LORA-
CBF_clusters and members only [Receiving enter execs]")

FSM PROFILE SECTION IN ("LORA-CBF_clusters_and members only [Receiving
enter execs]", state4_enter_exec)

{
/* This state receives the incoming packet stream from */

/* the lower layer. It first checks the type o f the */
/* received packet then, calls the appropriate function */
/* to proceed. */
/* N.B. promiscuous listenning is blocked at this state *1

pkptr = op_pk_get(RCV_STRM);
if (LORA-CBF_pk is in_tr(pkptr) = OPC TRUE)

{
op_pk_nfd_get(pkptr,"Type",&type);
op_pk_nfd_get(pkptr,"NextHop",&nextHop);

270

APPENDICES

°p_pk_nfd_get(pkptr,"PreviousHop",&previousHop);
op_pk_nfd_get(pkptr,"SRC",&source);

// check packet type
switch(type)

{
case H E L L O P ACKET_T YPE: // HELLO packet received

{
if (nextHop = BROADCAST)

{
printf("\n {{ node %d }} ", nodeaddr);
LORA-CBF_pk_print(pkptr);
LORA-CBF_hello_msg_receive(pkptr);

}

else

op_pk_destroy(pkptr);

break;

{

}

}

case REQUEST PACKET TYPE: // RREQ received
{

if(source != node_addr)
{

printf("\n {{ node %d } }\n - A REQUEST pk has been received from mac
layer\n", node addr);

LORA-CBF_pk_print(pkptr);
LORA-CBF_rreqjDk_receive(pkptr);

else

// request has looped back to source: RREQ discarded.
op_pk_destroy(pkptr);

break;
}

case ACK RREQ: // Acknowledge from the rreq packet
{

if (nextHop == node addr)

}

{

}

{

APPENDICES

// It is an acknowledge packet

printf(" \n {{node %d} }\n - An ack_rreq packet has been received \n",
node_addr);
LORA-CBF_j>k_print(pkptr);
LORA-CBF_ack_rreq_pk_receive(pkptr);

op_pk_destroy(pkptr);

break;

{

}

case REPLY PACKET TYPE: // RREP received
{

if(nextHop == nodeaddr)

printf("\n {{ node %d } }\n
node_addr);

{
- A REPLY pk has been received from mac layerVn",

LORA-CBF_pk_print(pkptr);
LORA-CBF_rrep_pk_receive(pkptr);

else

// Reply has looped back to source: RREP discarded.
°P_pk_destroy(pkptr);

break;
}

case D A T A PA C K E T T Y PE : // data received
{

}

{

}

if(nextHop != node addr)

op_pk_destroy(pkptr);

else

printf("\n {{ node %d } }\n
nodeaddr);

-A

{

}

{
DA TA pk has been received from mac layer\n",

LORA-CBF_pk_print(pkptr);
LORA-CBF_data_pk_receive(pkptr);

}

APPENDICES

break;
}

case A C K D A TA : //Acknowledge from the data packet

{

if (nextHop == nodeaddr)
{

// It is an acnowledge packet

printf (" \n {{node %d} }\n - An ack data pk has been received \n", node addr);
LORA-CBF_pk_print(pkptr);

LORA-
CBF_ack_data_pk_receive(pkptr);

else

op pk destroyCpkptr);

break;

}

{

}

}

} /* end switch(type)*/

}

else

°P_pk_destroy(pkptr);
{

}

F S M P R O F IL E S E C T IO N O U T ("LORA-CBF_clusters_and_members„only
[Receiving enter execs]", state4_enter_exec)

/** state (Receiving) exit executives **/
FSM_STATEJEXIT_FORCED (4, "Receiving", "LORA-
CBF clusters and members only [Receiving exit execs]")

FSM PROFILE SECTION IN ("LORA-CBF cIusters and members only [Receiving
exit execs]", state4_exit_exec)

{
}

APPENDICES

FSM_PROFILE_SECTION_OUT ("LORA-CBF_clusters_and_members_only
[Receiving exit execs]", state4_exit_exec)

/** state (Receiving) transition processing **/
FSM_TRANSIT_FORCE (1, state l_enter_exec, "default", "Receiving", "idle")
/*............ ..*/

/** state (Transmiting) enter executives **/
FSM STATE ENTER FORCED (5, state5_enter_exec, "Transmiting", "LORA-
CBF_clusters_and_members_only [Transmiting enter execs]")

FSM PROFILE SECTION IN ("LORA-CBF clusters and members only
[Transmiting enter execs]", state5_enter_exec)

{
/* This state receives incoming packet stream from upper */
/* layer. */
pkptr = op_pk_get(SRC_STRM);
op_pk_nfd_get(pkptr,"DEST",&dest);

pk_transmited++;

op stat write (pk transmited hndl, pk transmited);

// set buffer size to 20 packet at a time

if(LORA-CBF_buffer_size_get(dest) < 20)
{

// data from internal source
printf("\n {{ node %d }} LORA-CBF_data__pk \n", node addr);

/ call routing function

LORA-CBF_data_pk(pkptr);

else

°P_pk_destroy (pkptr);

}

{

}

FSMJPROFILE_SECTION_OUT ("LO R A -C B Fclusters_andm em bers only
[Transmiting enter execs]", state5 enter_exec)

/** state (Transmiting) exit executives **/
FSM_STATE_EXIT_FORCED (5, "Transmiting", "LORA-
CBF_clusters_and_members_only [Transmiting exit execs]")

APPENDICES

FSM PROFILE SECTION IN ("LORA-CBF_clusters_and_members_only
[Transmiting exit execs]", state5_exit_exec)

{
}

FSM PROFILE SECTION OUT ("LORA-CBF_clusters_and members only
[Transmiting exit execs]", state5_exit_exec)

/** state (Transmiting) transition processing **/
FSM_TRANSIT_FORCE (1, statel_enter_exec, ;, "default", "", "Transmiting", "idle")
/*... */

/** state (Buffer) enter executives **/
FSM_STATE_ENTER_FORCED (6, state6_enter_exec, "Buffer", "LORA-
CBF_clusters_and_members_only [Buffer enter execs]")

F S M P R O F IL E S E C T IO N IN ("LORA-CBF_cIusters_and members only [Buffer
enter execs]", state6_enter_exec)

{
/* This state dequeue a data packet from the buffer and */
/* sends tl the mac layer. */

printf (" {{ node %d }} @ Buffer :: \n", node addr);

// Read the ICI associated to the interruption

buffer = op_intrpt_ici();
op_ici_attr_get (buffer, "dest", &destination);
op ici destroy (buffer);

// Check if the buffer is empty or not

if (LORA-CBF buffer is empty(destination) = OPC FALSE)
{

printf (" - The destination {{ %d }} has {{ %d }} packets waiting in the buffer \n",
destination, LORA-CBF buffer_size_get(destination));

LO RA -CBFbufferserve(destination);

op stat write (buffer_packets_hndl, LORA-CBF buffer size get(destination));

Packet_Retransmit++;

op_stat_write (retransmissions_hndl,Packet_Retransmit- 1);

APPENDICES

printf (" - Buffer is empty ! ! ! \n");

}
}

FSM_PROFILE_SECTION_OUT ("LORA-CBF_clusters_and_members only [Buffer
enter execs]", state6_enter_exec)

/** state (Buffer) exit executives **/
FSM STATE EXIT FORCED (6, "Buffer", "LORA-
CBF_clusters_and_members_only [Buffer exit execs]")

FSM PROFILE SECTION IN ("LORA-CBF_clusters_and_members_only [Buffer
exit execs]", state6_exit_exec)

{
}

F S M P R O F IL E S E C T IO N O U T ("LORA-CBF clusters and members only [Buffer
exit execs]", stateb exit exec)

/** state (Buffer) transition processing **/
FSM_TRANSITJFORCE (1, statel_enter_exec,;, "default","", "Buffer", "idle")
/*.. */

}

FSM_EXIT (0,LORA-CBF_clusters_and_members_ only)
}

}

#if defined (__cplusplus)
extern "C" {

#endif
extern VosTJFun_Status Vos_Catmem_Register (const char * , in t ,
VosT_Void_Null_Proc, V osTA ddress *);
extern VosT Address Vos_Catmem_Alloc (VosT Address, size__t);
extern VosT Fun Status Vos Catmem Dealloc (VosT Address);
if defined (__cplusplus)

}
#endif

Compcode
LORA-CBF_ clusters_and_members_only_init (void ** gen_ state_pptr)

{
int block origin = 0;
static VosT Address obtype = O P C N IL ;

FIN (LORA-CBF_clusters and_members on lyJn it (gen state_pptr))

APPENDICES

if (obtype = OPC_NIL)
{

/* Initialize memory management */
if (Vos_Catmem_Register ("proc state vars (LORA-
CBF_clusters_and_members_only)",
sizeof (LORA-CBF_clusters_and_members_only state), Vos Vnop, &obtype) ==
VOSCJFAILURE)

{
FRET (O PC C O M PC O D EFA ILU R E)

}
}

*gen_state_pptr = Vos_Catmem_Alloc (obtype, 1);
if (*gen_state_pptr == OPC_NIL)

{
FRET (OPC COMPCODE FAILURE)

' }
else

{
/* Initialize FSM handling */
((LORA-CBF_clusters_and_members_only_state *)(*gen_state_pptr))->current_block
= 0;

FRET (OPC COMPCODE SUCCESS)
}

}

void LORA-CBF_clusters_and_members_only_diag (void)
{

/* No Diagnostic Block */
}

void LORA-CBF_clusters_and_members_only_terminate (void)
{

int block origin = __LINE__;

FIN (LORA-CBF_clusters_and_members_only_terminate (void))

Vos_Catmem_Dea!loc (pr_state_ptr);

FOUT
}

/* Undefine shortcuts to state variables to avoid */
/* syntax error in direct access to fields o f */
/* local variable prs_ptr in LORA-CBF _clusters_and_members_only svar function. */
#undef n o d e id
#undef node addr
#undef DEBUG

APPENDICES

#undef H ELLO M O D E
#undef T T L S T ART
#undef TR
#undef hellom odule
#undef h e llo d is t
#undef H ELLO IN TER V AL
#undef CLUSTERJNTERVAL
#undef RequestSent
#undef RequestSeen
#undef myBroadcastlD
#undef N ETD IA M ETER
#undef N O D ETR A V ER SA L TIM E
#undef N E T T R A VERS A L T IM E
#undef B R O A D C A STR ECO R D TIM E
#undef ACTIVE ROUTE TIMEOUT
#undef M Y R O U T E T IM E O U T
#undef mySeqNb
#undef TIM ERR EN EW
#undef ackNb
#undef Location
#undef Retransmission
#undef Data_seq_number
#undef ReplySeen
#undef transm itd ist
#undef Range p red ic ted
#undef retransm issionsjindl
#undef Packet_Retransmit
#undef latencyhndl
#undef latency_start
#undef delay
#undef tot_delay
#undef average_delay
#undef average_delay_hndl
#undef buffer_packets_hndl
#undef buffertim e
#undef latency_stop
#undef p k rece iv ed h n d l
#undef EXPIRATIONTIM E
#undef eficiencyhndl
#undef p k tran sm ited h n d l
#undef M IN IM U M TIM E
#undef M INIM UM J3ELAY
#undef Dataseen
#undef Ackseen
#undef CONVERTCLUSTER

void LORA-CBF_clusters_and_members_only_svar (void * gen_ptr, const char *
varnam e, char * * var__p_ptr)

APPENDICES

{
LORA-CBF_clusters_and_members_only_state *prs_ptr;

FIN (LORA-CBF_clusters_and_members_only_svar (gen _ptr, varnam e, var p ptr))

if (var name = OPC NIL)
{

*var_p_ptr = (char *)OPC_NIL;
FOUT

}
prs_ptr = (LORA-CBF_clusters_and_members_only_state *)gen_ptr;

if (strcmp ("node id " , var name) == 0)
{ “

*var_p_ptr = (char *) (&prs_ptr->node_id);
FOUT

}
if (strcmp ("node add r" , var name) == 0)

{"
*var_p_ptr = (char *) (&prs_ptr->node_addr);
FOUT

}
if (strcmp ("D EBU G ", var_name) == 0)

{
*var_p_ptr = (char *) (&prs_ptr->DEBUG);
FOUT

}
if (strcmp ("HELLO M O D E", vai_name) == 0)

{
*var_p_ptr = (char *) (&prs_ptr->HELLO_MODE);
FOUT

}
if (strcmp ("TTL STA RT", var name) = 0)

’|tvar_p_ptr = (char *) (&prs_ptr->TTL_START);
FOUT

}
if (strcmp ("T R ", var name) == 0)

{
*var_p_ptr = (char *) (&prs_ptr->TR);
FOUT

}
if (strcmp ("hello m odule", var_name) == 0)

{ '
*var_p_ptr = (char *) (&prs_ptr->hello_module);
FOUT

}
if (strcmp ("hello d is t" , var name) == 0)

279

APPENDICES

{
*var_p_ptr = (char *) (&prs_ptr->hello_dist);
FOUT

}
if (strcmp ("HELLO INTERVAL", var_name) == 0)

{
*var_p_ptr = (char *) (&prs_ptr->HELLO_INTERVAL);
FOUT

}
if (strcmp ("CLUSTER JN T E R V A L ", var_name) = 0)

{
*var_p_ptr = (char *) (&prs_ptr->CLUSTER_INTERVAL);
FOUT

}
if (strcmp ("RequestSent", var_name) == 0)

{
*var_p_ptr = (char *) (prs__ptr->RequestSent);
FOUT

}
if (strcmp ("RequestSeen", var_name) = 0)

{
*var_p_ptr = (char *) (prs_ptr->RequestSeen);
FOUT

}
if (strcmp ("myBroadcastlD", var name) == 0)

{
*var_p_ptr = (char *) (&prs_ptr->myBroadcastID);
FOUT

}
if (strcmp ("NET DIAM ETER", var name) = 0)

{"
"‘v a r j j t r = (char *) (&prs_ptr->NET_DIAMETER);
FOUT

}
if (strcmp ("NODE TRAVERSAL T IM E ", var_name) == 0)

{
*var_p_ptr = (char *) (&prs_ptr->NODE_TRAVERSAL TIME);
FOUT

}
if (strcmp ("NET TRAVERSAL T IM E ", varjiam e) == 0)

{
*var_p_ptr = (char *) (&prs_ptr->NET TRAVERSAL TIME);
FOUT

}
if (strcmp ("B R O A D C A ST R E C O R D T IM E ", var_name) == 0)

{
*var_p_ptr = (char *) (&prs_ptr->BROADCAST_RECORDjriM E);
FOUT

280

APPENDICES

}
if (strcmp ("ACTIVE_ROUTE_TIMEOUT", varnam e) == 0)

{
*var_p_ptr = (char *) (&prsjitr->ACTIVE_ROUTE_TIMEOUT);
FOUT

}
if (strcmp ("MY_ROUTE_TIMEOUT” , va rn am e) — 0)

{
*var_p_ptr = (char *) (&prs_ptr->MY_ROUTE_TIMEOUT);
FOUT

}
if (strcmp ("m ySeqNb", var_name) == 0)

{
*var_P_Ptr = (char *) (&prs_ptr->mySeqNb);
FOUT

}
if (strcmp ("TIMER JR E N E W ", var_name) = 0)

{
*var_p_ptr = (char *) (&prs_ptr->TIMER RENEW);
FOUT

}
if (strcmp ("ackN b", varjiam e) == 0)

{
*var_p_ptr = (char *) (&prs_ptr->ackNb);
FOUT

}
if (strcmp ("Location", varjiam e) == 0)

{
*var_p_ptr = (char *) (prs_ptr->Location);
FOUT

}
if (strcmp ("Retransmission", var name) == 0)

{
*var_p_ptr = (char *) (prs_ptr-> Retransmission);
FOUT

}
if (strcmp ("Data_seq_number", var_name) == 0)

{ '
*var_P_ptr = (char *) (&prs_ptr->Data_seq_number);
FOUT

}
if (strcmp ("ReplySeen", var name) == 0)

{
*var_p_ptr = (char *) (prs_ptr->ReplySeen);
FOUT

}
if (strcmp ("transmit j J i s t " , var name) == 0)

{

281

APPENDICES

*var_p_ptr = (char *) (&prs_ptr->transmit_dist);
FOUT

}
if (strcmp ("Range_predicted", var_name) == 0)

{
*var_p_ptr = (char *) (&prs_ptr->Range_predicted);
FOUT

}
if (strcmp ("retransmissions hnd l" , varnam e) = 0)

{
*var_p_ptr = (char *) (&prs_ptr->retransmissions_hndl);
FOUT

}
if (strcmp ("PacketR etransm it", var name) == 0)

{
*var_p_ptr = (char *) (&prs_ptr->Packet_Retransmit);
FOUT

}
if (strcmp (" la ten cy h n d l" , var name) == 0)

• {
*var_p_ptr = (char *) (&prs_ptr->latency_hndl);
FOUT

}
if (strcmp ("latency s tart" , var name) = 0)

{
*var_p_ptr = (char *) (&prs_ptr->latency_start);
FOUT

}
if (strcmp ("delay", var name) = 0)

{
’'‘v a r ^ ^ t r = (char *) (&prs_ptr->delay);
FOUT

}
if (strcmp ("tot de lay", var name) == 0)

{
*var_p_ptr = (char *) (&prs_ptr->tot_deiay);
FOUT

}
if (strcmp ("average_delay", var_name) == 0)

{
*var_p_ptr = (char *) (&prs_ptr->average_delay);
FOUT

}
if (strcmp ("average delay h n d l" , var name) == 0)

{
*var__p_ptr = (char *) (&prs_ptr->average delayJm dl);
FOUT

}

282

APPENDICES

if (strcmp ("buffer_packets_hndl", varjiam e) == 0)
{

*var_p_ptr = (char *) (&prs_ptr->buffer_packets_hndl);
FOUT

}
if (strcmp ("buffer tim e" , var_name) == 0)

{
*var_P_Ptr = (char *) (&prs_ptr->buffer_time);
FOUT

}
if (strcmp ("latency_stop", var_name) == 0)

{
*var_p_ptr = (char *) (&prs_ptr->latency_stop);
FOUT

}
if (strcmp ("pk received hnd l" , v a rnam e) = 0)

{
*var_p_ptr = (char *) (&prs_ptr->pk_received_hndl);
FOUT

• }
if (strcmp ("EXPIRATION_TIME", var name) = 0)

{
*var_p_ptr = (char *) (&prs_ptr->EXPIRATION_TIME);
FOUT

}
if (strcmp ("efic iencyhnd l" , var name) == 0)

{
*var_P_Ptr = (char *) (&prsj>tr->eficiency_hndl);
FOUT

}
if (strcmp ("pk_transmited_hndl", var name) = 0)

{
*var_p_ptr = (char *) (&prs_ptr->pk_transmited_hndl);
FOUT

}
if (strcmp ("MINIMUM TIM E ", var name) = 0)

{
*var_p_ptr = (char *) (&prs_ptr->MINIMUM_TIME);
FOUT

}
if (strcmp ("MINIMUM D ELA Y ", var name) == 0)

{
*var_p_ptr = (char *) (&prs_ptr->MINIMUM_DELAY);
FOUT

}
if (strcmp ("D ataseen", var name) ~ 0)

{
>l'var_P_Ptr = (char *) (prs_ptr->Dataseen);

283

APPENDICES

FOUT
}

if (strcmp ("Ackseen", varnam e) == 0)
{

*var_p_ptr = (char *) (prs_ptr->Ackseen);
FOUT

}
if (strcmp ("CONVERT CLUSTER", var_name) = 0)

{
*var_p_ptr = (char *) (&prs_ptr->CONVERT_CLUSTER);
FOUT

}
*var_p_ptr = (char *)OPC_NIL;

FOUT
}

APPENDICES

A p p e n d ic e C : St a t is t ic a l A n a l y s is f o r

To meet performance goals prescribed for user traffic, a network must be able to adapt

its behaviour to accommodate for changes in its intrinsic properties o f connectivity and

capacity [24] [99]. In the following sections, we will describe these properties in more

detail. Performance goals in inter-vehicular networks will normally include statistical

analysis o f vehicular traffic, investigation o f topological dynamic ranges and

throughput.

Chapter 5 presented previously, an introduction to vehicular traffic theory. Here we

will look at the statistical distribution o f velocity, time gaps and distances, which are

three useful indicators that permit us to simulate a realistic environment o f vehicles on a

These quantities are described by random variables v , t , and d . The value o f velocity

in our application has a normal distribution [100]. Therefore, the probability density

function (pdf) and the probability distribution function (PDF) can be written as

A d - h o c W ir e l e s s
N e t w o r k s in I n t e r -
v e h ic u l a r COMMUNICATION

C .l INTRODUCTION

C.2 STATISTICAL ANALYSIS OF VEHICULAR

TRAFFIC

motorway.

(C .l)

whereby p and a are the mean and standard deviation o f velocity. We have assumed

that the vehicles drive at an average speed o f 150 km/h on a motorway with low traffic

density (undisturbed traffic), where vehicles with a speed of 190 km/h are considered to

APPENDICES

be at the upper limit. These premises are reasonable because there is no regulation

above this speed. Based on this assumption, the standard deviation is a = 40 Km/h. The

normal distribution guarantees that 68.26 % of the vehicles considered will be driven at

between 110 km/h to 190 km/h on a motorway (Figure C .l).

Figure C.l: probability density function of Velocity.

On the other hand, the Probability Distribution Function (PDF) cannot be solved

analytically. Thus, the following results are obtained by numerical computation with

MATLAB. We have considered limits of p - a top + a for our distribution. Results for

the PDF have provided P(v < p - cr) = 15.73% and P(v < p + a) = 83.49%. This means

that approximately 15 % of the vehicles deviate from the upper and lower limit.

According to [101], cars can be assumed to have arrivals that have a Poisson

distribution. This then means that the time gaps between cars are distributed according

to the probability density function [102] shown in equation C.2.

p M = q -e -« (C.2)

In C.2, q represents the traffic flow in vehicles per second.

286

APPENDICES

Using the distribution of the time gap between vehicles, it is possible to obtain the pdf

of vehicle separation d, substituting equation (5.1) found in Chapter 5.

Note that equation (C.3) neglects the value oflm, because it is insignificant here. lm is

the average length of vehicles.

C.3 INVESTIGATION OF TOPOLOGICAL DYNAMIC

RANGES

When considering inter-vehicular communication, one should consider the

circumstances o f the endpoints.

A typical factor is the direction of travel. For example, if they are in the same lane, on

the same carriageway or on opposite carriageways. The purpose o f the analysis is to

derive the probabilities of two endpoints having time to set up a link, given the

properties o f the specific protocols concerned.

To illustrate a simple case, let us assume that the velocity o f both endpoints is

constant and all vehicles are driving in the same direction. Let vehicle A be a reference

point with Rcomm the distance between two cars changing from d = -R comm to d - Reomm.

Because, the communication distance d is given by d - 2 • Rcomm, we can calculate the

probability distribution function (PDF) of communication duration as:

q - — = vni • —------ in (C.2), we obtain the probability density function of vehicle
T m 300 ,Tmm

separation.
a

(C.3)

for t > 0 (C.4)

in which the subscript Av refers to the velocity difference in equation C.4.

287

APPENDICES

According to the probability density function of communication duration, the vehicles

can remain connected for 27 seconds, considering only one direction. However, this is

with rather low probability (Figure C.2).

P(c)

Figure C.2: Probability density function o f communication duration considering
only one direction.

Now, we continue our discussion by considering the oncoming traffic scenario. The

main difference is the p Av 0„ = p 2 + p , , in which /iAvo„is the average of a velocity

difference considering oncoming traffic, and and /i, are the average values of

velocity. To calculate communication duration, one simply has to substitute p Avby

p Avo„ in the equation (C.4), to obtain the probability density function for oncoming

traffic on a motorway (Figure C.3).

The pdf for communication durations shows that the probability o f remaining connected

for 10 seconds for oncoming traffic is highly probably at a speed of 150 km/h.

288

APPENDICES

P(c)
0.7

0.6 -

0.5

0.4 -

0.3 -

0.2 -

0.1 -

00 10 20 30 40 50 60 70 80 90 100

t[s]

Figure C.3: Probability density function of communication duration between
vehicles in oncoming traffic.

C.4 The Capacity o f Ad-hoc wireless networks

Due to spatial separation, several nodes can carry out wireless transmissions

simultaneously and the capacity o f ad-hoc wireless networks is affected by the mutual

interference o f concurrent transmissions between nodes | 1 0 3 | . The study o f the capacity

of wireless ad hoc networks has received significant attention recently, according to

[10 4],]1 0 5] and [1 0 6]. Basically, this research considers n identical randomly located

nodes, each capable o f transmitting at W bits/sec and using a fixed range. The

throughput capacity X(n) obtainable by each node for a randomly chosen destination is:

Equation (C.5) defines the throughput capacity for each node in a wireless ad-hoc

network for a randomly chosen destination under a non-interference protocol. Here,

packets are sent from node to node in a multi-hop fashion until they reach their final

bits/sec (C.5)

289

APPENDICES

destination. Also, they can be buffered at intermediate nodes while awaiting

transmission.

C.5 THROUGHPUT IN IEEE WIRELESS NETWORKS

In order to determine the throughput of IEEE 802.11 and IEEE 802.1 lb, it is necessary

to analyze the MAC layer. The format of a data packet consists of the overhead

(preamble and header) and the data segment. The time to transmit this packet is shown

below:

tT = DIFS + Overhead + Da,ai-hUs\ + SIFS + ACK (C.6)
' Rate(bits / sec)

DIFS, SIFS and ACK frames are considered here because they are necessary to ensure

the correct reception of a packet.

SIFS = 1 0 ps, DIFS = 50 ms, ACK =112 ms

Overhead = Preamble + Header = 144 ps + 48 ps = 192 Ms

Rate = 1 and 11 Mbps

We will consider a data packet o f 1000 bytes.

Using equation C.6, we can determine the time required to transmit a data packet of

1000 bytes using IEEE 802.11 and IEEE 802.1 lb wireless cards.

(1000*8)bits
tT = 50j.iv +192f.Lv + ------ ---------- + 10f.Lv + 11 2j.lv

1*10'bi ls/s

L = 8.36 ms for IEEE 802.11 and 1.09 ms for IEEE 802.1 lb

The throughput for wireless radios is given by:

Throughput = ~ ta • (1 - PER) (bits/sec)
tT

(C.7)

APPENDICES

PER = \ - (\ - P e ̂number _ o f _ bits in _ the _ packet (C.8)

The equation (C.7) expresses the throughput, considering the time required to transmit

a data packet and the probability of a packet being received in error (PER). In (C.8) we

can observe that the PER of the system is related to the packet size, and the greater the

packet size, the greater the PER. This is because the packet needs more time to travel

from the source to the destination, and this increases the probability o f interference.

The probability o f bit error (Pe), for IEEE 802.11 wireless radios is given by:

P. = f, El]to 1 + 0 . 0̂ J (C.9)

where Eh represents the energy o f the bit at the receiver and N0 is the noise power

density.

For example, the throughput for IEEE 802.11 wireless radios is shown in Figure C.5,

which is reached at a distance of 300m at 955.46 kbps. According to equation C.6 the

time to transmit a packet o f 1000 Bytes is equal to 8.36 ms. Another way to verify the

result obtained is by using the following equation:

Throughput = Da,a(bi,/SeC) (C.10)
tr

rn 1 1 0 0 0 * 8 bits _ , , n o ' O i lThroughput = --------------- , Throughput = 956.9 kbps
8.36 ms

APPENDICES

Figure C.5: Throughput for IEEE 802.11 wireless radios in terms of distance to
receiver

Similarly, the Bit Error Probability (Pe), for IEEE 802.1 lb radios can be expressed in

the following equation:

oc (

f t = J * - /¿ { ' f a
■ f exp
~iv+x)

M
/''I V

dy
V l))

•exp
V

cb
2 P

~exp
2 ’Pj

ck (C .ll)

using the next approximation for Pe:

»* - i

Pe
2k -1

((M -\\\
A/-1 V V v m y

+ m + w8F^ 7m~\ *
(C.12)

where:

M = 2 4_l , k is the number o f bits in the symbol

APPENDICES

Figure C.6 shows the throughput for IEEE 802.1 lb wireless radios. Here, the

throughput reached at distance of 300m is 7.32 Mbps, employing the equation (C.10).

, 1000x8bits rV, , .
Throughput = -------------- , I hroughput = 7.3 Mbps

1.09 ms

Figure C.6: Throughput fo r IEEE 802.11b wireless card in terms o f distance to the
receiver.

