30,019 research outputs found

    Power-Aware Logical Topology Design Heuristics in Wavelength-Routing Networks

    Get PDF
    Abstract—Wavelength-Routing (WR) networks are the most common solution for core networks. With the access segment moving from copper to Passive Optical Networks (PON), core networks will become one of the major culprits of Internet power consumption. However, WR networks offer some design flexibility which can be exploited to mitigate their energy requirements. One of the main steps which has to be faced in designing WR networks is the planning of the Logical Topology (LT) starting from the matrix of traffic requests. In this paper, we propose a Mixed Integer Linear Programming (MILP) formulation to find power-wise optimal LTs. In addition, due to the complexity of the MILP approach we propose a greedy heuristic and a genetic algorithm (GA) ensuring performance close to the one achieved by the MILP formulation. I

    Generalized formulation of multilevel selective harmonic elimination PWM: Case I-Non-Equal DC Sources

    Get PDF
    The paper presents optimal solutions for eliminating harmonics from the output waveform of a multilevel staircase pulse-width modulation (PWM) method with non-equal dc sources. Therefore, the degrees of freedom for specifying the cost function increased without physical changes as compared to the conventional stepped waveform. The paper discusses an efficient hybrid real coded genetic algorithm (HRCGA) that reduces significantly the computational burden resulting in fast convergence. An objective function describing a measure of effectiveness of eliminating selected order of harmonics while controlling the fundamental for any number of levels and for any number of switching angels is derived. It is confirmed that multiple independent sets of solutions exist and the ones that offer better harmonic performance are identified. Different operating points including five- and seven-level inverters are investigated and simulated. Selected experimental results are reported to verify and validate the effectiveness of the proposed method

    RF-MEMS switch actuation pulse optimization using Taguchi's method

    Get PDF
    Copyright @ 2011 Springer-VerlagReliability and longevity comprise two of the most important concerns when designing micro-electro-mechanical-systems (MEMS) switches. Forcing the switch to perform close to its operating limits underlies a trade-off between response bandwidth and fatigue life due to the impact force of the cantilever touching its corresponding contact point. This paper presents for first time an actuation pulse optimization technique based on Taguchi’s optimization method to optimize the shape of the actuation pulse of an ohmic RF-MEMS switch in order to achieve better control and switching conditions. Simulation results show significant reduction in impact velocity (which results in less than 5 times impact force than nominal step pulse conditions) and settling time maintaining good switching speed for the pull down phase and almost elimination of the high bouncing phenomena during the release phase of the switch

    Comparison of Geometric Optimization Methods with Multiobjective Genetic Algorithms for Solving Integrated Optimal Design Problems

    Get PDF
    In this paper, system design methodologies for optimizing heterogenous power devices in electrical engineering are investigated. The concept of Integrated Optimal Design (IOD) is presented and a simplified but typical example is given. It consists in finding Pareto-optimal configurations for the motor drive of an electric vehicle. For that purpose, a geometric optimization method (i.e the Hooke and Jeeves minimization procedure) associated with an objective weighting sum and a Multiobjective Genetic Algorithm (i.e. the NSGA-II) are compared. Several performance issues are discussed such as the accuracy in the determination of Pareto-optimal configurations and the capability to well spread these solutions in the objective space
    corecore