73 research outputs found

    Origami-inspired kinematic morphing surfaces

    Get PDF
    In the past decades, an emerging technology has tried to build robots from soft materials to mimic living organisms in nature. Despite the flexibility and adaptability offered by such robots, the soft materials introduce very high or even infinite degrees of freedom (DoFs). It is thus challenging to achieve controllable shape changes on soft materials, which are essential for robots to carry out their functions. Many material-based approaches have been attempted to constrain the excessive DoFs of soft materials, so that they can bend, stretch, or twist as desired. In most applications, considering that only limited mobility is required to perform certain tasks, it would also be feasible to employ mechanical coupling to remove unwanted motions. To achieve this, engineers resort to origami techniques to design predictable and controllable robotic structures. However, most origami-inspired robots are built from existing patterns, where the material thickness is always neglected. Using zero-thickness sheets restricts the modelling accuracy, fabrication flexibility, and motion possibility. A recent study reveals that considering material thickness can further reduce the overall DoFs of origami, since its mechanical model is often overconstrained and differs significantly from that of the zero-thickness one. The novel structures with thickness, known as thick-panel origami, were originally developed for space use and are not accessible to roboticists. Hence, a thorough investigation is needed to develop thick-panel origami targeting robotic applications. This thesis is thus centred on two aspects. The first is to systematically design thick-panel origami for shape-changing, namely morphing surfaces. The second part extends selected surfaces into the design of intelligent robots, with the aim of simplified design, actuation, and control. The main achievements of this research are as follows. Firstly, a systematic design methodology is proposed to map thick-panel origami with 6R spatial overconstrained linkages. A library of morphing units whose thicknesses are uniform and not negligible is thus uncovered. Morphing surfaces, which are the tessellations or assemblies of morphing units, are then demonstrated to achieve common soft material behaviours, including bending, expanding, and twisting. Complex motions such as wrapping and curling are also presented. The mobility of these surfaces is restricted to one, while bifurcations may exist for extra motion possibilities. Secondly, a robotic gripper is designed from the wrapping surface. By exploiting the bifurcation and compliance of the surface, the proposed gripper has achieved a balance between motion dexterity and control complexity, aiming to solve the control challenges of grasping and manipulation. More specifically, the gripper can grasp objects of various shapes with one motor and conduct manipulations with only two control inputs, as opposed to many current end effectors that can only grasp or need around 20 actuators for manipulation tasks. On top of this, the gripper can be 3D-printed with ease, largely streamlining the mechanical design and fabrication process. Lastly, a reconfigurable robot is demonstrated on the curling surface to mimic a millipede's morphology. The robot can not only morph into a coil but also reconfigure into wave-like and triangular shapes. The reconfigurability is achieved by utilising the kinematic bifurcations of the surface without increasing the system's overall DoF. The design is also free from module disconnection and reconnection for new configurations, making the system more robust. The proof-of-concept robotic study has showcased the potential of maintaining reconfigurability with a relatively straightforward control strategy

    Design, Computational Modelling and Experimental Characterization of Bistable Hybrid Soft Actuators for a Controllable-Compliance Joint of an Exoskeleton Rehabilitation Robot

    Get PDF
    This paper presents the mechatronic design of a biorobotic joint with controllable compliance, for innovative applications of “assist-as-needed” robotic rehabilitation mediated by a wearable and soft exoskeleton. The soft actuation of robotic exoskeletons can provide some relevant advantages in terms of controllable compliance, adaptivity and intrinsic safety of the control performance of the robot during the interaction with the patient. Pneumatic Artificial Muscles (PAMs), which belong to the class of soft actuators, can be arranged in antagonistic configuration in order to exploit the variability of their mechanical compliance for the optimal adaptation of the robot performance during therapy. The coupling of an antagonistic configuration of PAMs with a regulation mechanism can achieve, under a customized control strategy, the optimal tuning of the mechanical compliance of the exoskeleton joint over full ranges of actuation pressure and joint rotation. This work presents a novel mechanism, for the optimal regulation of the compliance of the biorobotic joint, which is characterized by a soft and hybrid actuation exploiting the storage/release of the elastic energy by bistable Von Mises elastic trusses. The contribution from elastic Von Mises structure can improve both the mechanical response of the soft pneumatic bellows actuating the regulation mechanism and the intrinsic safety of the whole mechanism. A comprehensive set of design steps is presented here, including the optimization of the geometry of the pneumatic bellows, the fabrication process through 3D printing of the mechanism and some experimental tests devoted to the characterization of the hybrid soft actuation. The experimental tests replicated the main operating conditions of the regulation mechanism; the advantages arising from the bistable hybrid soft actuation were evaluated in terms of static and dynamic performance, e.g., pressure and force transition thresholds of the bistable mechanism, linearity and hysteresis of the actuator response

    ?????? ????????? ?????? ???????????? ?????? ????????? ??????????????? ?????? ??????

    Get PDF
    Department of Mechanical EngineeringThis thesis presents an origami-based hybrid actuating module for the upper limb which has the potential to support workers in the industrial fields. Conventional wearable systems such as exoskeleton systems are difficult to fit with different body sizes due to link structures and joints made of rigid materials. To solve these issues, soft wearable systems which consist of soft materials like elastomers have been studied. However, soft pneumatic actuators (SPAs), which is usually used for soft wearable systems create weak force and slow actuation speed. Also, they require a bulky air pump for actuation. In addition, most of them are fabricated manually so that it takes a long time to manufacture actuators, thus it is hard to modify the design of actuators. The proposed actuating module which is driven pneumatically consists of rigid material and soft material to improve the force transmission and actuating speed while maintaining compliance at the same time. Among various origami patterns, Yoshimura pattern was applied for the pneumatic chamber to create the linear and bending motion in the desired direction. An additive manufacturing method using heat press and laser cutting machine was developed to shorten fabrication time and make easy to modify the design of the actuating module. An analytical modeling which shows the relationship between design parameters of origami pattern and performances of the module was established, and the design parameters are optimized to satisfy requirements for upper limb support. Performances of the optimized actuating module were verified by experiments. Lastly, 3D-printed wearable structure was developed to connect a user with the actuating module, and supporting tests after wearing the module were conducted to ensure proper strength support.clos

    Mechanical Description of a Hyper-Redundant Robot Joint Mechanism Used for a Design of a Biomimetic Robotic Fish

    Get PDF
    A biologically inspired robot in the form of fish (mackerel) model using rubber (as the biomimetic material) for its hyper-redundant joint is presented in this paper. Computerized simulation of the most critical part of the model (the peduncle) shows that the rubber joints will be able to take up the stress that will be created. Furthermore, the frequency-induced softening of the rubber used was found to be critical if the joints are going to oscillate at frequency above 25 Hz. The robotic fish was able to attain a speed of 0.985 m/s while the tail beats at a maximum of 1.7 Hz when tested inside water. Furthermore, a minimum turning radius of 0.8 m (approximately 2 times the fish body length) was achieved

    Development, Control, and Empirical Evaluation of the Six-Legged Robot SpaceClimber Designed for Extraterrestrial Crater Exploration

    Get PDF
    In the recent past, mobile robots played an important role in the field of extraterrestrial surface exploration. Unfortunately, the currently available space exploration rovers do not provide the necessary mobility to reach scientifically interesting places in rough and steep terrain like boulder fields and craters. Multi-legged robots have proven to be a good solution to provide high mobility in unstructured environments. However, space missions place high demands on the system design, control, and performance which are hard to fulfill with such kinematically complex systems. This thesis focuses on the development, control, and evaluation of a six-legged robot for the purpose of lunar crater exploration considering the requirements arising from the envisaged mission scenario. The performance of the developed system is evaluated and optimized based on empirical data acquired in significant and reproducible experiments performed in a laboratory environment in order to show thecapability of the system to perform such a task and to provide a basis for the comparability with other mobile robotic solutions
    corecore