4 research outputs found

    Availability-Aware Spare Capacity Allocation with Partially Protected Rings

    Get PDF
    This thesis work focuses on designing a survivable IP-core network with the minimal investment of spare capacity. A span-oriented spare capacity allocation (SCA) scheme is proposed to satisfy customers' availability requirements in the end-to-end (E2E) sense. The novelty of the proposed SCA scheme is that it meets the E2E availability requirements despite the lack of knowledge of E2E bandwidth by employing protection rings covering all links in the network. Different ring selection methods are presented and also compared from the aspect of network redundancy and LP feasibility which provide more flexibility to the design. The proposed SCA algorithm further minimizes total cost of spare capacity by incorporating partial protection within the proposed architecture. The simulation results show that it can significantly reduce the spare capacity consumption depending on the availability. The proposed SCA scheme also performs better in terms of redundancy than that of two other dominant methods available these days

    Control plane routing in photonic networks

    Get PDF
    The work described in the thesis investigates the features of control plane functionality for routing wavelength paths to serve a set of sub-wavelength demands. The work takes account of routing problems only found in physical network layers, notably analogue transmission impairments. Much work exists on routing connections for dynamic Wavelength-Routed Optical Networks (WRON) and to demonstrate their advantages over static photonic networks. However, the question of how agile the WRON should be has not been addressed quantitatively. A categorization of switching speeds is extended, and compared with the reasons for requiring network agility. The increase of effective network capacity achieved with increased agility is quantified through new simulations. It is demonstrated that this benefit only occurs within a certain window of network fill; achievement of significant gain from a more-agile network may be prevented by the operator’s chosen tolerable blocking probability. The Wavelength Path Sharing (WPS) scheme uses semi-static wavelengths to form unidirectional photonic shared buses, reducing the need for photonic agility. Making WPS more practical, novel improved routing algorithms are proposed and evaluated for both execution time and performance, offering significant benefit in speed at modest cost in efficiency. Photonic viability is the question of whether a path that the control plane can configure will work with an acceptable bit error rate (BER) despite the physical transmission impairments encountered. It is shown that, although there is no single approach that is simple, quick to execute and generally applicable at this time, under stated conditions approximations may be made to achieve a general solution that will be fast enough to enable some applications of agility. The presented algorithms, analysis of optimal network agility and viability assessment approaches can be applied in the analysis and design of future photonic control planes and network architectures

    A load-balancing spare capacity reallocation approach in service-rich SONET metro mesh networks

    Get PDF
    The next-generation SONET metro network is evolving into a service-rich infrastructure. At the edge of such a network, multi-service provisioning platforms (MSPPs) provide efficient data mapping enabled by Generic Framing Procedure (GFP) and Virtual Concatenation (VC). The core of the network tends to be a meshed architecture equipped with Multi-Service Switches (MSSs). In the context of these emerging technologies, we propose a load-balancing spare capacity reallocation approach to improve network utilization in the next-generation SONET metro networks. Using our approach, carriers can postpone network upgrades, resulting in increased revenue with reduced capital expenditures (CAPEX). For the first time, we consider the spare capacity reallocation problem from a capacity upgrade and network planning perspective. Our approach can operate in the context of shared-path protection (with backup multiplexing) because it reallocates spare capacity without disrupting working services. Unlike previous spare capacity reallocation approaches which aim at minimizing total spare capacity, our load-balancing approach minimizes the network load vector (NLV), which is a novel metric that reflects the network load distribution. Because NLV takes into consideration both uniform and non-uniform link capacity distribution, our approach can benefit both uniform and non-uniform networks. We develop a greedy loadbalancing spare capacity reallocation (GLB-SCR) heuristic algorithm to implement this approach. Our experimental results show that GLB-SCR outperforms a previously proposed algorithm (SSR) in terms of established connection capacity and total network capacity in both uniform and non-uniform networks
    corecore