11,778 research outputs found

    Cluster-Based Load Balancing Algorithms for Grids

    Full text link
    E-science applications may require huge amounts of data and high processing power where grid infrastructures are very suitable for meeting these requirements. The load distribution in a grid may vary leading to the bottlenecks and overloaded sites. We describe a hierarchical dynamic load balancing protocol for Grids. The Grid consists of clusters and each cluster is represented by a coordinator. Each coordinator first attempts to balance the load in its cluster and if this fails, communicates with the other coordinators to perform transfer or reception of load. This process is repeated periodically. We analyze the correctness, performance and scalability of the proposed protocol and show from the simulation results that our algorithm balances the load by decreasing the number of high loaded nodes in a grid environment.Comment: 17 pages, 11 figures; International Journal of Computer Networks, volume3, number 5, 201

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Turbomachinery CFD on parallel computers

    Get PDF
    The role of multistage turbomachinery simulation in the development of propulsion system models is discussed. Particularly, the need for simulations with higher fidelity and faster turnaround time is highlighted. It is shown how such fast simulations can be used in engineering-oriented environments. The use of parallel processing to achieve the required turnaround times is discussed. Current work by several researchers in this area is summarized. Parallel turbomachinery CFD research at the NASA Lewis Research Center is then highlighted. These efforts are focused on implementing the average-passage turbomachinery model on MIMD, distributed memory parallel computers. Performance results are given for inviscid, single blade row and viscous, multistage applications on several parallel computers, including networked workstations
    corecore