95 research outputs found

    Reliability Analysis of the Hypercube Architecture.

    Get PDF
    This dissertation presents improved techniques for analyzing network-connected (NCF), 2-connected (2CF), task-based (TBF), and subcube (SF) functionality measures in a hypercube multiprocessor with faulty processing elements (PE) and/or communication elements (CE). These measures help study system-level fault tolerance issues and relate to various application modes in the hypercube. Solutions discussed in the text fall into probabilistic and deterministic models. The probabilistic measure assumes a stochastic graph of the hypercube where PE\u27s and/or CE\u27s may fail with certain probabilities, while the deterministic model considers that some system components are already failed and aims to determine the system functionality. For probabilistic model, MIL-HDBK-217F is used to predict PE and CE failure rates for an Intel iPSC system. First, a technique called CAREL is presented. A proof of its correctness is included in an appendix. Using the shelling ordering concept, CAREL is shown to solve the exact probabilistic NCF measure for a hypercube in time polynomial in the number of spanning trees. However, this number increases exponentially in the hypercube dimension. This dissertation, then, aims to more efficiently obtain lower and upper bounds on the measures. Algorithms, presented in the text, generate tighter bounds than had been obtained previously and run in time polynomial in the cube dimension. The proposed algorithms for probabilistic 2CF measure consider PE and/or CE failures. In attempting to evaluate deterministic measures, a hybrid method for fault tolerant broadcasting in the hypercube is proposed. This method combines the favorable features of redundant and non-redundant techniques. A generalized result on the deterministic TBF measure for the hypercube is then described. Two distributed algorithms are proposed to identify the largest operational subcubes in a hypercube C\sb{n} with faulty PE\u27s. Method 1, called LOS1, requires a list of faulty components and utilizes the CMB operator of CAREL to solve the problem. In case the number of unavailable nodes (faulty or busy) increases, an alternative distributed approach, called LOS2, processes m available nodes in O(mn) time. The proposed techniques are simple and efficient

    DIstributed VIRtual System (DIVIRS) Project

    Get PDF
    The development of Prospero moved from the University of Washington to ISI and several new versions of the software were released from ISI during the contract period. Changes in the first release from ISI included bug fixes and extensions to support the needs of specific users. Among these changes was a new option to directory queries that allows attributes to be returned for all files in a directory together with the directory listing. This change greatly improves the performance of their server and reduces the number of packets sent across their trans-pacific connection to the rest of the internet. Several new access method were added to the Prospero file method. The Prospero Data Access Protocol was designed, to support secure retrieval of data from systems running Prospero

    State-of-the-art Assessment For Simulated Forces

    Get PDF
    Summary of the review of the state of the art in simulated forces conducted to support the research objectives of Research and Development for Intelligent Simulated Forces

    New Techniques in Scene Understanding and Parallel Image Processing.

    Get PDF
    There has been tremendous research interest in the areas of computer and robotic vision. Scene understanding and parallel image processing are important paradigms in computer vision. New techniques are presented to solve some of the problems in these paradigms. Automatic interpretation of features in a natural scene is the focus of the first part of the dissertation. The proposed interpretation technique consists of a context dependent feature labeling algorithm using non linear probabilistic relaxation, and an expert system. Traditionally, the output of the labeling is analyzed, and then recognized by a high level interpreter. In this new approach, the knowledge about the scene is utilized to resolve the inconsistencies introduced by the labeling algorithm. A feature labeling system based on this hybrid technique is designed and developed. The labeling system plays a vital role in the development of an automatic image interpretation system for oceanographic satellite images. An extensive study on the existing interpretation techniques has been made in the related areas such as remote sensing, medical diagnosis, astronomy, and oceanography and has shown that our hybrid approach is unique and powerful. The second part of the dissertation presents the results in the area of parallel image processing. A new approach for parallelizing vision tasks in the low and intermediate levels is introduced. The technique utilizes schemes to embed the inherent data or computational structure, used to solve the problem, into parallel architectures such as hypercubes. The important characteristic of the technique is that the adjacent pixels in the image are mapped to nodes that are at a constant distance in the hypercube. Using the technique, parallel algorithms for neighbor-finding and digital distances are developed. A parallel hypercube sorting algorithm is obtained as an illustration of the technique. The research in developing these embedding algorithms has paved the way for efficient reconfiguration algorithms for hypercube architectures

    Hypercube-Based Topologies With Incremental Link Redundancy.

    Get PDF
    Hypercube structures have received a great deal of attention due to the attractive properties inherent to their topology. Parallel algorithms targeted at this topology can be partitioned into many tasks, each of which running on one node processor. A high degree of performance is achievable by running every task individually and concurrently on each node processor available in the hypercube. Nevertheless, the performance can be greatly degraded if the node processors spend much time just communicating with one another. The goal in designing hypercubes is, therefore, to achieve a high ratio of computation time to communication time. The dissertation addresses primarily ways to enhance system performance by minimizing the communication time among processors. The need for improving the performance of hypercube networks is clearly explained. Three novel topologies related to hypercubes with improved performance are proposed and analyzed. Firstly, the Bridged Hypercube (BHC) is introduced. It is shown that this design is remarkably more efficient and cost-effective than the standard hypercube due to its low diameter. Basic routing algorithms such as one to one and broadcasting are developed for the BHC and proven optimal. Shortcomings of the BHC such as its asymmetry and limited application are clearly discussed. The Folded Hypercube (FHC), a symmetric network with low diameter and low degree of the node, is introduced. This new topology is shown to support highly efficient communications among the processors. For the FHC, optimal routing algorithms are developed and proven to be remarkably more efficient than those of the conventional hypercube. For both BHC and FHC, network parameters such as average distance, message traffic density, and communication delay are derived and comparatively analyzed. Lastly, to enhance the fault tolerance of the hypercube, a new design called Fault Tolerant Hypercube (FTH) is proposed. The FTH is shown to exhibit a graceful degradation in performance with the existence of faults. Probabilistic models based on Markov chain are employed to characterize the fault tolerance of the FTH. The results are verified by Monte Carlo simulation. The most attractive feature of all new topologies is the asymptotically zero overhead associated with them. The designs are simple and implementable. These designs can lead themselves to many parallel processing applications requiring high degree of performance

    Efficient Mapping of Neural Network Models on a Class of Parallel Architectures.

    Get PDF
    This dissertation develops a formal and systematic methodology for efficient mapping of several contemporary artificial neural network (ANN) models on k-ary n-cube parallel architectures (KNC\u27s). We apply the general mapping to several important ANN models including feedforward ANN\u27s trained with backpropagation algorithm, radial basis function networks, cascade correlation learning, and adaptive resonance theory networks. Our approach utilizes a parallel task graph representing concurrent operations of the ANN model during training. The mapping of the ANN is performed in two steps. First, the parallel task graph of the ANN is mapped to a virtual KNC of compatible dimensionality. This involves decomposing each operation into its atomic tasks. Second, the dimensionality of the virtual KNC architecture is recursively reduced through a sequence of transformations until a desired metric is optimized. We refer to this process as folding the virtual architecture. The optimization criteria we consider in this dissertation are defined in terms of the iteration time of the algorithm on the folded architecture. If necessary, the mapping scheme may utilize a subset of the processors of a given KNC architecture if it results in the most efficient simulation. A unique feature of our mapping is that it systematically selects an appropriate degree of parallelism leading to a highly efficient realization of the ANN model on KNC architectures. A novel feature of our work is its ability to efficiently map unit-allocating ANN\u27s. These networks possess a dynamic structure which grows during training. We present a highly efficient scheme for simulating such networks on existing KNC parallel architectures. We assume an upper bound on size of the neural network We perform the folding such that the iteration time of the largest network is minimized. We show that our mapping leads to near-optimal simulation of smaller instances of the neural network. In addition, based on our mapping no data migration or task rescheduling is needed as the size of network grows

    The exploitation of parallelism on shared memory multiprocessors

    Get PDF
    PhD ThesisWith the arrival of many general purpose shared memory multiple processor (multiprocessor) computers into the commercial arena during the mid-1980's, a rift has opened between the raw processing power offered by the emerging hardware and the relative inability of its operating software to effectively deliver this power to potential users. This rift stems from the fact that, currently, no computational model with the capability to elegantly express parallel activity is mature enough to be universally accepted, and used as the basis for programming languages to exploit the parallelism that multiprocessors offer. To add to this, there is a lack of software tools to assist programmers in the processes of designing and debugging parallel programs. Although much research has been done in the field of programming languages, no undisputed candidate for the most appropriate language for programming shared memory multiprocessors has yet been found. This thesis examines why this state of affairs has arisen and proposes programming language constructs, together with a programming methodology and environment, to close the ever widening hardware to software gap. The novel programming constructs described in this thesis are intended for use in imperative languages even though they make use of the synchronisation inherent in the dataflow model by using the semantics of single assignment when operating on shared data, so giving rise to the term shared values. As there are several distinct parallel programming paradigms, matching flavours of shared value are developed to permit the concise expression of these paradigms.The Science and Engineering Research Council
    corecore