1,212 research outputs found

    Multiple Loop Self-Triggered Model Predictive Control for Network Scheduling and Control

    Full text link
    We present an algorithm for controlling and scheduling multiple linear time-invariant processes on a shared bandwidth limited communication network using adaptive sampling intervals. The controller is centralized and computes at every sampling instant not only the new control command for a process, but also decides the time interval to wait until taking the next sample. The approach relies on model predictive control ideas, where the cost function penalizes the state and control effort as well as the time interval until the next sample is taken. The latter is introduced in order to generate an adaptive sampling scheme for the overall system such that the sampling time increases as the norm of the system state goes to zero. The paper presents a method for synthesizing such a predictive controller and gives explicit sufficient conditions for when it is stabilizing. Further explicit conditions are given which guarantee conflict free transmissions on the network. It is shown that the optimization problem may be solved off-line and that the controller can be implemented as a lookup table of state feedback gains. Simulation studies which compare the proposed algorithm to periodic sampling illustrate potential performance gains.Comment: Accepted for publication in IEEE Transactions on Control Systems Technolog

    Optimization based energy-efficient control inmobile communication networks

    Get PDF
    In this work we consider how best to control mobility and transmission for the purpose of datatransfer and aggregation in a network of mobile autonomous agents. In particular we considernetworks containing unmanned aerial vehicles (UAVs). We first consider a single link betweena mobile transmitter-receiver pair, and show that the total amount of transmittable data isbounded. For certain special, but not overly restrictive cases, we can determine closed-formexpressions for this bound, as a function of relevant mobility and communication parameters.We then use nonlinear model predictive control (NMPC) to jointly optimize mobility and trans-mission schemes of all networked nodes for the purpose of minimizing the energy expenditureof the network. This yields a novel nonlinear optimal control problem for arbitrary networksof autonomous agents, which we solve with state-of-the-art nonlinear solvers. Numerical re-sults demonstrate increased network capacity and significant communication energy savingscompared to more na ̈ıve policies. All energy expenditure of an autonomous agent is due tocommunication, computation, or mobility and the actual computation of the NMPC solutionmay be a significant cost in both time and computational resources. Furthermore, frequentbroadcasting of control policies throughout the network can require significant transmit andreceive energies. Motivated by this, we develop an event-triggering scheme which accounts forthe accuracy of the optimal control solution, and provides guarantees of the minimum timebetween successive control updates. Solution accuracy should be accounted for in any triggeredNMPC scheme where the system may be run in open loop for extended times based on pos-sibly inaccurate state predictions. We use this analysis to trade-off the cost of updating ourtransmission and locomotion policies, with the frequency by which they must be updated. Thisgives a method to trade-off the computation, communication and mobility related energies ofthe mobile autonomous network.Open Acces

    Event-triggered near optimal adaptive control of interconnected systems

    Get PDF
    Increased interest in complex interconnected systems like smart-grid, cyber manufacturing have attracted researchers to develop optimal adaptive control schemes to elicit a desired performance when the complex system dynamics are uncertain. In this dissertation, motivated by the fact that aperiodic event sampling saves network resources while ensuring system stability, a suite of novel event-sampled distributed near-optimal adaptive control schemes are introduced for uncertain linear and affine nonlinear interconnected systems in a forward-in-time and online manner. First, a novel stochastic hybrid Q-learning scheme is proposed to generate optimal adaptive control law and to accelerate the learning process in the presence of random delays and packet losses resulting from the communication network for an uncertain linear interconnected system. Subsequently, a novel online reinforcement learning (RL) approach is proposed to solve the Hamilton-Jacobi-Bellman (HJB) equation by using neural networks (NNs) for generating distributed optimal control of nonlinear interconnected systems using state and output feedback. To relax the state vector measurements, distributed observers are introduced. Next, using RL, an improved NN learning rule is derived to solve the HJB equation for uncertain nonlinear interconnected systems with event-triggered feedback. Distributed NN identifiers are introduced both for approximating the uncertain nonlinear dynamics and to serve as a model for online exploration. Next, the control policy and the event-sampling errors are considered as non-cooperative players and a min-max optimization problem is formulated for linear and affine nonlinear systems by using zero-sum game approach for simultaneous optimization of both the control policy and the event based sampling instants. The net result is the development of optimal adaptive event-triggered control of uncertain dynamic systems --Abstract, page iv

    Online monitoring and control of voltage stability margin via machine learning-based adaptive approaches

    Get PDF
    Voltage instability or voltage collapse, observed in many blackout events, poses a significant threat to power system reliability. To prevent voltage collapse, the countermeasures suggested by the post analyses of the blackouts usually include the adoption of better online voltage stability monitoring and control tools. Recently, the variability and uncertainty imposed by the increasing penetration of renewable energy further magnifies this need. This work investigates the methodologies for online voltage stability margin (VSM) monitoring and control in the new era of smart grid and big data. It unleashes the value of online measurements and leverages the fruitful results in machine learning and demand response. An online VSM monitoring approach based on local regression and adaptive database is proposed. Considering the increasing variability and uncertainty of power system operation, this approach utilizes the locality of underlying pattern between VSM and reactive power reserve (RPR), and can adapt to the changing condition of system. LASSO (Least Absolute Shrinkage and Selection Operator) is tailored to solve the local regression problem so as to mitigate the curse of dimensionality for large-scale system. Along with the VSM prediction, its prediction interval is also estimated simultaneously in a simple but effective way, and utilized as an evidence to trigger the database updating. IEEE 30-bus system and a 60,000-bus large system are used to test and demonstrate the proposed approach. The results show that the proposed approach can be successfully employed in online voltage stability monitoring for real size systems, and the adaptivity of model and data endows the proposed approach with the advantage in the circumstances where large and unforeseen changes of system condition are inevitable. In case degenerative system conditions are identified, a control strategy is needed to steer the system back to security. A model predictive control (MPC) based framework is proposed to maintain VSM in near-real-time while minimizing the control cost. VSM is locally modeled as a linear function of RPRs based on the VSM monitoring tool, which convexifies the intricate VSM-constrained optimization problem. Thermostatically controlled loads (TCLs) are utilized through a demand response (DR) aggregator as the efficient measure to enhance voltage stability. For such an advanced application of the energy management system (EMS), plug-and-play is a necessary feature that makes the new controller really applicable in a cooperative operating environment. In this work, the cooperation is realized by a predictive interface strategy, which predicts the behaviors of relevant controllers using the simple models declared and updated by those controllers. In particular, the customer dissatisfaction, defined as the cumulative discomfort caused by DR, is explicitly constrained in respect of customers\u27 interests. This constraint maintains the applicability of the control. IEEE 30-bus system is used to demonstrate the proposed control strategy. Adaptivity and proactivity lie at the heart of the proposed approach. By making full use of real-time information, the proposed approach is competent at the task of VSM monitoring and control in a non-stationary and uncertain operating environment

    The Hierarchical Control Method for Coordinating a Group of Connected Vehicles on Urban Roads

    Get PDF
    Safety, mobility and environmental impact are the three major challenges in today\u27s transportation system. As the advances in wireless communication and vehicle automation technologies, they have rapidly led to the emergence and development of connected and automated vehicles (CAVs). We can expect fully CAVs by 2030. The CAV technologies offer another solution for the issues we are dealing with in the current transportation system. In the meanwhile, urban roads are one of the most important part in the transportation network. Urban roads are characterized by multiple interconnected intersections. They are more complicated than highway traffic, because the vehicles on the urban roads are moving in multiple directions with higher relative velocity. Most of the traffic accidents happened at intersections and the intersections are the major contribution to the traffic congestions. Our urban road infrastructures are also becoming more intelligent. Sensor-embedded roadways are continuously gathering traffic data from passing vehicles. Our smart vehicles are meeting intelligent roads. However, we have not taken the fully advantages of the data rich traffic environment provided by the connected vehicle technologies and intelligent road infrastructures. The objective of this research is to develop a coordination control strategy for a group of connected vehicles under intelligent traffic environment, which can guide the vehicles passing through the intersections and make smart lane change decisions with the objective of improving overall fuel economy and traffic mobility. The coordination control strategy should also be robust to imperfect connectivity conditions with various connected vehicle penetration rate. This dissertation proposes a hierarchical control method to coordinate a group of connected vehicles travelling on urban roads with intersections. The dissertation includes four parts of the application of our proposed method: First, we focus on the coordination of the connected vehicles on the multiple interconnected unsignalized intersection roads, where the traffic signals are removed and the collision avoidance at the intersection area relays on the communication and cooperation of the connected vehicles and intersection controllers. Second, a fuel efficient hierarchical control method is proposed to control the connected vehicles travel on the signalized intersection roads. With the signal phase and timing (SPAT) information, our proposed approach is able to help the connected vehicles minimize red light idling and improve the fuel economy at the same time. Third, the research is extended form single lane to multiple lane, where the connected vehicle discretionary and cooperative mandatory lane change have been explored. Finally, we have analysis the real-world implementation potential of our proposed algorithm including the communication delay and real-time implementation analysis

    Optimal scheduling and control for constrained multi-agent networked control systems

    Get PDF
    In this paper, we study optimal control and communication schedule co-design for multi-agent networked control systems, with assuming shared parallel communication channels and uncertain constrained linear time-invariant discrete-time systems. To that end, we specify the communication demand for each system using an associated robust control invariant set and reachability analysis. We use these communication demands and invariant sets to formulate tube-based model predictive control and offline/online communication schedule co-design problems. Since the scheduling part includes an infinite dimension integer problem, we propose heuristics to find suboptimal solutions that guarantee robust constraints satisfaction and recursive feasibility. The effectiveness of our approach is illustrated through numerical simulations

    Development of robust building energy demand-side control strategy under uncertainty

    Get PDF
    The potential of carbon emission regulations applied to an individual building will encourage building owners to purchase utility-provided green power or to employ onsite renewable energy generation. As both cases are based on intermittent renewable energy sources, demand side control is a fundamental precondition for maximizing the effectiveness of using renewable energy sources. Such control leads to a reduction in peak demand and/or in energy demand variability, therefore, such reduction in the demand profile eventually enhances the efficiency of an erratic supply of renewable energy. The combined operation of active thermal energy storage and passive building thermal mass has shown substantial improvement in demand-side control performance when compared to current state-of-the-art demand-side control measures. Specifically, "model-based" optimal control for this operation has the potential to significantly increase performance and bring economic advantages. However, due to the uncertainty in certain operating conditions in the field its control effectiveness could be diminished and/or seriously damaged, which results in poor performance. This dissertation pursues improvements of current demand-side controls under uncertainty by proposing a robust supervisory demand-side control strategy that is designed to be immune from uncertainty and perform consistently under uncertain conditions. Uniqueness and superiority of the proposed robust demand-side controls are found as below: a. It is developed based on fundamental studies about uncertainty and a systematic approach to uncertainty analysis. b. It reduces variability of performance under varied conditions, and thus avoids the worst case scenario. c. It is reactive in cases of critical "discrepancies" observed caused by the unpredictable uncertainty that typically scenario uncertainty imposes, and thus it increases control efficiency. This is obtainable by means of i) multi-source composition of weather forecasts including both historical archive and online sources and ii) adaptive Multiple model-based controls (MMC) to mitigate detrimental impacts of varying scenario uncertainties. The proposed robust demand-side control strategy verifies its outstanding demand-side control performance in varied and non-indigenous conditions compared to the existing control strategies including deterministic optimal controls. This result reemphasizes importance of the demand-side control for a building in the global carbon economy. It also demonstrates a capability of risk management of the proposed robust demand-side controls in highly uncertain situations, which eventually attains the maximum benefit in both theoretical and practical perspectives.Ph.D.Committee Chair: Augenbroe, Gofried; Committee Member: Brown, Jason; Committee Member: Jeter, Sheldon; Committee Member: Paredis,Christiaan; Committee Member: Sastry, Chellur
    • …
    corecore