4 research outputs found

    High-throughput variable-to-fixed entropy codec using selective, stochastic code forests

    Get PDF
    Efficient high-throughput (HT) compression algorithms are paramount to meet the stringent constraints of present and upcoming data storage, processing, and transmission systems. In particular, latency, bandwidth and energy requirements are critical for those systems. Most HT codecs are designed to maximize compression speed, and secondarily to minimize compressed lengths. On the other hand, decompression speed is often equally or more critical than compression speed, especially in scenarios where decompression is performed multiple times and/or at critical parts of a system. In this work, an algorithm to design variable-to-fixed (VF) codes is proposed that prioritizes decompression speed. Stationary Markov analysis is employed to generate multiple, jointly optimized codes (denoted code forests). Their average compression efficiency is on par with the state of the art in VF codes, e.g., within 1% of Yamamoto et al.\u27s algorithm. The proposed code forest structure enables the implementation of highly efficient codecs, with decompression speeds 3.8 times faster than other state-of-the-art HT entropy codecs with equal or better compression ratios for natural data sources. Compared to these HT codecs, the proposed forests yields similar compression efficiency and speeds

    Prediction-based coding with rate control for lossless region of interest in pathology imaging

    Get PDF
    Online collaborative tools for medical diagnosis produced from digital pathology images have experimented an increase in demand in recent years. Due to the large sizes of pathology images, rate control (RC) techniques that allow an accurate control of compressed file sizes are critical to meet existing bandwidth restrictions while maximizing retrieved image quality. Recently, some RC contributions to Region of Interest (RoI) coding for pathology imaging have been presented. These encode the RoI without loss and the background with some loss, and focus on providing high RC accuracy for the background area. However, none of these RC contributions deal efficiently with arbitrary RoI shapes, which hinders the accuracy of background definition and rate control. This manuscript presents a novel coding system based on prediction with a novel RC algorithm for RoI coding that allows arbitrary RoIs shapes. Compared to other methods of the state of the art, our proposed algorithm significantly improves upon their RC accuracy, while reducing the compressed data rate for the RoI by 30%. Furthermore, it offers higher quality in the reconstructed background areas, which has been linked to better clinical performance by expert pathologists. Finally, the proposed method also allows lossless compression of both the RoI and the background, producing data volumes 14% lower than coding techniques included in DICOM, such as HEVC and JPEG-LS
    corecore