7,259 research outputs found

    Daily Stress Recognition from Mobile Phone Data, Weather Conditions and Individual Traits

    Full text link
    Research has proven that stress reduces quality of life and causes many diseases. For this reason, several researchers devised stress detection systems based on physiological parameters. However, these systems require that obtrusive sensors are continuously carried by the user. In our paper, we propose an alternative approach providing evidence that daily stress can be reliably recognized based on behavioral metrics, derived from the user's mobile phone activity and from additional indicators, such as the weather conditions (data pertaining to transitory properties of the environment) and the personality traits (data concerning permanent dispositions of individuals). Our multifactorial statistical model, which is person-independent, obtains the accuracy score of 72.28% for a 2-class daily stress recognition problem. The model is efficient to implement for most of multimedia applications due to highly reduced low-dimensional feature space (32d). Moreover, we identify and discuss the indicators which have strong predictive power.Comment: ACM Multimedia 2014, November 3-7, 2014, Orlando, Florida, US

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    ํ˜„์žฅ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋Šฅ๋ ฅ์„ ํ™•์žฅํ•˜๊ธฐ ์œ„ํ•œ ์ž์œ ๋„ ๋†’์€ ์…€ํ”„ ํŠธ๋ž˜ํ‚น ๊ธฐ์ˆ ์˜ ๋””์ž์ธ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ์„œ์ง„์šฑ.Collecting and tracking data in everyday contexts is a common practice for both individual self-trackers and researchers. The increase in wearable and mobile technologies for self-tracking encourages people to gain personal insights from the data about themselves. Also, researchers exploit self-tracking to gather data in situ or to foster behavioral change. Despite a diverse set of available tracking tools, however, it is still challenging to find ones that suit unique tracking needs, preferences, and commitments. Individual self-tracking practices are constrained by the tracking tools' initial design, because it is difficult to modify, extend, or mash up existing tools. Limited tool support also impedes researchers' efforts to conduct in situ data collection studies. Many researchers still build their own study instruments due to the mismatch between their research goals and the capabilities of existing toolkits. The goal of this dissertation is to design flexible self-tracking technologies that are generative and adaptive to cover diverse tracking contexts, ranging from personal tracking to research contexts. Specifically, this dissertation proposes OmniTrack, a flexible self-tracking approach leveraging a semi-automated tracking concept that combines manual and automated tracking methods to generate an arbitrary tracker design. OmniTrack was implemented as a mobile app for individuals. The OmniTrack app enables self-trackers to construct their own trackers and customize tracking items to meet their individual needs. A usability study and a field development study were conducted with the goal of assessing how people adopt and adapt OmniTrack to fulfill their needs. The studies revealed that participants actively used OmniTrack to create, revise, and appropriate trackers, ranging from a simple mood tracker to a sophisticated daily activity tracker with multiple fields. Furthermore, OmniTrack was extended to cover research contexts that enclose manifold personal tracking contexts. As part of the research, this dissertation presents OmniTrack Research Kit, a research platform that allows researchers without programming expertise to configure and conduct in situ data collection studies by deploying the OmniTrack app on participants' smartphones. A case study in deploying the research kit for conducting a diary study demonstrated how OmniTrack Research Kit could support researchers who manage study participants' self-tracking process. This work makes artifacts contributions to the fields of human-computer interaction and ubiquitous computing, as well as expanding empirical understanding of how flexible self-tracking tools can enhance the practices of individual self-trackers and researchers. Moreover, this dissertation discusses design challenges for flexible self-tracking technologies, opportunities for further improving the proposed systems, and future research agenda for reaching the audiences not covered in this research.์ผ์ƒ์˜ ๋งฅ๋ฝ์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ์œผ๋Š” ํ™œ๋™์ธ ์…€ํ”„ ํŠธ๋ž˜ํ‚น(self-tracking)์€ ๊ฐœ์ธ๊ณผ ์—ฐ๊ตฌ์˜ ์˜์—ญ์—์„œ ํ™œ๋ฐœํžˆ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์›จ์–ด๋Ÿฌ๋ธ” ๋””๋ฐ”์ด์Šค์™€ ๋ชจ๋ฐ”์ผ ๊ธฐ์ˆ ์˜ ๋ฐœ๋‹ฌ๋กœ ์ธํ•ด ์‚ฌ๋žŒ๋“ค์€ ๊ฐ์ž์˜ ์‚ถ์— ๋Œ€ํ•ด ๋งํ•ด์ฃผ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๋” ์‰ฝ๊ฒŒ ์ˆ˜์ง‘ํ•˜๊ณ , ํ†ต์ฐฐํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ์—ฐ๊ตฌ์ž๋“ค์€ ํ˜„์žฅ(in situ) ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๊ฑฐ๋‚˜ ์‚ฌ๋žŒ๋“ค์—๊ฒŒ ํ–‰๋™ ๋ณ€ํ™”๋ฅผ ์ผ์œผํ‚ค๋Š” ๋ฐ์— ์…€ํ”„ ํŠธ๋ž˜ํ‚น์„ ํ™œ์šฉํ•œ๋‹ค. ๋น„๋ก ์…€ํ”„ ํŠธ๋ž˜ํ‚น์„ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ๋„๊ตฌ๋“ค์ด ์กด์žฌํ•˜์ง€๋งŒ, ํŠธ๋ž˜ํ‚น์— ๋Œ€ํ•ด ๋‹ค์–‘ํ™”๋œ ์š”๊ตฌ์™€ ์ทจํ–ฅ์„ ์™„๋ฒฝํžˆ ์ถฉ์กฑํ•˜๋Š” ๊ฒƒ๋“ค์„ ์ฐพ๋Š” ๊ฒƒ์€ ์‰ฝ์ง€ ์•Š๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ์…€ํ”„ ํŠธ๋ž˜ํ‚น ๋„๊ตฌ๋Š” ์ด๋ฏธ ์„ค๊ณ„๋œ ๋ถ€๋ถ„์„ ์ˆ˜์ •ํ•˜๊ฑฐ๋‚˜ ํ™•์žฅํ•˜๊ธฐ์— ์ œํ•œ์ ์ด๋‹ค. ๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— ์‚ฌ๋žŒ๋“ค์˜ ์…€ํ”„ ํŠธ๋ž˜ํ‚น์— ๋Œ€ํ•œ ์ž์œ ๋„๋Š” ๊ธฐ์กด ๋„๊ตฌ๋“ค์˜ ๋””์ž์ธ ๊ณต๊ฐ„์— ์˜ํ•ด ์ œ์•ฝ์„ ๋ฐ›์„ ์ˆ˜๋ฐ–์— ์—†๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ, ํ˜„์žฅ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๋Š” ์—ฐ๊ตฌ์ž๋“ค๋„ ์ด๋Ÿฌํ•œ ๋„๊ตฌ์˜ ํ•œ๊ณ„๋กœ ์ธํ•ด ์—ฌ๋Ÿฌ ๋ฌธ์ œ์— ๋ด‰์ฐฉํ•œ๋‹ค. ์—ฐ๊ตฌ์ž๋“ค์ด ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ๋‹ตํ•˜๊ณ ์ž ํ•˜๋Š” ์—ฐ๊ตฌ ์งˆ๋ฌธ(research question)์€ ๋ถ„์•ผ๊ฐ€ ๋ฐœ์ „ํ• ์ˆ˜๋ก ์„ธ๋ถ„๋˜๊ณ , ์น˜๋ฐ€ํ•ด์ง€๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ๋ณต์žกํ•˜๊ณ  ๊ณ ์œ ํ•œ ์‹คํ—˜ ์„ค๊ณ„๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ํ•˜์ง€๋งŒ ํ˜„์กดํ•˜๋Š” ์—ฐ๊ตฌ์šฉ ์…€ํ”„ ํŠธ๋ž˜ํ‚น ํ”Œ๋žซํผ๋“ค์€ ์ด์— ๋ถ€ํ•ฉํ•˜๋Š” ์ž์œ ๋„๋ฅผ ๋ฐœํœ˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐ„๊ทน์œผ๋กœ ์ธํ•ด ๋งŽ์€ ์—ฐ๊ตฌ์ž๋“ค์ด ๊ฐ์ž์˜ ํ˜„์žฅ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ์—ฐ๊ตฌ์— ํ•„์š”ํ•œ ๋””์ง€ํ„ธ ๋„๊ตฌ๋“ค์„ ์ง์ ‘ ๊ตฌํ˜„ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉํ‘œ๋Š” ์ž์œ ๋„ ๋†’์€---์—ฐ๊ตฌ์  ๋งฅ๋ฝ๊ณผ ๊ฐœ์ธ์  ๋งฅ๋ฝ์„ ์•„์šฐ๋ฅด๋Š” ๋‹ค์–‘ํ•œ ์ƒํ™ฉ์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š”---์…€ํ”„ ํŠธ๋ž˜ํ‚น ๊ธฐ์ˆ ์„ ๋””์ž์ธํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋ณธ๊ณ ์—์„œ๋Š” ์˜ด๋‹ˆํŠธ๋ž™(OmniTrack)์ด๋ผ๋Š” ๋””์ž์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์˜ด๋‹ˆํŠธ๋ž™์€ ์ž์œ ๋„ ๋†’์€ ์…€ํ”„ ํŠธ๋ž˜ํ‚น์„ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์ด๋ฉฐ, ๋ฐ˜์ž๋™ ํŠธ๋ž˜ํ‚น(semi-automated tracking)์ด๋ผ๋Š” ์ปจ์…‰์„ ๋ฐ”ํƒ•์œผ๋กœ ์ˆ˜๋™ ๋ฐฉ์‹๊ณผ ์ž๋™ ๋ฐฉ์‹์˜ ์กฐํ•ฉ์„ ํ†ตํ•ด ์ž„์˜์˜ ํŠธ๋ž˜์ปค๋ฅผ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋จผ์ € ์˜ด๋‹ˆํŠธ๋ž™์„ ๊ฐœ์ธ์„ ์œ„ํ•œ ๋ชจ๋ฐ”์ผ ์•ฑ ํ˜•ํƒœ๋กœ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์˜ด๋‹ˆํŠธ๋ž™ ์•ฑ์€ ๊ฐœ๊ฐœ์ธ์ด ์ž์‹ ์˜ ํŠธ๋ž˜ํ‚น ๋‹ˆ์ฆˆ์— ๋งž๋Š” ํŠธ๋ž˜์ปค๋ฅผ ์ปค์Šคํ„ฐ๋งˆ์ด์ง•ํ•˜์—ฌ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ๋ณธ๊ณ ์—์„œ๋Š” ์‚ฌ๋žŒ๋“ค์ด ์–ด๋–ป๊ฒŒ ์˜ด๋‹ˆํŠธ๋ž™์„ ์ž์‹ ์˜ ๋‹ˆ์ฆˆ์— ๋งž๊ฒŒ ํ™œ์šฉํ•˜๋Š”์ง€ ์•Œ์•„๋ณด๊ณ ์ž ์‚ฌ์šฉ์„ฑ ํ…Œ์ŠคํŠธ(usability testing)์™€ ํ•„๋“œ ๋ฐฐํฌ ์—ฐ๊ตฌ(field deployment study)๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ฐธ๊ฐ€์ž๋“ค์€ ์˜ด๋‹ˆํŠธ๋ž™์„ ํ™œ๋ฐœํžˆ ์ด์šฉํ•ด ๋‹ค์–‘ํ•œ ๋””์ž์ธ์˜ ํŠธ๋ž˜์ปคโ€”์•„์ฃผ ๋‹จ์ˆœํ•œ ๊ฐ์ • ํŠธ๋ž˜์ปค๋ถ€ํ„ฐ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ํ•„๋“œ๋ฅผ ๊ฐ€์ง„ ๋ณต์žกํ•œ ์ผ์ผ ํ™œ๋™ ํŠธ๋ž˜์ปค๊นŒ์ง€โ€”๋“ค์„ ์ƒ์„ฑํ•˜๊ณ , ์ˆ˜์ •ํ•˜๊ณ , ํ™œ์šฉํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ, ์˜ด๋‹ˆํŠธ๋ž™์„ ํ˜„์žฅ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ์—ฐ๊ตฌ์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ์—ฐ๊ตฌ ํ”Œ๋žซํผ ํ˜•ํƒœ์˜ '์˜ด๋‹ˆํŠธ๋ž™ ๋ฆฌ์„œ์น˜ ํ‚ท(OmniTrack Research Kit)'์œผ๋กœ ํ™•์žฅํ•˜์˜€๋‹ค. ์˜ด๋‹ˆํŠธ๋ž™ ๋ฆฌ์„œ์น˜ ํ‚ท์€ ์—ฐ๊ตฌ์ž๋“ค์ด ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์–ธ์–ด ์—†์ด ์›ํ•˜๋Š” ์‹คํ—˜์„ ์„ค๊ณ„ํ•˜๊ณ  ์˜ด๋‹ˆํŠธ๋ž™ ์•ฑ์„ ์ฐธ๊ฐ€์ž๋“ค์˜ ์Šค๋งˆํŠธํฐ์œผ๋กœ ๋ฐฐํฌํ•  ์ˆ˜ ์žˆ๋„๋ก ๋””์ž์ธ๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์˜ด๋‹ˆํŠธ๋ž™ ๋ฆฌ์„œ์น˜ ํ‚ท์„ ์ด์šฉํ•ด ์ผ์ง€๊ธฐ๋ก ์—ฐ๊ตฌ(diary study)๋ฅผ ์ง์ ‘ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์˜ด๋‹ˆํŠธ๋ž™ ์ ‘๊ทผ๋ฒ•์ด ์–ด๋–ป๊ฒŒ ์—ฐ๊ตฌ์ž๋“ค์˜ ์—ฐ๊ตฌ ๋ชฉ์ ์„ ์ด๋ฃจ๋Š” ๋ฐ์— ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ๋Š”์ง€ ์ง์ ‘ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ํœด๋จผ-์ปดํ“จํ„ฐ ์ธํ„ฐ๋ž™์…˜(Human-Computer Interaction) ๋ฐ ์œ ๋น„์ฟผํ„ฐ์Šค ์ปดํ“จํŒ…(Ubiquitous Computing) ๋ถ„์•ผ์— ๊ธฐ์ˆ ์  ์‚ฐ์ถœ๋ฌผ๋กœ์จ ๊ธฐ์—ฌํ•˜๋ฉฐ, ์ž์œ ๋„ ๋†’์€ ์…€ํ”„ ํŠธ๋ž˜ํ‚น ๋„๊ตฌ๊ฐ€ ์–ด๋–ป๊ฒŒ ๊ฐœ์ธ๊ณผ ์—ฐ๊ตฌ์ž๋“ค์„ ๋„์šธ ์ˆ˜ ์žˆ๋Š”์ง€ ์‹ค์ฆ์ ์ธ ์ดํ•ด๋ฅผ ์ฆ์ง„ํ•œ๋‹ค. ๋˜ํ•œ, ์ž์œ ๋„ ๋†’์€ ์…€ํ”„ํŠธ๋ž˜ํ‚น ๊ธฐ์ˆ ์— ๋Œ€ํ•œ ๋””์ž์ธ์  ๋‚œ์ œ, ์—ฐ๊ตฌ์—์„œ ์ œ์‹œํ•œ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๊ฐœ์„ ๋ฐฉ์•ˆ, ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ ๋‹ค๋ฃจ์ง€ ๋ชปํ•œ ๋‹ค๋ฅธ ์ง‘๋‹จ์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•œ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋…ผ์ œ์— ๋Œ€ํ•˜์—ฌ ๋…ผ์˜ํ•œ๋‹ค.Abstract CHAPTER 1. Introduction 1.1 Background and Motivation 1.2 Research Questions and Approaches 1.2.1 Designing a Flexible Self-Tracking Approach Leveraging Semiautomated Tracking 1.2.2 Design and Evaluation of OmniTrack in Individual Tracking Contexts 1.2.3 Designing a Research Platform for In Situ Data Collection Studies Leveraging OmniTrack 1.2.4 A Case Study of Conducting an In Situ Data Collection Study using the Research Platform 1.3 Contributions 1.4 Structure of this Dissertation CHAPTER 2. Related Work 2.1 Background on Self-Tracking 2.1.1 Self-Tracking in Personal Tracking Contexts 2.1.2 Utilization of Self-Tracking in Other Contexts 2.2 Barriers Caused by Limited Tool Support 2.2.1 Limited Tools and Siloed Data in Personal Tracking 2.2.2 Challenges of the Instrumentation for In Situ Data Collection 2.3 Flexible Self-Tracking Approaches 2.3.1 Appropriation of Generic Tools 2.3.2 Universal Tracking Systems for Individuals 2.3.3 Research Frameworks for In Situ Data Collection 2.4 Grounding Design Approach: Semi-Automated Tracking 2.5 Summary of Related Work CHAPTER3 DesigningOmniTrack: a Flexible Self-Tracking Approach 3.1 Design Goals and Rationales 3.2 System Design and User Interfaces 3.2.1 Trackers: Enabling Flexible Data Inputs 3.2.2 Services: Integrating External Trackers and Other Services 3.2.3 Triggers: Retrieving Values Automatically 3.2.4 Streamlining Tracking and Lowering the User Burden 3.2.5 Visualization and Feedback 3.3 OmniTrack Use Cases 3.3.1 Tracker 1: Beer Tracker 3.3.2 Tracker 2: SleepTight++ 3.3.3 Tracker 3: Comparison of Automated Trackers 3.4 Summary CHAPTER 4. Understanding HowIndividuals Adopt and Adapt OmniTrack 4.1 Usability Study 4.1.1 Participants 4.1.2 Procedure and Study Setup 4.1.3 Tasks 4.1.4 Results and Discussion 4.1.5 Improvements A_er the Usability Study 4.2 Field Deployment Study 4.2.1 Study Setup 4.2.2 Participants 4.2.3 Data Analysis and Results 4.2.4 Reflections on the Deployment Study 4.3 Discussion 4.3.1 Expanding the Design Space for Self-Tracking 4.3.2 Leveraging Other Building Blocks of Self-Tracking 4.3.3 Sharing Trackers with Other People 4.3.4 Studying with a Broader Audience 4.4 Summary CHAPTER 5. Extending OmniTrack for Supporting In Situ Data Collection Studies 5.1 Design Space of Study Instrumentation for In-Situ Data Collection 5.1.1 Experiment-Level Dimensions 5.1.2 Condition-Level Dimensions 5.1.3 Tracker-Level Dimensions 5.1.4 Reminder/Trigger-Level Dimensions 5.1.5 Extending OmniTrack to Cover the Design Space 5.2 Design Goals and Rationales 5.3 System Design and User Interfaces 5.3.1 Experiment Management and Collaboration 5.3.2 Experiment-level Configurations 5.3.3 A Participants Protocol for Joining the Experiment 5.3.4 Implementation 5.4 Replicated Study Examples 5.4.1 Example A: Revisiting the Deployment Study of OmniTrack 5.4.2 Example B: Exploring the Clinical Applicability of a Mobile Food Logger 5.4.3 Example C: Understanding the Effect of Cues and Positive Reinforcement on Habit Formation 5.4.4 Example D: Collecting Stress and Activity Data for Building a Prediction Model 5.5 Discussion 5.5.1 Supporting Multiphase Experimental Design 5.5.2 Serving as Testbeds for Self-Tracking Interventions 5.5.3 Exploiting the Interaction Logs 5.6 Summary CHAPTER 6. Using the OmniTrack Research Kit: A Case Study 6.1 Study Background and Motivation 6.2 OmniTrack Configuration for Study Instruments 6.3 Participants 6.4 Study Procedure 6.5 Dataset and Analysis 6.6 Study Result 6.6.1 Diary Entries 6.6.2 Aspects of Productivity Evaluation 6.6.3 Productive Activities 6.7 Experimenter Experience of OmniTrack 6.8 Participant Experience of OmniTrack 6.9 Implications 6.9.1 Visualization Support for Progressive, Preliminary Analysis of Collected Data 6.9.2 Inspection to Prevent Misconfiguration 6.9.3 Providing More Alternative Methods to Capture Data 6.10 Summary CHAPTER 7. Discussion 7.1 Lessons Learned 7.2 Design Challenges and Implications 7.2.1 Making the Flexibility Learnable 7.2.2 Additive vs. Subtractive Design for Flexibility 7.3 Future Opportunities for Improvement 7.3.1 Utilizing External Information and Contexts 7.3.2 Providing Flexible Visual Feedback 7.4 Expanding Audiences of OmniTrack 7.4.1 Supporting Clinical Contexts 7.4.2 Supporting Self-Experimenters 7.5 Limitations CHAPTER 8. Conclusion 8.1 Summary of the Approaches 8.2 Summary of Contributions 8.2.1 Artifact Contributions 8.2.2 Empirical Research Contributions 8.3 Future Work 8.3.1 Understanding the Long-term E_ect of OmniTrack 8.3.2 Utilizing External Information and Contexts 8.3.3 Extending the Input Modality to Lower the Capture Burden 8.3.4 Customizable Visual Feedback 8.3.5 Community-Driven Tracker Sharing 8.3.6 Supporting Multiphase Study Design 8.4 Final Remarks APPENDIX A. Study Material for Evaluations of the OmniTrack App A.1 Task Instructions for Usability Study A.2 The SUS (System Usability Scale) Questionnaire A.3 Screening Questionnaire for Deployment Study A.4 Exit Interview Guide for Deployment Study A.5 Deployment Participant Information APPENDIX B Study Material for Productivity Diary Study B.1 Recruitment Screening Questionnaire B.2 Exit Interview Guide Abstract (Korean)Docto

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Data science in design process

    Get PDF
    • โ€ฆ
    corecore