11,720 research outputs found

    An unstructured parallel least-squares spectral element solver for incompressible flow problems

    Get PDF
    The parallelization of the least-squares spectral element formulation of the Stokes problem has recently been discussed for incompressible flow problems on structured grids. In the present work, the extension to unstructured grids is discussed. It will be shown that, to obtain an efficient and scalable method, two different kinds of distribution of data are required involving a rather complicated parallel conversion between the data. Once the data conversion has been performed, a large symmetric positive definite algebraic system has to be solved iteratively. It is well known that the Conjugate Gradient method is a good choice to solve such systems. To improve the convergence rate of the Conjugate Gradient process, both Jacobi and Additive Schwarz preconditioners are applied. The Additive Schwarz preconditioner is based on domain decomposition and can be implemented such that a preconditioning step corresponds to a parallel matrix-by-vector product. The new results reveal that the Additive Schwarz preconditioner is very suitable for the p-refinement version of the least-squares spectral element method. To obtain good portable programs which may run on distributed-memory multiprocessors, networks of workstations as well as shared-memory machines we use MPI (Message Passing Interface). Numerical simulations have been performed to validate the scalability of the different parts of the proposed method. The experiments entailed simulating several large scale incompressible flows on a Cray T3E and on an SGI Origin 3800 with the number of processors varying from one to more than one hundred. The results indicate that the present method has very good parallel scaling properties making it a powerful method for numerical simulations of incompressible flows

    An Unstructured Parallel Least-Squares Spectral Element Solver for Incompressible Flow Problems

    Get PDF
    The parallelization of the least-squares spectral element formulation of the Stokes problem has recently been discussed for incompressible flow problems on structured grids. In the present work, the extension to unstructured grids is discussed. It will be shown that, to obtain an efficient and scalable method, two different kinds of distribution of data are required involving a rather complicated parallel conversion between the data. Once the data conversion has been performed, a large symmetric positive definite algebraic system has to be solved iteratively. It is well known that the Conjugate Gradient method is a good choice to solve such systems. To improve the convergence rate of the Conjugate Gradient process, both Jacobi and Additive Schwarz preconditioners are applied. The Additive Schwarz preconditioner is based on domain decomposition and can be implemented such that a preconditioning step corresponds to a parallel matrix-by-vector product. The new results reveal that the Additive Schwarz preconditioner is very suitable for the p-refinement version of the least-squares spectral element method. To obtain good portable programs which may run on distributed-memory multiprocessors, networks of workstations as well as shared-memory machines we use MPI (Message Passing Interface). Numerical simulations have been performed to validate the scalability of the different parts of the proposed method. The experiments entailed simulating several large scale incompressible flows on a Cray T3E and on an SGI Origin 3800 with the number of processors varying from one to more than one hundred. The results indicate that the present method has very good parallel scaling properties making it a powerful method for numerical simulations of incompressible flows

    A p-version finite element method for steady incompressible fluid flow and convective heat transfer

    Get PDF
    A new p-version finite element formulation for steady, incompressible fluid flow and convective heat transfer problems is presented. The steady-state residual equations are obtained by considering a limiting case of the least-squares formulation for the transient problem. The method circumvents the Babuska-Brezzi condition, permitting the use of equal-order interpolation for velocity and pressure, without requiring the use of arbitrary parameters. Numerical results are presented to demonstrate the accuracy and generality of the method

    Incorporating variable viscosity in vorticity-based formulations for Brinkman equations

    Get PDF
    In this brief note, we introduce a non-symmetric mixed finite element formulation for Brinkman equations written in terms of velocity, vorticity and pressure with non-constant viscosity. The analysis is performed by the classical Babu\v{s}ka-Brezzi theory, and we state that any inf-sup stable finite element pair for Stokes approximating velocity and pressure can be coupled with a generic discrete space of arbitrary order for the vorticity. We establish optimal a priori error estimates which are further confirmed through computational example

    Correct energy evolution of stabilized formulations: The relation between VMS, SUPG and GLS via dynamic orthogonal small-scales and isogeometric analysis. II: The incompressible Navier-Stokes equations

    Full text link
    This paper presents the construction of a correct-energy stabilized finite element method for the incompressible Navier-Stokes equations. The framework of the methodology and the correct-energy concept have been developed in the convective--diffusive context in the preceding paper [M.F.P. ten Eikelder, I. Akkerman, Correct energy evolution of stabilized formulations: The relation between VMS, SUPG and GLS via dynamic orthogonal small-scales and isogeometric analysis. I: The convective--diffusive context, Comput. Methods Appl. Mech. Engrg. 331 (2018) 259--280]. The current work extends ideas of the preceding paper to build a stabilized method within the variational multiscale (VMS) setting which displays correct-energy behavior. Similar to the convection--diffusion case, a key ingredient is the proper dynamic and orthogonal behavior of the small-scales. This is demanded for correct energy behavior and links the VMS framework to the streamline-upwind Petrov-Galerkin (SUPG) and the Galerkin/least-squares method (GLS). The presented method is a Galerkin/least-squares formulation with dynamic divergence-free small-scales (GLSDD). It is locally mass-conservative for both the large- and small-scales separately. In addition, it locally conserves linear and angular momentum. The computations require and employ NURBS-based isogeometric analysis for the spatial discretization. The resulting formulation numerically shows improved energy behavior for turbulent flows comparing with the original VMS method.Comment: Update to postprint versio

    Least squares deconvolution of the stellar intensity and polarization spectra

    Full text link
    Least squares deconvolution (LSD) is a powerful method of extracting high-precision average line profiles from the stellar intensity and polarization spectra. Despite its common usage, the LSD method is poorly documented and has never been tested using realistic synthetic spectra. In this study we revisit the key assumptions of the LSD technique, clarify its numerical implementation, discuss possible improvements and give recommendations how to make LSD results understandable and reproducible. We also address the problem of interpretation of the moments and shapes of the LSD profiles in terms of physical parameters. We have developed an improved, multiprofile version of LSD and have extended the deconvolution procedure to linear polarization analysis taking into account anomalous Zeeman splitting of spectral lines. This code is applied to the theoretical Stokes parameter spectra. We test various methods of interpreting the mean profiles, investigating how coarse approximations of the multiline technique translate into errors of the derived parameters. We find that, generally, the Stokes parameter LSD profiles do not behave as a real spectral line with respect to the variation of magnetic field and elemental abundance. This problem is especially prominent for the Stokes I variation with abundance and Stokes Q variation with magnetic field. At the same time, the Stokes V LSD spectra closely resemble profile of a properly chosen synthetic line for the magnetic field strength up to 1 kG. We conclude that the usual method of interpreting the LSD profiles by assuming that they are equivalent to a real spectral line gives satisfactory results only in a limited parameter range and thus should be applied with caution. A more trustworthy approach is to abandon the single-line approximation of the average profiles and apply LSD consistently to observations and synthetic spectra.Comment: Accepted for publication in Astronomy & Astrophysics; 15 pages, 12 figures; second version includes minor language correction

    Least-squares solution of incompressible Navier-Stokes equations with the p-version of finite elements

    Get PDF
    A p-version of the least squares finite element method, based on the velocity-pressure-vorticity formulation, is developed for solving steady state incompressible viscous flow problems. The resulting system of symmetric and positive definite linear equations can be solved satisfactorily with the conjugate gradient method. In conjunction with the use of rapid operator application which avoids the formation of either element of global matrices, it is possible to achieve a highly compact and efficient solution scheme for the incompressible Navier-Stokes equations. Numerical results are presented for two-dimensional flow over a backward facing step. The effectiveness of simple outflow boundary conditions is also demonstrated
    • …
    corecore