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Lewis Research Center

Cleveland, Ohio 44135

Abstract

A new p-version finite element formulation for steady, incompressible fluid flow and

convective heat transfer problems is presented. The steady-state residual equations are

obtained by considering a limiting case of the least-squares formulation for the transient

problem. The method circumvents the Babu_ka-Brezzi condition, permitting the use of

equal-order interpolation for velocity and pressure, without requiring the use of arbitrary

parameters. Numerical results are presented to demonstrate the accuracy and generality

of the method.





1. Introduction

Methods used to improve the quality of finite element solutions include h-methods,

p-methods and h-p meti_odsI1]. Finite element programs generally employ the h-version

of the method, where the accuracy of the solution is improved by refining the mesh while

using fixed low order element interpolation. This approach can be contrasted with spectral

methods, which use high order global approximation functions. Spectral methods have

been used to obtain highly accurate solutions to a variety of fluid dynamics problemsI2 ].

During the past two decades p- and h-p versions of the finite element method have

been developed which combine the geometric flexibility of standard low-order finite element

techniques with the rapid convergence properties of spectral methods. In the p-version of

the method, accuracy is achieved by increasing the element interpolation rather than refin-

ing the mesh. The h-p version involves a combination of mesh and polynomial refinement.

These finite element developments have been primarily applied to structural mechanics

analysis.

In recent years, 'spectral element' methods which are similar to the p- and h-p version

finite element methods have been developed specifically for incompressible fluid flow[3].

Adaptive mesh strategies for the spectral element method have recently been investi-

gated[4]. Compressible flow problems have already been solved using h-p adaptive finite

element methods[5].

Finite element methods are typically based on either variational or weighted resid-

ual formulations. Variational formulations are generally viewed as producing the 'best'

approximation to the exact solution of a variational problem. Unfortunately, vaziational

principles cannot be constructed for the Nailer-Stokes equations. In the absence of a varia-

tional principle, a weighted residual method is usually employed, the Galerkin formulation

being the most popular[6].

A standard Galerkin formulation for the steady, incompressible Navier-Stokes equa-

tions in primitive variable form unfortunately requires the use of velocity and pressure

interpolation functions which satisfy the Babugka-Brezzi condition. Several methods of

circumventing this problem have been investigated and reported in the literature[7-9]. The

approach derived here is based on the formulation presented by DeSampaio[10], although

the present method does not require an 'upwinding' parameter. In fact, the numerical

studies to be presented indicate that the use of 'upwinding' (Petrov-Galerkln weighting)

may actually degrade the solution when high order approximation functions are used.

The paper is organized as follows. The hierarchical p-version approximation functions

are described in the next section. Using these p-version approximation functions, the

finite element method is applied to the one-dimensional Burgers' equation in section 3

and the two-dimensional convection-conduction equation in section 4. The steady-state

residual equations are obtained by considering the steady-state limit o£ the least-squares

formulation for the transient problem. Numerical examples with known solutions are used

to evaluate the accuracy of the method. The method is extended to the incompressible

Navier-Stokes equations in section 5. Accurate numerical results are obtained in section

6 using equal-order interpolation for velocity and pressure without requiring the use of



arbitrary parameters. Conclusions are provided in the last section of the paper.

2. p-Version Finite Element Approximation

The p-version approximation functions and nodal variables for the two-dimensional

element shown in figure 1 can be obtained by taking products of one-dimensional approxi-

mation functions and nodal variable operators in the _ and r] natural coordinate directions.
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Figure 1: p-Version Element in natural coordinate space (_, q)

The one-dimensional approximation can be obtained from a Taylor series expansion,

as shown in Appendix 1. In the _ direction the approximation is given by:

P

oh(() = N_°+(eh + N°+(O)2+ N°+(Oh + _ U_+(Oe)2
i=3

(1)

where

N °+=-_(I-+), N °+=(1-_2), NO,+= _(1+_')

for2 even i

1 for odd ik
(_)



and

Similarly, in the 77 direction:

where

and

10iO {
(e_,)_.- i{ O__ {_=0

e_(,) = lv_,(o)_ + _v2,(e)_ + _v_,(o)_+
P

j=3

N_'=-_(1- ,), No"= (1- ,:), N°"=_(1+,)

N_" = ,7j - '71,Z= {
2 for even J
1 for odd j

(o)1 = Ol,=-_, (o)= -- Ol,=0, (0)3 = o{,_-1

(3)

(4)

(5)

_ 10YO
(o,,)_ j! o_J {,=o (6)

Note that the first three terms on the r.h.s, of eqns (1) and (4) are the standard

Lagrange interpolation functions for a parabolic element. Higher order terms are included

by simply adding hierarchical degrees of freedom at the center node.

The two-dimensional approximation functions and nodal variables can be obtained by

simply taking products of expressions (1) and (4), which yields the element approximation:

oh(_,_) = [N]{O} (v)

The contents of IN] and {0} are given in table 1.

Adaptive p-level refinement is extremely easy when hierarchical approximation func-

tions are used. The element nodal configuration and geometry do not change. The p-level

is increased (or decreased) by simply adding (or subtracting) degrees of freedom at nodes

2,4,6,8 and 9 shown in figure 1. Inter-element continuity conditions are satisfied by con-

straining appropriate degrees of freedom at the mid-side nodes 2,4,6 and 8.

3. Burgers' Equation

To illustrate the basic ideas, let's first consider the one-dimensional Burgers' equation:



Table 1: Hierarchical approximation functions and nodal variables

Node

Number
Approximation

Functions

Hierarchical Nodal

Variables

Order of

Derivatives

NO,T NO_ (oh = Ole=__,,,=-_ 0

(O)a = 0[¢=+1,_=-1 0

(0)_ = 0[e=+1,_=+1 0

7 (0)_ = OIe=-_,,7=+_ 0

NOn _¢o_ (0)_ = 0]¢=o,,=-_

1 (o'O'_
(0_,)2 = i-_k oe ] _=o,,= -1

NO_VMo_
3 "_'2

NO,7 _¢i_
3 _'2

(0)6 = 01¢=o,,=+_

_(_,_
(0_)6 = i_ \ 8¢ ] ¢=o,,7=+_

0

i=3,4,..., p

4

NO,T Mo_
2 "_'2

N2J_ M°_
_T 3

(0)4 = 01_=+_,,_=o

(OJ®_

(0,i )4 = _ _o., j _=+1,,_=o

NO,7 Aro_
2 "'1

NJ,7 _vo_
2 _"1

(0)8 = 01_=-1,,=o

_®

9

NO,_ lvo_
2 ''2

N°'N_ _

(0)9 = Ole=,=o

(O_,)9 = _-_\ o_,] _=_=0

\ o_ ) ] _=n=o

0

i=3,4,..., p

j=3,4,..., p

i=3,4,...,p

j=3,4,...,p
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Ou (% 02u

0-_+ _ - vg_-_=0

Integrating with respect to time:

(s)

f_+At ( OH 02u'_u '_+1 - u '_+ u-_z - v-5_2jdt = 0
dt

Using the trapezoidal rule to approximate the integral in eqn (9):

(9)

The least-squares criterion is now applied by minimizing the integral of the squared

residual with respect to the degrees of freedom at time level 'n+l'. The resulting equations

can be interpreted as a weighted residual formulation with weight functions as:

{w} = [iv]T + _ {,I,} (11)

where

u [ dN l T o% T [d2/Vl T{°} -- Ld=J + _ [iv] -.LT_ J

Note that the product rule of differentiation has been used to obtain the above ex-

pression. In the steady-state limit, the weighted residual formulation becomes

fn{W} (udU d2U _ df't- _,_-_-_) = {o} (12)

The above expression is clearly a Petrov-Gaierldn formulation where velocity depen-

dent 'least-squares' type terms have been included in the weighting functions given by eqn

(11). The time step At serves as the upwinding parameter.

The Galerldn weighting [N]T can be used in the standard fashion to integrate the

diffusive term by parts:

T du dFt At du d 2 u du (13)

Note that the boundary term only applies to portions of the boundary where the

primary variable 'u' has not been prescribed.

For a one-dimensional convection-diffusion problem with a constant convective veloc-

ity, the parameter At may be selected such that nodally exact steady-state solutions are

obtained. However, for general problems in fluid dynamics and heat transfer the optimal

value of the upwinding parameter is not known.



Nuraerical Ezample

Consider the solution of the steady-state Burgers' equation with the boundary con-

ditions u(0)=l, u(1)=0 and let u = 0.01. Solutions to equation (13) were obtained using

Newton-Raphson iteration. The non-symmetric matrix equation resulting from (13) was

solved using a frontal solver[Ill modified for use with p-version elements. No difficulties

were encountered in obtaining converged solutions.
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Figure 2: Solutions to Burgers' equation at p=2

A uniform mesh of ten elements at a p-level of p=2 was used to produce the oscillatory

results shown in figure 2. The standard Galerkin formulation corresponds to the At = 0.000

solution, which is quite oscillatory. Petrov-Galerkin weighting is commonly prescribed as a

cure for this oscillation problem[8], and it is clear in this case that the upwinding parameter

At is in fact suppressing the oscillations. Unfortunately, it is also clear that none of the

'solutions' shown in figure 2 axe very accurate. As has been previously pointed out by

Gresho and Lee[12], the appropriate solution to this 'wiggle' problem is adequate mesh

refinement. Here the use of p-refinement rather than h-refinement will be explored.

The exact solution to this problem[13] is given by:

1+ exp[ (=- 1)/,,] (14)

where fi satisfies:

6



+ 1 - exp(-_/v)

Using eqn (14) the L_ norm:

can be used to measure the solution error.

Using (15), the error was computed from the solutions obtained using selective p-

refinement. The p-level was changed in the last element (0.9 _< • _< 1.0) where the solution

is changing rapidly and the p-level was fixed at p=2 for all the other elements. The solution

error was computed using 12 point Gauss quadrature to evaluate the integral in eqn (15).

The computed error values are plotted as a function of the At parameter in figure 3 for

several p-levels. The results at p=2 confirm that the use of Petrov-Galerkin weighting

can in fact improve the solution accuracy, provided the correct value of the upwinding

parameter is selected. At p=3, the best possible At parameter improves the accuracy only

slightly, and at p=4 the best parameter choice is At ----0.
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Figure 3: Burgers' equation solution error

For this problem it appears that the standard Galerkin formulation is best when higher

order approximations are used. In figure 4, Galerkin solutions in the oscillatory region are

compared with the exact solution. The oscillations are quite small at p=4, and at p=8 the



solution is essentially exact. Highly accuratesolutionshavebeenobtained without the use

of upwinding by simply employing local p-refinement.
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Figure 4: Solutions to Burgers' equation at higher p-levels

4. Convectlon-Conduction Equation

Before proceeding to the Navier-Stokes equations, let's first examine the simpler

convection-conduction equation in two dimensions:

OT OT OT 1 (asr
c3---t+ u-_z + v Oy Re \_x 2 -4- Oy 2 ] ---- 0 (16)

where u and v are known dimensionless velocity components and T is the dimensionless

temperature. Applying the same approach to eqn (16) as was applied to Burgers' equation

(8) yields the following steady-state result:

At 1 N VT.ndr (17)+y e

here n is the outward normal vector at the boundary, r is the residual:

8



OT h OT h

r=u-_-+v Oy

1 "02T h 02T h"

)

and the vector {_I,} is given by:

{_}_ Or _ raN1_ [1ON J.rOaN1• ro N1

Once again, the boundary term in (17) only needs to be computed on portions of the

boundary where the primary variable 'T: is not specified.

Numerical Example

The well known Smith-Hutton problem[14] will be solved using eight uniform p-version

elements, shown in figure 5. The condition at the inlet is prescribed as:

T = 1 + tanh[lO(2z 4- 1)]; y = 0, -1 < z _< 0 (inlet) (18)

/ []

] []

) []

E! []

_ k._J

Inlet T=f(x)

[b [] [] []
i

[], ,, ,, _ ,.) []

E_ [] [] [] E] [] [[

© [] "" S "0 _ _--
0 Outlet q=0 1

T=0

X

Figure 5: Smith-Hutton Problem

The dependent variable 'T' is essentially zero on x = 4-1 and y = 1 and very nearly 2

at the origin of the coordinates. The climb from 0 to 2 occurs very sharply halfway along

the inlet. A zero flux boundary condition (q = VT • n = 0) is assumed at the outlet. For

this problem the velocity field is specified analytically as:

_,= 2y(1 - ==), ,, = -_.=(1 - y=) (19)

9



corresponding to a streamfunction

62= -(1 - - u (20)

In the case Of pure convection (Pc _ c_), the exact solution to this problem is easily
obtained in terms of the streamfunction 62:

T = T(62) = 1 + tanh[lO(1 - 2v/1 + 6J)] (21)

For very large Peclet numbers (Pc _> 106), eqn (21) can be used as an exact solution

and the L2 norm

1

can be used to measure the solution error.

It is well known that the standard Ga]erkin formulation is optima] for pure conduction

(Pc _ 0) problems. It is commonly held that the Galerkin formulation is acceptable in

low Pe cases, but inadequate for convection dominated problems. The availability of an

exact solution for the convection dominated case permits an objective evaluation of the

optimal upwinding parameter to be used with p-version finite elements.
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Figure 6: Smith-Hutton problem error
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Figure 8: Smith-Hutton problem solutions

Eqn (17) was placed in matrix form and solved using the same p-version non-symmetric

matrix solver used in section 3. Solutions obtained with Pe = 10 _ were used in eqn (22)

11



to compute the error for several values of the upwinding parameter At. The resultsfor

several p-levels are presented in figure 6. Results for p < 4 are not presented because the

inlet boundary conditions cannot be properly represented at low p-levels with the present

mesh. From figure 6 it is clear that the use of Petrov-Galerkin weighting increases the

solution error. The standard Galerkin formulation (At = 0.0) produces the best results at

these p-levels.

The effect of the use o£ Petrov-Galerkin weighting at p=6 is illustrated in figure 7,

where the upwinding parameter At is seen to introduce rather than eliminate oscillations

in the outlet solution. Petrov-Galerkin weighting was also tested at a low Peclet number

(Pe=10) and found to be of no benefit.

Galerkin solutions at the outlet for a range of Peclet numbers are presented in figure 8

along with reference solutions[14] considered to be reasonably accurate. The finite element

solutions presented were obtained with p=6 for all cases except Pe=1000, where it was

necessary to use p=7. It should be noted that these results are quite superior to previously

published p-version least-squares results[15].

5. Incompressible Fluid Flow

The p-version finite element method used in sections 3 and 4 will now be extended to

the incompressible Navier-Stokes equations. Two-dimensional, incompressible fluid flow

with constant properties can be described by the following set of equations expressed in

dimensionless form:

--_ + u_ + V-_y + 0¢ Re \-ff_ix2 + Oy _ ] = 0 (23a)

oP-_ + _ + _N + oy R_\0_ + _ =0 (23b)

o% Ov

_+N=0 (24)

The approach used in sections 3 and 4 can be applied to the momentum equations

(23) to give:

At t]_ + f_+l )v,_+l _ v '_ + _- =o (25b)

where

A = u-_z + v -_y + Oz Re \ O_ 2 + Oy 2 /

12



Let rl ,r2 and r3 representthe residualsin equations(25a),(25b)and (24), respectively.
Applying the least squarescriterion at time level 'n+l' to the integrated sum of the squared

residuals yields:

= {0} (27a)
L [ O%1 Ors O%3 1,,-.t0(u}_ + 0-_ _2+ o--_J TM

[ O%1 Ors O%3 1

f F O%1 O%2 o%3

= {0} (27b)

= {0} (27c)

Expressions for the derivatives of the residuals are obtained assuming equal order

interpolation for field variables u,v and P.

From eqn (25a):

O%1 At cOf_ +1 O%1 At 0 _'_+1 O%1 At 0]_ +1
__ =-- Jl_. _ (28_)

O{u}--[N]T+ 2 0{u}; O{v} 20{v}' O{P} 20{P}

Similarly, from eqn (25b):

Ors At 0f_ +_ O%_ At _+1 0f_+_
Of_ . Ors At (28b)0{_--_= Y 0{_----3-;0{_} - [N]_+ Y_' o{p} - 2 o{p}

And from eqn (24):

c%3 ON T 07"3 ON T O%3

Substituting eqns (28) into (27) and considering the steady-state limit yields the

following system of equations: ..............................

f_ A_ Of_ ,_ ON r O_ O_ ]_ 0f_/1 ([Nlr+ _ 0{_}J N N (29b)

13



koTJ \=O-_x+vO--yy+ 0x - Re\Ox= + Oy=e

{0} (30)
J_t J\ ]

where the factor ____Ahas been cancelled out of eqn (30).

The above derivation is similar to the formulation presented by DeSampaio[10]. How-

ever, DeSampaio did not include the continuity equation (24) directly in the least squares

minimization. As a result, DeSampaio's formulation requires the selection of a nonzero

value of At in order to circumvent the Babu_ka-Brezzi condition. Because the At param-

eter was not helpful in the p-version finite element solutions of Burgers' equation (section

3) and the convection-conduction equation (section 4) it is unlikely to be of benefit here.

With At set to zero, equations (29) represent a Galerkin treatment of the momentum equa-

tions modified by a least-squares term to enforce the continuity equation. Equation (30)

represents a least-squares minimization with respect to the pressure degrees of freedom.

Setting At to zero and integrating the viscous terms in equations (29) by parts yields:

T Ov 1+L kl (31a)

L Ov OP 1 f ON TOy ON TOy[_]_(u_+_ +_)_ +_ jo([_]_ +[_] o_,_

£ ovhd 1 f_

where n is the outward normal vector at the boundary. Equations 30, 31a and 31b consti-

tute the required set of equations.

6. Numerical Examples

Two numerical examples are presented in this section to demonstrate the accuracy

and convergence characteristics of this p-version formulation.

a) Example 1: Driven Cavity, Re=lO00

Consider the well known 'driven cavity' problem shown in figure 9. The velocity

components are constrained along the entire boundary and the pressure is constrained to

14



P=O u:l v:O
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u=O

v=O
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Figure 9: Driven Cavity Problem
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Figure 10: Plots of u(x=0.5,y) for driven cavity

a reference value of P = 0 at a single point. Computations were performed up to a p-level

of p--6 using uniform p-refinement with the 25 element mesh shown in figure 9.
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The coupled,nonlinear systemof equations(30,31aand 31b) was solved by succcessive

substitution using the p-version finite element non-symmetric matrix frontal solver used

in the previous sections. The p-levels were sequentially increased starting with p=2. A

starting vector of {5} = {0} was assumed at p = 2. For p > 3, the solution obtained

at the previous p-level was used to generate an initial solution vector. This procedure

is quite easy to implement because of the hierarchical nature of the degrees of freedom.

The solution was considered to be sufficiently converged (in the iterative sense) when the

maximum change in the solution vector was less than 10 -4 . Generally around 10 iterations

were required at each p-level.

0.50

0.25

0.00
d

II

-0.25

-0.50

-0.75 '
0.00

............ p=3

p=4

-- p=5

p=6
0 reference

I I I

0.25 0.50 0.75

X

1.00

Figure 11: Plots of v(x,y=0.5) for driven cavity

The solutions for 'u' along the vertical centerline (x=0.5) are presented in figure 10

and the solutions for 'v' along the horizontal centerline are shown in figure 11. The results

reported by Ghia et.al.[16] are also presented as a reference. Note that the solutions

converge rapidly and the agreement with the reference solution is excellent.

The vector and streamline plot is shown in figure 12 and the pressure contours are pre-

sented in figure 13. Both the velocity and pressure solutions are quite smooth, even though

equal order interpolation has been used without upwinding or other special techniques.

b) Ezarnple _: Asymmetric Sudden Ezpansion, Re=229

In the second example a 3:2 asymmetric sudden expansion problem is examined

and the numerical results are compared with the experimental results of Denham and

Patrick[17]. The highest Reynolds number from the experiment, Re=229, is considered,

16



Figure 12: Vector and streamlineplot for driven cavity

Figure 13: Pressure contour plot for driven cavity

17



where the Reynolds number is based on the mean velocity and channel haE-width at

the inlet. This problem was selected because the experimental data is very nearly two-

dimensional and steady in the expansion region. At higher Reynolds numbers, the flow

pattern is generally three-dimensional and often not truly laminar.

The problem geometry (expressed in step height units), boundary conditions and finite

element mesh are shown in figure 14. The inlet boundary conditions for 'u' were determined

using a least-squares fit to the inlet velocity measurements, and the vertical velocity 'v'

was set to zero. Fully developed conditions were imposed 40 step heights downstream.

In addition to the natural boundary conditions (Vu • n = Vv • n = 0), the pressure was

constrained to a reference value of P -- 0 at the outlet.

u=O v=O

u=f(y)v--oE1
I

0 5 10 u=O v=o 20

Figure 14: Asymmetric Sudden Expansion Problem

P=O
_ufOx=O
OvDx=O
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.0 _ 1 i i

t,o
t.D

(1)
e- 0.0

,,,.-

.£o -1.0

1.oi ............
' / ............ p=3

i! /'/ ----P:4-I
1!/ .... p=5 t

\\" t

X /

-2.0 I , t
0.0 10.0 20.0 30.0 40.0

X

Figure 15: Plot of viscous shear stress along lower wall

Computations were performed up to a p-level of p=7 using the same iterative pro-

cedure described in the first example. In figure 15 the dimensionless viscous shear stress

(Tzy __ _u Ov-- -- + _-_) along the lower wall (y=-l) is presented for several p-levels. The converged8y
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Figure 16: Velocity Profiles

solution indicates a recirculation zone length L_ prediction of Z_ = 9.3, which agrees fairly

well with the experimental value (L_ _ 9.8).

The converged velocity profiles at x=0,2,4,6 and 8 are compared with the experimental

results in figure 16. The agreement with the experimental values is excellent for x=0

through x=6 and good for the x=8 profile. Similar numerical results were obtained using

a p-version least-squares formulation [18]. Some error (_ 2%) may have been introduced

in the process of extracting the velocity values from the graphical results of Denhazn and

Patrick.

Figure 17: Streamlines for the sudden expansion problem

The recirculation zone streamline plot is shown in figure 17 and the pressure contours

are presented in figure 18. Again, smooth solutions have been obtained using equal order

interpolation without requiring the use of arbitrary parameters.
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Figure 18: Pressure contours for the sudden expansion problem

7. Conclusions

Petrov-Galerkin formulations for the steady solution of Burgers' equation, convec-

tive heat transfer, and incompressible fluid dynamics problems have been presented. The

weighted residual formulations were obtained by applying the least- squares approach to

the transient problems, with the temporal derivatives approximated by finite differences.

In the steady-state limit, this approach leads to a Petrov-Galerkin statement with the time

step At serving as the upwinding parameter.

Numerical results using p-version finite dements for the one-dimensional Burgers'

equation and a two-dimensional convection-conduction problem revealed that the standard

Galerkin method (At = 0) performed better than the Petrov-Galerkin formulation when

higher order approximations (p > 4) were used. This evaluation was made by comparing

the L2 norm of the solution errors.

Based on these numerical findings, a value of At = 0 was selected for the incompress-

ible Navier-Stokes formulation, resulting in a method of circumventing the Babu_ka-Brezzi

condition without requiring the selection of parameter values. The numerical solutions

obtained using this formulation agree well with reference solutions and experimental data.

The following specific conclusions can be made concerning these results:

1. The Babu_ka-Brezzi condition can be circumvented in a very simple manner without

the use of arbitrary parameters.

2. 'Upwinding'(Petrov-Galerkin weighting) is only helpful if the dement approxima-

tion is not capable of accurately representing the solution.

3. The p-version of the finite element method is well-suited to problems involving

incompressible fluid flow and convective heat transfer, producing non-oscillatory and highly

accurate solutions.

4. Although h-p methods may be necessary for problems with extremely sharp gra-

dients, the p-version Of the finite element method can be very effective at increasing the

local order of approximation to produce accurate solutions to a range of incompressible

flow problems.

The primary goal of this work was to demonstrate the accuracy and generality of
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this new method. The computational efficiency of the method can be improved by using

the technique of 'static condensation', where the degrees of freedom on element interiors

are computed after determining the solution on the element boundaries. Also, for large

scale problems, indirect methods are more efficient than direct methods such as the frontal

solver. Future work will concentrate on these efficiency improvements and the development

of reliable error indicators for use with adaptive methods.
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Append_ A

Consider a three node, one dimensionalelement: node 1 at _ = -1, node2 at _ = 0
and node3 at _ = +1, where _ is a local coordinate. A dependentvariable ®(_) can be
expandedin a Taylor seriesabout node 2 (_ = 0):

002 _2 0202 _ _' 0'02 (A.1)

i----3

It is desireable to replace _ and _ in eqn (A.1) by ®(_ =-1)= 01 and ®((=1)=

®_. From eqn (A.1):

002 1 0202 _ (-1)/ 0iO2 (A.2)
o_ = o_ - o--( + 2 o_---G- + i! o_/

i=3

002
O3=O2+--_ +

o_

1 0202 _ (+1)i 0iO2 (A.3)
2 0_ _ + _ i! 0( _

/=3

Subtracting eqn (A.2) from (A.3) and rearranging gives

002 1 10 1 _ 1 - (-1) / 0/02
o_ -2°_-_ 1-_,=z i! O_/

(A.4)

Adding eqn (A.2) to (A.3) and rearranging gives

- O1- 202 + O3- E 1 + (-1)' 0'O_
i! 0( /

i=3

(A.5)

Substituting eqns (A.4) and (A.5) into (A.1) yields

_O (O1-_ 1 - (-1)` 0/02= + -2 - i!
i----3

-C-O2 + -_-O3 + }-O_ - 1 + (-1)i 0iO_i! 0_ i
i=3

OO

+ _ _i 0/0_
i=3 i! 0_ i

which can be rewritten as

OO

O(_) =-_(1- {)O1 + (1- _2)O2 + _(1 +_)03 + E (_/- {k) 0iO2i! 0_'
i=3

(A.6)

23



where

k = { 2 for even i1 for odd i

If terms of up to order 'p' are retained, then 0(¢) can be approximated as-

where

and

P

i=3

_(1 +_)N °t=- (1-_), N °_--(1-_2), N_=

2 for
N_e={i__k k=

even i

1 for odd i

(oh = Ol_=-_,(o)_--el,=0,(e)_- el,=_

(A.7)

(A.8)

1 0_O

(Oe)2 - i! 0_ _=o (A.9)
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