2,376 research outputs found

    Bethe Ansatz in the Bernoulli Matching Model of Random Sequence Alignment

    Full text link
    For the Bernoulli Matching model of sequence alignment problem we apply the Bethe ansatz technique via an exact mapping to the 5--vertex model on a square lattice. Considering the terrace--like representation of the sequence alignment problem, we reproduce by the Bethe ansatz the results for the averaged length of the Longest Common Subsequence in Bernoulli approximation. In addition, we compute the average number of nucleation centers of the terraces.Comment: 14 pages, 5 figures (some points are clarified

    On a Speculated Relation Between Chv\'atal-Sankoff Constants of Several Sequences

    Full text link
    It is well known that, when normalized by n, the expected length of a longest common subsequence of d sequences of length n over an alphabet of size sigma converges to a constant gamma_{sigma,d}. We disprove a speculation by Steele regarding a possible relation between gamma_{2,d} and gamma_{2,2}. In order to do that we also obtain new lower bounds for gamma_{sigma,d}, when both sigma and d are small integers.Comment: 13 pages. To appear in Combinatorics, Probability and Computin

    Subsequence Automata with Default Transitions

    Get PDF
    Let SS be a string of length nn with characters from an alphabet of size σ\sigma. The \emph{subsequence automaton} of SS (often called the \emph{directed acyclic subsequence graph}) is the minimal deterministic finite automaton accepting all subsequences of SS. A straightforward construction shows that the size (number of states and transitions) of the subsequence automaton is O(nσ)O(n\sigma) and that this bound is asymptotically optimal. In this paper, we consider subsequence automata with \emph{default transitions}, that is, special transitions to be taken only if none of the regular transitions match the current character, and which do not consume the current character. We show that with default transitions, much smaller subsequence automata are possible, and provide a full trade-off between the size of the automaton and the \emph{delay}, i.e., the maximum number of consecutive default transitions followed before consuming a character. Specifically, given any integer parameter kk, 1<kσ1 < k \leq \sigma, we present a subsequence automaton with default transitions of size O(nklogkσ)O(nk\log_{k}\sigma) and delay O(logkσ)O(\log_k \sigma). Hence, with k=2k = 2 we obtain an automaton of size O(nlogσ)O(n \log \sigma) and delay O(logσ)O(\log \sigma). On the other extreme, with k=σk = \sigma, we obtain an automaton of size O(nσ)O(n \sigma) and delay O(1)O(1), thus matching the bound for the standard subsequence automaton construction. Finally, we generalize the result to multiple strings. The key component of our result is a novel hierarchical automata construction of independent interest.Comment: Corrected typo
    corecore