492 research outputs found

    Exploring Deep Learning Techniques for Glaucoma Detection: A Comprehensive Review

    Full text link
    Glaucoma is one of the primary causes of vision loss around the world, necessitating accurate and efficient detection methods. Traditional manual detection approaches have limitations in terms of cost, time, and subjectivity. Recent developments in deep learning approaches demonstrate potential in automating glaucoma detection by detecting relevant features from retinal fundus images. This article provides a comprehensive overview of cutting-edge deep learning methods used for the segmentation, classification, and detection of glaucoma. By analyzing recent studies, the effectiveness and limitations of these techniques are evaluated, key findings are highlighted, and potential areas for further research are identified. The use of deep learning algorithms may significantly improve the efficacy, usefulness, and accuracy of glaucoma detection. The findings from this research contribute to the ongoing advancements in automated glaucoma detection and have implications for improving patient outcomes and reducing the global burden of glaucoma

    Automated diagnosing primary open-angle glaucoma from fundus image by simulating human\u27s grading with deep learning

    Get PDF
    Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide. Although deep learning methods have been proposed to diagnose POAG, it remains challenging to develop a robust and explainable algorithm to automatically facilitate the downstream diagnostic tasks. In this study, we present an automated classification algorithm, GlaucomaNet, to identify POAG using variable fundus photographs from different populations and settings. GlaucomaNet consists of two convolutional neural networks to simulate the human grading process: learning the discriminative features and fusing the features for grading. We evaluated GlaucomaNet on two datasets: Ocular Hypertension Treatment Study (OHTS) participants and the Large-scale Attention-based Glaucoma (LAG) dataset. GlaucomaNet achieved the highest AUC of 0.904 and 0.997 for POAG diagnosis on OHTS and LAG datasets. An ensemble of network architectures further improved diagnostic accuracy. By simulating the human grading process, GlaucomaNet demonstrated high accuracy with increased transparency in POAG diagnosis (comprehensiveness scores of 97% and 36%). These methods also address two well-known challenges in the field: the need for increased image data diversity and relying heavily on perimetry for POAG diagnosis. These results highlight the potential of deep learning to assist and enhance clinical POAG diagnosis. GlaucomaNet is publicly available on https://github.com/bionlplab/GlaucomaNet

    Detection and Mosaicing through Deep Learning Models for Low-Quality Retinal Images

    Get PDF
    Glaucoma is a severe eye disease that is asymptomatic in the initial stages and can lead to blindness, due to its degenerative characteristic. There isn’t any available cure for it, and it is the second most common cause of blindness in the world. Most of the people affected by it only discovers the disease when it is already too late. Regular visits to the ophthalmologist are the best way to prevent or contain it, with a precise diagnosis performed with professional equipment. From another perspective, for some individuals or populations, this task can be difficult to accomplish, due to several restrictions, such as low incoming resources, geographical adversities, and travelling restrictions (distance, lack of means of transportation, etc.). Also, logistically, due to its dimensions, relocating the professional equipment can be expensive, thus becoming not viable to bring them to remote areas. In the market, low-cost products like the D-Eye lens offer an alternative to meet this need. The D-Eye lens can be attached to a smartphone to capture fundus images, but it presents a major drawback in terms of lower-quality imaging when compared to professional equipment. This work presents and evaluates methods for eye reading with D-Eye recordings. This involves exposing the retina in two steps: object detection and summarization via object mosaicing. Deep learning methods, such as the YOLO family architecture, were used for retina registration as an object detector. The summarization methods presented and inferred in this work mosaiced the best retina images together to produce a more detailed resultant image. After selecting the best workflow from these methods, a final inference was performed and visually evaluated, the results were not rich enough to serve as a pre-screening medical assessment, determining that improvements in the actual algorithm and technology are needed to retrieve better imaging

    Harvard Eye Fairness: A Large-Scale 3D Imaging Dataset for Equitable Eye Diseases Screening and Fair Identity Scaling

    Full text link
    Fairness or equity in machine learning is profoundly important for societal well-being, but limited public datasets hinder its progress, especially in the area of medicine. It is undeniable that fairness in medicine is one of the most important areas for fairness learning's applications. Currently, no large-scale public medical datasets with 3D imaging data for fairness learning are available, while 3D imaging data in modern clinics are standard tests for disease diagnosis. In addition, existing medical fairness datasets are actually repurposed datasets, and therefore they typically have limited demographic identity attributes with at most three identity attributes of age, gender, and race for fairness modeling. To address this gap, we introduce our Eye Fairness dataset with 30,000 subjects (Harvard-EF) covering three major eye diseases including age-related macular degeneration, diabetic retinopathy, and glaucoma affecting 380 million patients globally. Our Harvard-EF dataset includes both 2D fundus photos and 3D optical coherence tomography scans with six demographic identity attributes including age, gender, race, ethnicity, preferred language, and marital status. We also propose a fair identity scaling (FIS) approach combining group and individual scaling together to improve model fairness. Our FIS approach is compared with various state-of-the-art fairness learning methods with superior performance in the racial, gender, and ethnicity fairness tasks with 2D and 3D imaging data, which demonstrate the utilities of our Harvard-EF dataset for fairness learning. To facilitate fairness comparisons between different models, we propose performance-scaled disparity measures, which can be used to compare model fairness accounting for overall performance levels. The dataset and code are publicly accessible via https://ophai.hms.harvard.edu/datasets/harvard-ef30k

    Machine learning strategies for diagnostic imaging support on histopathology and optical coherence tomography

    Full text link
    Tesis por compendio[ES] Esta tesis presenta soluciones de vanguardia basadas en algoritmos de computer vision (CV) y machine learning (ML) para ayudar a los expertos en el diagnóstico clínico. Se centra en dos áreas relevantes en el campo de la imagen médica: la patología digital y la oftalmología. Este trabajo propone diferentes paradigmas de machine learning y deep learning para abordar diversos escenarios de supervisión en el estudio del cáncer de próstata, el cáncer de vejiga y el glaucoma. En particular, se consideran métodos supervisados convencionales para segmentar y clasificar estructuras específicas de la próstata en imágenes histológicas digitalizadas. Para el reconocimiento de patrones específicos de la vejiga, se llevan a cabo enfoques totalmente no supervisados basados en técnicas de deep-clustering. Con respecto a la detección del glaucoma, se aplican algoritmos de memoria a corto plazo (LSTMs) que permiten llevar a cabo un aprendizaje recurrente a partir de volúmenes de tomografía por coherencia óptica en el dominio espectral (SD-OCT). Finalmente, se propone el uso de redes neuronales prototípicas (PNN) en un marco de few-shot learning para determinar el nivel de gravedad del glaucoma a partir de imágenes OCT circumpapilares. Los métodos de inteligencia artificial (IA) que se detallan en esta tesis proporcionan una valiosa herramienta de ayuda al diagnóstico por imagen, ya sea para el diagnóstico histológico del cáncer de próstata y vejiga o para la evaluación del glaucoma a partir de datos de OCT.[CA] Aquesta tesi presenta solucions d'avantguarda basades en algorismes de *computer *vision (CV) i *machine *learning (ML) per a ajudar als experts en el diagnòstic clínic. Se centra en dues àrees rellevants en el camp de la imatge mèdica: la patologia digital i l'oftalmologia. Aquest treball proposa diferents paradigmes de *machine *learning i *deep *learning per a abordar diversos escenaris de supervisió en l'estudi del càncer de pròstata, el càncer de bufeta i el glaucoma. En particular, es consideren mètodes supervisats convencionals per a segmentar i classificar estructures específiques de la pròstata en imatges histològiques digitalitzades. Per al reconeixement de patrons específics de la bufeta, es duen a terme enfocaments totalment no supervisats basats en tècniques de *deep-*clustering. Respecte a la detecció del glaucoma, s'apliquen algorismes de memòria a curt termini (*LSTMs) que permeten dur a terme un aprenentatge recurrent a partir de volums de tomografia per coherència òptica en el domini espectral (SD-*OCT). Finalment, es proposa l'ús de xarxes neuronals *prototípicas (*PNN) en un marc de *few-*shot *learning per a determinar el nivell de gravetat del glaucoma a partir d'imatges *OCT *circumpapilares. Els mètodes d'intel·ligència artificial (*IA) que es detallen en aquesta tesi proporcionen una valuosa eina d'ajuda al diagnòstic per imatge, ja siga per al diagnòstic histològic del càncer de pròstata i bufeta o per a l'avaluació del glaucoma a partir de dades d'OCT.[EN] This thesis presents cutting-edge solutions based on computer vision (CV) and machine learning (ML) algorithms to assist experts in clinical diagnosis. It focuses on two relevant areas at the forefront of medical imaging: digital pathology and ophthalmology. This work proposes different machine learning and deep learning paradigms to address various supervisory scenarios in the study of prostate cancer, bladder cancer and glaucoma. In particular, conventional supervised methods are considered for segmenting and classifying prostate-specific structures in digitised histological images. For bladder-specific pattern recognition, fully unsupervised approaches based on deep-clustering techniques are carried out. Regarding glaucoma detection, long-short term memory algorithms (LSTMs) are applied to perform recurrent learning from spectral-domain optical coherence tomography (SD-OCT) volumes. Finally, the use of prototypical neural networks (PNNs) in a few-shot learning framework is proposed to determine the severity level of glaucoma from circumpapillary OCT images. The artificial intelligence (AI) methods detailed in this thesis provide a valuable tool to aid diagnostic imaging, whether for the histological diagnosis of prostate and bladder cancer or glaucoma assessment from OCT data.García Pardo, JG. (2022). Machine learning strategies for diagnostic imaging support on histopathology and optical coherence tomography [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/182400Compendi

    Glaucoma Detection from Raw SD-OCT Volumes: a Novel Approach Focused on Spatial Dependencies

    Full text link
    [EN] Background and objective:Glaucoma is the leading cause of blindness worldwide. Many studies based on fundus image and optical coherence tomography (OCT) imaging have been developed in the literature to help ophthalmologists through artificial-intelligence techniques. Currently, 3D spectral-domain optical coherence tomography (SD-OCT) samples have become more important since they could enclose promising information for glaucoma detection. To analyse the hidden knowledge of the 3D scans for glaucoma detection, we have proposed, for the first time, a deep-learning methodology based on leveraging the spatial dependencies of the features extracted from the B-scans. Methods:The experiments were performed on a database composed of 176 healthy and 144 glaucomatous SD-OCT volumes centred on the optic nerve head (ONH). The proposed methodology consists of two well-differentiated training stages: a slide-level feature extractor and a volume-based predictive model. The slide-level discriminator is characterised by two new, residual and attention, convolutional modules which are combined via skip-connections with other fine-tuned architectures. Regarding the second stage, we first carried out a data-volume conditioning before extracting the features from the slides of the SD-OCT volumes. Then, Long Short-Term Memory (LSTM) networks were used to combine the recurrent dependencies embedded in the latent space to provide a holistic feature vector, which was generated by the proposed sequential-weighting module (SWM). Results:The feature extractor reports AUC values higher than 0.93 both in the primary and external test sets. Otherwise, the proposed end-to-end system based on a combination of CNN and LSTM networks achieves an AUC of 0.8847 in the prediction stage, which outperforms other state-of-the-art approaches intended for glaucoma detection. Additionally, Class Activation Maps (CAMs) were computed to highlight the most interesting regions per B-scan when discerning between healthy and glaucomatous eyes from raw SD-OCT volumes. Conclusions:The proposed model is able to extract the features from the B-scans of the volumes and combine the information of the latent space to perform a volume-level glaucoma prediction. Our model, which combines residual and attention blocks with a sequential weighting module to refine the LSTM outputs, surpass the results achieved from current state-of-the-art methods focused on 3D deep-learning architectures.The authors gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used here.This work has been funded by GALAHAD project [H2020-ICT-2016-2017, 732613], SICAP project (DPI2016-77869-C2-1-R) and GVA through project PROMETEO/2019/109. The work of Gabriel García has been supported by the State Research Spanish Agency PTA2017-14610-I.García-Pardo, JG.; Colomer, A.; Naranjo Ornedo, V. (2021). Glaucoma Detection from Raw SD-OCT Volumes: a Novel Approach Focused on Spatial Dependencies. Computer Methods and Programs in Biomedicine. 200:1-16. https://doi.org/10.1016/j.cmpb.2020.105855S116200Weinreb, R. N., & Khaw, P. T. (2004). Primary open-angle glaucoma. The Lancet, 363(9422), 1711-1720. doi:10.1016/s0140-6736(04)16257-0Jonas, J. B., Aung, T., Bourne, R. R., Bron, A. M., Ritch, R., & Panda-Jonas, S. (2018). Glaucoma – Authors’ reply. The Lancet, 391(10122), 740. doi:10.1016/s0140-6736(18)30305-2Tham, Y.-C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., & Cheng, C.-Y. (2014). Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. Ophthalmology, 121(11), 2081-2090. doi:10.1016/j.ophtha.2014.05.013Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., … Fujimoto, J. G. (1991). Optical Coherence Tomography. Science, 254(5035), 1178-1181. doi:10.1126/science.1957169Medeiros, F. A., Zangwill, L. M., Alencar, L. M., Bowd, C., Sample, P. A., Susanna, R., & Weinreb, R. N. (2009). Detection of Glaucoma Progression with Stratus OCT Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Thickness Measurements. Investigative Opthalmology & Visual Science, 50(12), 5741. doi:10.1167/iovs.09-3715Sinthanayothin, C., Boyce, J. F., Williamson, T. H., Cook, H. L., Mensah, E., Lal, S., & Usher, D. (2002). Automated detection of diabetic retinopathy on digital fundus images. Diabetic Medicine, 19(2), 105-112. doi:10.1046/j.1464-5491.2002.00613.xWalter, T., Massin, P., Erginay, A., Ordonez, R., Jeulin, C., & Klein, J.-C. (2007). Automatic detection of microaneurysms in color fundus images. Medical Image Analysis, 11(6), 555-566. doi:10.1016/j.media.2007.05.001Diaz-Pinto, A., Colomer, A., Naranjo, V., Morales, S., Xu, Y., & Frangi, A. F. (2019). Retinal Image Synthesis and Semi-Supervised Learning for Glaucoma Assessment. IEEE Transactions on Medical Imaging, 38(9), 2211-2218. doi:10.1109/tmi.2019.2903434Bussel, I. I., Wollstein, G., & Schuman, J. S. (2013). OCT for glaucoma diagnosis, screening and detection of glaucoma progression. British Journal of Ophthalmology, 98(Suppl 2), ii15-ii19. doi:10.1136/bjophthalmol-2013-304326Varma, R., Steinmann, W. C., & Scott, I. U. (1992). Expert Agreement in Evaluating the Optic Disc for Glaucoma. Ophthalmology, 99(2), 215-221. doi:10.1016/s0161-6420(92)31990-6Jaffe, G. J., & Caprioli, J. (2004). Optical coherence tomography to detect and manage retinal disease and glaucoma. American Journal of Ophthalmology, 137(1), 156-169. doi:10.1016/s0002-9394(03)00792-xHood, D. C., & Raza, A. S. (2014). On improving the use of OCT imaging for detecting glaucomatous damage. British Journal of Ophthalmology, 98(Suppl 2), ii1-ii9. doi:10.1136/bjophthalmol-2014-305156Bizios, D., Heijl, A., Hougaard, J. L., & Bengtsson, B. (2010). Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT. Acta Ophthalmologica, 88(1), 44-52. doi:10.1111/j.1755-3768.2009.01784.xKim, S. J., Cho, K. J., & Oh, S. (2017). Development of machine learning models for diagnosis of glaucoma. PLOS ONE, 12(5), e0177726. doi:10.1371/journal.pone.0177726Medeiros, F. A., Jammal, A. A., & Thompson, A. C. (2019). From Machine to Machine. Ophthalmology, 126(4), 513-521. doi:10.1016/j.ophtha.2018.12.033An, G., Omodaka, K., Hashimoto, K., Tsuda, S., Shiga, Y., Takada, N., … Nakazawa, T. (2019). Glaucoma Diagnosis with Machine Learning Based on Optical Coherence Tomography and Color Fundus Images. Journal of Healthcare Engineering, 2019, 1-9. doi:10.1155/2019/4061313Fang, L., Cunefare, D., Wang, C., Guymer, R. H., Li, S., & Farsiu, S. (2017). Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomedical Optics Express, 8(5), 2732. doi:10.1364/boe.8.002732Pekala, M., Joshi, N., Liu, T. Y. A., Bressler, N. M., DeBuc, D. C., & Burlina, P. (2019). Deep learning based retinal OCT segmentation. Computers in Biology and Medicine, 114, 103445. doi:10.1016/j.compbiomed.2019.103445Barella, K. A., Costa, V. P., Gonçalves Vidotti, V., Silva, F. R., Dias, M., & Gomi, E. S. (2013). Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT. Journal of Ophthalmology, 2013, 1-7. doi:10.1155/2013/789129Vidotti, V. G., Costa, V. P., Silva, F. R., Resende, G. M., Cremasco, F., Dias, M., & Gomi, E. S. (2013). Sensitivity and Specificity of Machine Learning Classifiers and Spectral Domain OCT for the Diagnosis of Glaucoma. European Journal of Ophthalmology, 23(1), 61-69. doi:10.5301/ejo.5000183Xu, J., Ishikawa, H., Wollstein, G., Bilonick, R. A., Folio, L. S., Nadler, Z., … Schuman, J. S. (2013). Three-Dimensional Spectral-Domain Optical Coherence Tomography Data Analysis for Glaucoma Detection. PLoS ONE, 8(2), e55476. doi:10.1371/journal.pone.0055476Maetschke, S., Antony, B., Ishikawa, H., Wollstein, G., Schuman, J., & Garnavi, R. (2019). A feature agnostic approach for glaucoma detection in OCT volumes. PLOS ONE, 14(7), e0219126. doi:10.1371/journal.pone.0219126Ran, A. R., Cheung, C. Y., Wang, X., Chen, H., Luo, L., Chan, P. P., … Tham, C. C. (2019). Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis. The Lancet Digital Health, 1(4), e172-e182. doi:10.1016/s2589-7500(19)30085-8De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., … Ronneberger, O. (2018). Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24(9), 1342-1350. doi:10.1038/s41591-018-0107-6Wang, X., Chen, H., Ran, A.-R., Luo, L., Chan, P. P., Tham, C. C., … Heng, P.-A. (2020). Towards multi-center glaucoma OCT image screening with semi-supervised joint structure and function multi-task learning. Medical Image Analysis, 63, 101695. doi:10.1016/j.media.2020.101695Ran, A. R., Shi, J., Ngai, A. K., Chan, W.-Y., Chan, P. P., Young, A. L., … Cheung, C. Y. (2019). Artificial intelligence deep learning algorithm for discriminating ungradable optical coherence tomography three-dimensional volumetric optic disc scans. Neurophotonics, 6(04), 1. doi:10.1117/1.nph.6.4.041110Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735Jiang, J., Liu, X., Liu, L., Wang, S., Long, E., Yang, H., … Lin, H. (2018). Predicting the progression of ophthalmic disease based on slit-lamp images using a deep temporal sequence network. PLOS ONE, 13(7), e0201142. doi:10.1371/journal.pone.0201142Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T., Kendall, C. B., Gotway, M. B., & Liang, J. (2016). Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? IEEE Transactions on Medical Imaging, 35(5), 1299-1312. doi:10.1109/tmi.2016.2535302Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2009). A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), 855-868. doi:10.1109/tpami.2008.13
    corecore